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Plan for these two lectures:

1. From toric fibrations to almost toric fibrations

2. Three applications of ATFs:

◮ Exotic Lagrangian tori

◮ The embedding function E (1, a)
s→֒ B4(A)

◮ Non-isotopic symplectic embeddings of cubes



Today: From toric fibrations to almost toric fibrations

Recall: Toric fibration of (M, ω):

smooth surjection π : M → R

n such that the fibers are
Lagrangian tori T n or subtori
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From now on: dim = 4 always



Almost toric fibration of (M, ω):

allow also the next best singularity (nodal/focus-focus):

Local normal form of such a singularity C :

There are Darboux coordinates (x, y) near C such that

π−1(0) = C

and π near C is given by

π(x, y) = (x1 y1 + x2 y2, x1 y2 − x2 y1) .



If we view x, y as complex coordinates:

x = x1 + i x2, y = y1 + i y2,

then π(x, y) = xy.

Hence C is the same singularity that appears in Lefschetz
fibrations of symplectic manifolds.



More intuitive/dynamical approach: spherical pendulum:

1
FG

q3

S2

Hamiltonian of this system:

T ∗
R

3 ⊃ T ∗S2 → R

(q, p)
E7→ 1

2‖p‖2 + q3

S1-symmetry (by rotation around q3-axis) gives preservation of
angular momentum:

T ∗
R

3 ⊃ T ∗S2 → R

(q, p)
L7→ q1p2 − q2p1



Energy-momentum mapping:

T ∗
R

3 ⊃ T ∗S2 → R

2

(q, p)
µ7→ (L(q, p),E (q, p))

E

L

1

S1
T 2



Fibers over the axes (planar penduli):

C

T 2

T 2

±∞

×S1

×S1

×S1 ∪ pt

Hence µ−1(0, 1) = pinched torus C

So there is only one new fiber.



On Int(µ(T ∗S2)) \ (0, 1) have T 2-fibration

Lemma This fibration is not trivial.

Indeed: It is trivial ⇔ It is trivial over γ

⇔ E−1(1− ε) ∼= E−1(1 + ε)

But E−1(1− ε) ∼= S3 6= RP3 = T ∗
1 S

2 ∼= E−1(1 + ε)

E

L

γ



So there is non-trivial monodromy around γ. What is it?

On C choose curves η and λ.
η: generated by XE

λ: generated by XL (the vanishing cycle)

Take curves η0, λ0 on T 2
γ0

close to η, λ

λ λ0

η η0

Then going around γ gives monodromy

η0 7→ η0 − λ0, λ0 7→ λ0, i .e. M =


 1 0

−1 1




(Picard–Lefschetz formula; cf. e.g. Heckman)



Notation: π−1(△) :=

Meaning:

× denotes a focus focus singularity

- - - indicates the monodromy

Note: Over every boundary point there is an S1;
the set over the boundary is a smooth cylinder;
the corner is an “illusion”, it is smoothened by the monodromy



Recall: µ−1(△) is the open 4-ball

Lemma Nodal trade (Margaret Symington)

π−1(△)
s
= µ−1(△) = B4

s
=



Sketch of proof

Step 1: diffeomorphic

From theory of Lefschetz fibrations one knows:

π−1(⊗) ∼= T 2 × B2 with a −1-framed 2-handle attached along a
simple closed curve in T 2 × {×}
Hence: π−1(△) ∼= S1 × B3 with a 2-handle attached ...

Since S1 × B3 ∼= B4 with a 1-handle attached:

π−1(△) ∼= B4 with a 1-handle attached with a 2-handle attached

The 1-handle and 2-handle cancel.

Step 2: symplectomorphic

Eliashberg–Floer–McDuff:

Any symplectic form ω on B4 that agrees with ω0 near the

boundary is diffeomorphic to ω0, by a diffeomorphism fixing a

neighbourhood of the boundary.



Nodal slide + transferring the cut (Renato Vianna):

1

11

2
1
2

1
2

s
=

|| s

c
=



A rational triangle is (up to scaling) determined by its three
integral angles:

w1

w2

w3
q1

q2

q3
w1 := ‖q2 × q3‖, . . .

