Almost toric fibrations, with applications

August 26, 2021

Plan for these two lectures:

- 1. From toric fibrations to almost toric fibrations
- 2. Three applications of ATFs:
 - Exotic Lagrangian tori
 - The embedding function $E(1, a) \stackrel{s}{\hookrightarrow} B^4(A)$
 - Non-isotopic symplectic embeddings of cubes

Today: From toric fibrations to almost toric fibrations

Recall: Toric fibration of (M, ω) : smooth surjection $\pi: M \to \mathbb{R}^n$ such that the fibers are Lagrangian tori T^n or subtori

Examples

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

From now on: dim = 4 always

Almost toric fibration of (M, ω) :

allow also the next best singularity (nodal/focus-focus):

Local normal form of such a singularity C: There are Darboux coordinates (\mathbf{x}, \mathbf{y}) near C such that

$$\pi^{-1}(0) = C$$

and π near C is given by

$$\pi(\mathbf{x},\mathbf{y}) = (x_1 y_1 + x_2 y_2, x_1 y_2 - x_2 y_1).$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

If we view **x**, **y** as complex coordinates:

$$\mathbf{x} = x_1 + i x_2, \quad \mathbf{y} = y_1 + i y_2,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

then $\pi(\mathbf{x}, \mathbf{y}) = \overline{\mathbf{x}} \mathbf{y}$.

Hence C is the same singularity that appears in Lefschetz fibrations of symplectic manifolds.

More intuitive/dynamical approach: spherical pendulum:

Hamiltonian of this system:

$$egin{array}{rl} T^* \mathbb{R}^3 \supset T^* S^2 &
ightarrow \mathbb{R} \ (q,p) & \stackrel{E}{\mapsto} & rac{1}{2} \|p\|^2 + q_3 \end{array}$$

 S^1 -symmetry (by rotation around q_3 -axis) gives preservation of angular momentum:

$$T^* \mathbb{R}^3 \supset T^* S^2 \rightarrow \mathbb{R}$$

$$(q, p) \stackrel{L}{\mapsto} q_1 p_2 - q_2 p_1$$

Energy-momentum mapping:

$$T^* \mathbb{R}^3 \supset T^* S^2 \rightarrow \mathbb{R}^2$$

 $(q,p) \stackrel{\mu}{\mapsto} (L(q,p), E(q,p))$

Fibers over the axes (planar penduli):

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Hence $\mu^{-1}(0,1) = \text{pinched torus } C$ So there is only one new fiber. On $Int(\mu(T^*S^2)) \setminus (0,1)$ have T^2 -fibration

Lemma This fibration is not trivial.

Indeed: It is trivial \Leftrightarrow It is trivial over γ $\Leftrightarrow E^{-1}(1-\varepsilon) \cong E^{-1}(1+\varepsilon)$ But $E^{-1}(1-\varepsilon) \cong S^3 \neq \mathbb{R}P^3 = T_1^*S^2 \cong E^{-1}(1+\varepsilon)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

So there is non-trivial monodromy around γ . What is it?

On C choose curves η and λ .

- η : generated by X_E
- λ : generated by X_L (the vanishing cycle)

Take curves η_0 , λ_0 on $T_{\gamma_0}^2$ close to η , λ

Then going around γ gives monodromy

$$\eta_0 \mapsto \eta_0 - \lambda_0, \quad \lambda_0 \mapsto \lambda_0, \quad i.e. \ M = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

(Picard–Lefschetz formula; cf. e.g. Heckman), $(\neg , (\neg), (\neg$

Notation: $\pi^{-1}(\triangle) :=$

Meaning:

× denotes a focus focus singularity

- - - indicates the monodromy

Note: Over **every** boundary point there is an S^1 ; the set over the boundary is a **smooth** cylinder; the corner is an "illusion", it is smoothened by the monodromy Recall: $\mu^{-1}(\triangle)$ is the open 4-ball

Lemma Nodal trade (Margaret Symington)

$$\pi^{-1}(\triangle) \stackrel{s}{=} \mu^{-1}(\triangle) = B^4$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Sketch of proof

Step 1: diffeomorphic

From theory of Lefschetz fibrations one knows:

 $\pi^{-1}(\otimes) \cong T^2 \times B^2$ with a -1-framed 2-handle attached along a simple closed curve in $T^2 \times \{\times\}$

Hence: $\pi^{-1}(\triangle) \cong S^1 \times B^3$ with a 2-handle attached ...

Since $S^1 \times B^3 \cong B^4$ with a 1-handle attached:

 $\pi^{-1}(\triangle) \cong B^4$ with a 1-handle attached with a 2-handle attached The 1-handle and 2-handle cancel.

Step 2: symplectomorphic

Eliashberg-Floer-McDuff:

Any symplectic form ω on B^4 that agrees with ω_0 near the boundary is diffeomorphic to ω_0 , by a diffeomorphism fixing a neighbourhood of the boundary.

Nodal slide + transferring the cut (Renato Vianna):

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ● ●

A rational triangle is (up to scaling) determined by its three integral angles:

Now start with toric fibration of $\mathbb{C}\mathsf{P}^2$, traded at all vertices:

and apply the above "nodal slide + transferring the cut" operation again and again.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Which triangles does one get?

"Recall" the Markov equation:

$$a^2 + b^2 + c^2 = 3abc, \qquad a, b, c \in \mathbb{N}$$

Exercise (Markov 1879) If (a, b, c) is a solution, then also M(a, b, c) := (a, b, 3ab - c)

is a solution, and all solutions are obtained this way from (1,1,1). Get the Markov tree

◆ロ → ◆聞 → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○

Exercise (Vianna; Galkin–Usnich–Mikhalkin) The triangles one gets from $\triangle(1,1,1)$ by

"nodal slide + transferring the cut" operations

are exactly the Markov triangles $\triangle(a^2, b^2, c^2)$, where (a, b, c) is a Markov triple.

More precisely: "nodal slide + transferring the cut" at the vertex with integral angle c transforms

 $\triangle(a^2, b^2, c^2) \rightsquigarrow \triangle(a^2, b^2, (3ab-c)^2).$

First application: Solution to $E(1, a) \stackrel{s}{\hookrightarrow} B^4(A)$

For a, b > 0: $E(a, b) = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \frac{\pi |z_1|^2}{a} + \frac{\pi |z_2|^2}{b} \le 1 \right\}$

Can assume b = 1, $a \ge 1$

Moment polytope under $\mu(z_1, z_2) = (\pi |z_1|^2, \pi |z_2|^2)$:

Wish to know:

$$c(a) = \inf \left\{ A \mid E(1,a) \stackrel{s}{\hookrightarrow} B^4(A) \right\}$$

Obvious lower bound: volume constraint: $c(a) \ge \sqrt{a}$

Answer (McDuff-S 2012)
1. For
$$a \in [1, \tau^4]$$
, where $\tau = \frac{1+\sqrt{5}}{2}$ is the Golden Ratio:
 $c(a)$ is given by the Fibonacci stairs
2. For $a \in [\tau^4, 8\frac{1}{36}]$: $c(a) = \sqrt{a}$ except for nine disjoint "steps"
3. $c(a) = \sqrt{a}$ for $a \ge 8\frac{1}{36}$
1 structured rigidity τ^4 transition $8\frac{1}{36}$ flexibility

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

From now on: Focus on Fibonacci stairs

Description

Fibonacci numbers

$$f_{-1} = 1$$
, $f_0 = 0$, $f_{n+1} = f_n + f_{n-1}$

 $g_n = f_{2n-1}$ odd-index Fibonacci numbers

$$(g_0, g_1, g_2, g_3, g_4, \dots) = (1, 1, 2, 5, 13, \dots)$$

sequence $\gamma_n = \frac{g_{n+1}}{g_n}$
 $(\gamma_0, \gamma_1, \gamma_2, \gamma_3, \dots) = (1, 2, \frac{5}{2}, \frac{13}{5}, \dots),$

converges to τ^2

n'th step of the Fibonacci stairs

Sar

æ

Lemma It suffices to show that

$$c(a_n) \leq \gamma_n$$
 and $c(b_n) \geq \gamma_{n+1}$ (*)

Proof

- volume constraint, (*), and monotonicity of $c(a) \Rightarrow c(a_n) = \gamma_n$ and $c(b_n) = \gamma_{n+1}$, horizontal segment
- slanted segment: Take any $a \ge 1$ and $\lambda > 1$.

$$E(1,a) \stackrel{s}{\hookrightarrow} B^4(\mu) \iff E(\lambda,\lambda a) \stackrel{s}{\hookrightarrow} B^4(\lambda \mu)$$

Since $E(1, \lambda a) \subset E(\lambda, \lambda a)$, get

$$c(\lambda a) \leq \lambda c(a)$$
 i.e. $rac{c(\lambda a)}{\lambda a} \leq rac{c(a)}{a}$

Proof of $c(b_n) \ge \gamma_{n+1}$:

by cutting E(1, a) into a collection of balls, symplectic blowing-up, existence of certain holomorphic spheres in blow-up of $\mathbb{C}P^2$

Proof of $c(a_n) \leq \gamma_n$:

by these methods and more (more SWT and inflation)

But: these full embeddings

 $E(1,a_n) \stackrel{s}{\hookrightarrow} B^4(\sqrt{a_n})$

are obtained at once and "explicitly" by the above almost toric fibrations of $\mathbb{C}\mathsf{P}^2$!

After one operation:

Since the cuts can be chosen as short as we like, we obtain

$$E(\frac{1}{2}-\varepsilon,2-\varepsilon) \subset \mathbb{C}\mathsf{P}^2(1).$$

It is known (McDuff–Polterovich) that ellipsoid embeddings can always be made disjoint from \mathbb{CP}^1 , hence get

$$E(\frac{1}{2} - \varepsilon, 2 - \varepsilon) \stackrel{s}{\hookrightarrow} \mathbb{C}\mathsf{P}^{2}(1) \setminus \mathbb{C}\mathsf{P}^{1} \stackrel{s}{=} B^{4}(1)$$
$$E(1 - \varepsilon, 4 - \varepsilon) \stackrel{s}{\hookrightarrow} B^{4}(2)$$

hence

《日》《圖》《圖》《圖》 æ In general, we have an ellipsoid triangle $\mu(E)$ in $\triangle(a^2, b^2, c^2)$ only if one of a, b, c is 1.