Example:
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4 = 22



Now start with toric fibration of CP2, traded at all vertices:

1

1

1

and apply the above “nodal slide + transferring the cut” operation
again and again.

Which triangles does one get?



“Recall“ the Markov equation:

a2 + b2 + c2 = 3abc , a, b, c ∈ N
Exercise (Markov 1879) If (a, b, c) is a solution, then also

M(a, b, c) := (a, b, 3ab − c)

is a solution, and all solutions are obtained this way from (1, 1, 1).

Get the Markov tree



Exercise (Vianna; Galkin–Usnich–Mikhalkin)

The triangles one gets from △(1, 1, 1) by

“nodal slide + transferring the cut” operations

are exactly the Markov triangles △(a2, b2, c2), where (a, b, c) is a
Markov triple.

More precisely: “nodal slide + transferring the cut” at the vertex
with integral angle c transforms

△(a2, b2, c2) ; △(a2, b2, (3ab − c)2).



First application: Solution to E (1, a)
s→֒ B

4(A)

For a, b > 0:

E (a, b) =

{
(z1, z2) ∈ C2

∣∣∣∣
π|z1|2
a

+
π|z2|2
b

≤ 1

}

Can assume b = 1, a ≥ 1

Moment polytope under µ(z1, z2) =
(
π|z1|2, π|z2|2

)
:

1

a



Wish to know:

c(a) = inf
{
A | E (1, a) s→֒ B4(A)

}

Obvious lower bound: volume constraint: c(a) ≥ √
a



Answer (McDuff–S 2012)

1. For a ∈ [1, τ4], where τ = 1+
√
5

2 is the Golden Ratio:

c(a) is given by the Fibonacci stairs

2. For a ∈
[
τ4, 8 1

36

]
: c(a) =

√
a except for nine disjoint “steps”

3. c(a) =
√
a for a ≥ 8 1

36

a

1 τ4 8 1
36structured rigidity transition flexibility

From now on: Focus on Fibonacci stairs
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(τ4, τ2)

a

c(a)

5
2

13
5

(52)
2 (135 )

2



Description

Fibonacci numbers

f−1 = 1, f0 = 0, fn+1 = fn + fn−1

gn = f2n−1 odd-index Fibonacci numbers

(g0, g1, g2, g3, g4, . . . ) = (1, 1, 2, 5, 13, . . . )

sequence γn = gn+1

gn

(γ0, γ1, γ2, γ3, . . . ) =

(
1, 2,

5

2
,
13

5
, . . .

)
,

converges to τ2



n’th step of the Fibonacci stairs

a

√
a

an an+1bn

c(a)

γn

γn+1

an = γ2n =

(
gn+1

gn

)2

and bn =
gn+2

gn



Lemma It suffices to show that

c(an) ≤ γn and c(bn) ≥ γn+1 (∗)

Proof

• volume constraint, (∗), and monotonicity of c(a) ⇒
c(an) = γn and c(bn) = γn+1, horizontal segment

• slanted segment: Take any a ≥ 1 and λ > 1.

E (1, a)
s→֒ B4(µ) ⇐⇒ E (λ, λa)

s→֒ B4(λµ)

Since E (1, λa) ⊂ E (λ, λa), get

c(λa) ≤ λc(a) i.e.
c(λa)

λa
≤ c(a)

a



Proof of c(bn) ≥ γn+1:

by cutting E (1, a) into a collection of balls, symplectic blowing-up,
existence of certain holomorphic spheres in blow-up of CP2

Proof of c(an) ≤ γn:

by these methods and more (more SWT and inflation)

But: these full embeddings

E (1, an)
s→֒ B4(

√
an)

are obtained at once and “explicitly” by the above almost toric
fibrations of CP2 !



After one operation:

1
21

2

1
2

1
2

2
2

s
=

Since the cuts can be chosen as short as we like, we obtain

E (12 − ε, 2− ε) ⊂ CP2(1).

It is known (McDuff–Polterovich) that ellipsoid embeddings can
always be made disjoint from CP1, hence get

E (12 − ε, 2− ε)
s→֒ CP2(1) \CP1 s

= B4(1)

hence E (1 − ε, 4− ε)
s→֒ B4(2)



In general, we have an ellipsoid triangle µ(E ) in △(a2, b2, c2) only
if one of a, b, c is 1.

These Markov triangles form the upper branch in the Markov tree:

The entries form exactly the odd-index Fibonacci numbers gn:

1, 1, 2, 5, 13, 34, 89, . . . :



Lemma The solutions (a, b) of

a2 + b2 + 1 = 3 a b

are exactly the (gn, gn+1)

i.e., from the ATFs we exactly get the full fillings

E (1, an)
s→֒ B4(

√
an).



Proof Consider the the upper branch

(1, 1, 1) −→ . . . −→ (1, an, bn) −→ (1, an+1, bn+1) −→ . . .

where an < bn and

an+1 = bn, bn+1 = 3bn − an

Assume by induction that (an, bn) = (gn, gn+1). Then

(an+1, bn+1) = (bn, 3bn − an)

= (gn+1, 3gn+1 − gn)

= (gn+1, gn+2)

where the Fibonacci relation 3gn+1 − gn = gn+2 is readily checked.



Two more applications of ATFs:

◮ Exotic Lagrangian tori

◮ Non-isotopic symplectic embeddings of cubes

First:

Theorem (Vianna; Galkin–Mikhalkin)

There are infinitely many different monotone Lagrangian tori in
CP2 and hence in B4(1).

“different” means: not Hamiltonian isotopic, and, in fact, not
symplectomorphic



More precisely:

Let πa,b,c : CP
2 → △(a2, b2, c2) be an ATF as above. Let Ta,b,c

be the torus over the center point:

Then Ta,b,c 6= Ta′,b′,c′ if (a, b, c) 6= (a′, b′, c ′).



One method:

(Eliashberg–Polterovich;
Vianna, Mikhalkin, Pascaleff–Tonkonog)

Count the number of holomorphic discs

u : (D, ∂D) → (M, L)

of Maslov index 2

u(D) L



Easier method: Versal deformations (Chekanov)

Idea: Study a symplectic invariant for tori nearby L

Example: Displacement energy

For H : [0, 1] ×M → R define the cost function

‖H‖ = int10

(
max
x∈M

H(t, x) − min
x∈M

H(t, x)

)
dt

For A ⊂ M look at the optimal transport problem

e (A) = inf
H∈H

{
‖H‖ | ϕ1

H(A) ∩ A = ∅

}



Exercise e(D2(a)) = e(S1(a)) ≤ a

Hint: One always has

e(ψ(A)) = e(A) for all ψ ∈ Symp(M, ω)

(look at H ◦ ψ−1)

For the exercise, take a ψ that maps D2(a) to (a rounding of)
[0, 1] × [0, a]

Theorem e(D2(a)) = a

There is no easy proof.

The first and most elementary is by Hofer 1990
by the calculus of variations for the action functional of classical
mechanics.

A harder proof is by Chekanov’s theorem:

e(L) ≥ minimal area of

a non-constant J-holomorphic disc with boundary on L



e(TCliff ,CP
2) = ∞, but not at nearby tori:

L
L

Weinstein: locally

{ Lagrangian tori near L } /Ham = H1(L;R)

Since e : L → [0,∞] is Ham-invariant, obtain function germ

eL : (H
1(L;R), 0) → [0,∞]



Proposition Assume that x is not the center of △ = µ(CP2).
Then

e(T (x)) = distint
(
x , ∂△

)

In other words: The level lines of eTCliff
in CP2 are:

“Proof”: Use symplectic reduction twice (Brendel):



≤: Take a segment in △ from x to ∂△ of integral length

d := distint
(
x , ∂△

)

and extend this segment to a segment in △ of length > 2d .

x

Over this segment we find a disc D2 in M of area > 2d containing
the smaller factor S1(d) of T (x).