These Markov triangles form the upper branch in the Markov tree:

The entries form exactly the odd-index Fibonacci numbers g_n :

1, 1, 2, 5, 13, 34, 89, ... :

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Lemma The solutions (a, b) of

$$a^2 + b^2 + 1 = 3 \, a \, b$$

are exactly the (g_n, g_{n+1})

i.e., from the ATFs we exactly get the full fillings

 $E(1,a_n) \stackrel{s}{\hookrightarrow} B^4(\sqrt{a_n}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Proof Consider the the upper branch

$$(1,1,1) \longrightarrow \ldots \longrightarrow (1,a_n,b_n) \longrightarrow (1,a_{n+1},b_{n+1}) \longrightarrow \ldots$$

where $a_n < b_n$ and

$$a_{n+1}=b_n, \qquad b_{n+1}=3b_n-a_n$$

Assume by induction that $(a_n, b_n) = (g_n, g_{n+1})$. Then

$$egin{array}{rcl} (a_{n+1}, b_{n+1}) &=& (b_n, 3b_n - a_n) \ &=& (g_{n+1}, 3g_{n+1} - g_n) \ &=& (g_{n+1}, g_{n+2}) \end{array}$$

where the Fibonacci relation $3g_{n+1} - g_n = g_{n+2}$ is readily checked.

Two more applications of ATFs:

- Exotic Lagrangian tori
- Non-isotopic symplectic embeddings of cubes

First:

Theorem (Vianna; Galkin–Mikhalkin)

There are infinitely many different monotone Lagrangian tori in $\mathbb{C}P^2$ and hence in $B^4(1)$.

"different" means: not Hamiltonian isotopic, and, in fact, not symplectomorphic

A D M 4 目 M 4 日 M 4 1 H 4

More precisely:

Let $\pi_{a,b,c}$: $\mathbb{C}P^2 \to \triangle(a^2, b^2, c^2)$ be an ATF as above. Let $T_{a,b,c}$ be the torus over the center point:

・ロト ・ 一下・ ・ ヨト ・ 日 ・

э

Then $T_{a,b,c} \neq T_{a',b',c'}$ if $(a,b,c) \neq (a',b',c')$.

One method:

(Eliashberg–Polterovich; Vianna, Mikhalkin, Pascaleff–Tonkonog)

Count the number of holomorphic discs

 $u\colon (\mathbb{D},\partial\mathbb{D})\to (M,L)$

of Maslov index 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Easier method: Versal deformations (Chekanov) Idea: Study a symplectic invariant for tori nearby *L* Example: Displacement energy

For $H \colon [0,1] \times M \to \mathbb{R}$ define the cost function

$$\|H\| = \operatorname{int}_0^1\left(\max_{x \in M} H(t, x) - \min_{x \in M} H(t, x)\right) dt$$

For $A \subset M$ look at the optimal transport problem

$$e(A) = \inf_{H \in \mathcal{H}} \left\{ \|H\| \mid \varphi_{H}^{1}(A) \cap A = \varnothing \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Exercise $e(D^2(a)) = e(S^1(a)) \le a$

Hint: One always has

$$e(\psi(A)) = e(A)$$
 for all $\psi \in \mathsf{Symp}(M, \omega)$

(look at $H \circ \psi^{-1}$)

For the exercise, take a ψ that maps $D^2(a)$ to (a rounding of) $[0,1] \times [0,a]$

Theorem $e(D^2(a)) = a$

There is no easy proof.

The first and most elementary is by **Hofer 1990** by the calculus of variations for the action functional of classical mechanics.

A harder proof is by Chekanov's theorem:

 $e(L) \ge$ minimal area of a non-constant *J*-holomorphic disc with boundary on *L* $e(\mathsf{T}_{\mathsf{Cliff}}, \mathbb{C}\mathsf{P}^2) = \infty$, but not at nearby tori:

Weinstein: locally

{ Lagrangian tori near L } / Ham = $H^1(L; \mathbb{R})$

A D M 4 目 M 4 日 M 4 1 H 4

Since $e \colon \mathcal{L} \to [0, \infty]$ is Ham-invariant, obtain function germ $e_L \colon (H^1(L; \mathbb{R}), 0) \to [0, \infty]$

Proposition Assume that x is not the center of $\triangle = \mu(\mathbb{C}P^2)$. Then

$$e(T(x)) = dist_{int}(x, \partial \triangle)$$

In other words: The level lines of $e_{\mathsf{T}_{\mathsf{Cliff}}}$ in $\mathbb{C}\mathsf{P}^2$ are:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

"Proof": Use symplectic reduction twice (Brendel):

 \leq : Take a segment in \triangle from x to $\partial