Take a compactly supported Hamiltonian diffeomorphism φH of D2

such that

φH(S
1(d)) ∩ S1(d) = ∅ and ‖H‖ ≤ d + ε.

φH

By cutting off we can extend H to H̃ on M such that

‖H̃‖ ≤ ‖H‖ ≤ d + ε.

Then also
φ
H̃

(
T (x)

)
∩ T (x) = ∅

and so e(T (x)) ≤ d .



≥: Recall that CP2 is a symplectic reduction of S5 ⊂ C3.

The preimage of T (a, b) is T (a, b, 1− a− b).

A Hamiltonian isotopy of CP2 that disjoins T (a, b) lifts to a
Hamiltonian isotopy of C3 of the same Hofer norm that disjoins
T (a, b, 1− a − b):

e
(
T (a, b);CP2

)
≥ e

(
T (a, b, 1− a − b;C3)

)
.

By Sikorav (extending Hofer’s argument, by the calculus of
variations for the action functional of classical mechanics) or,
again, by Chekanov’s theorem:

e
(
T (a, b, 1− a − b);C3

)
= min{a, b, 1− a − b}
= distint(T (a, b), ∂△).



Since the transferring the cut is done by a half-shear (in SL(2,Z)):

(away from thin neighbourhoods of rays!)
i.e. the level lines know the ATF up to SL(2,Z)

Hence the set of integral angles of the ATF is an invariant of the
central torus. 2



Third application:

Non-isotopic symplectic embeddings of cubes

The problem

Take a “good” compact set K ⊂ (R2n, ω0), ω0 =
∑n

j=1 dxj ∧ dyj

like a ball or a cube of an ellipsoid or a polydisc

(M2n, ω) connected symplectic manifold

Embω(K ,M) := space of symplectic embeddings K → M

Question 1 Is Embω(K ,M) non-empty ?

Question 2 Is Embω(K ,M) connected ?

If not, what is π0(Embω(K ,M)) ?

Question 3 What is the topology (πk , Hk) of Embω(K ,M) ?



ϕ1

ϕ2

K

M

φH / ψ◦ / •



Let’s look at Question 2.

Examples

1. Gromov’s camel theorem: For the camel-space C(1) in R2n,

Embω(B
2n(a), C(1))

is not connected for a > 1

2. McDuff: Embω(B
4(a),

◦

B4(A)) is connected ∀ a < A



ATFs can be used to say something on Question 2

for the domain a cube C4(a) := D2(a)×D2(a):

Theorem 1 M =
◦

B4(3) or CP2(3)

(i) Consider the sequence

sn =
1

g2
n + g2

n+1

, n ≥ 0

where gn is the n’th odd-index Fibonacci number. Hence

(s0, s1, s2, s3, . . . ) =

(
1

2
,
1

5
,
1

29
,

1

194
, . . .

)
.

Then for a ∈ (1, 1 + sn) there are at least n + 1 non-equivalent

symplectic embeddings of C4(a) into
◦

B4(3) and CP2(3).

(ii) There are infinitely many non-equivalent symplectic

embeddings of C4(1) into
◦

B4(3) and CP2(3).



Proof

Have a symplectomorphism Φ: ATF1 → CP2

For a < 1 + 1
5 : C

4(a) ⊂ ATF1

Hence obtain ϕ := Φ|C4(a) : C4(a)
s→֒ CP2

Also have id : C4(a) ⊂ TF = CP2

1

1 11

4

1 1

1 1



Claim: id 6∼ ϕ if a ∈ [1, 1 + 1
5 )

Proof: If not, ∃ a symplectomorphism ψ of CP2 such that

(ψ ◦ id)(C4(a)) = ϕ(C4(a)).

Restricting to the central torus L := T(1) × T(1) we obtain

ψ(L) = ϕ(L).

But the Clifford torus L and ϕ(L) are not symplectomorphic ! 2



The same question for C 4(a)
s→֒ C 4(2) is more interesting:


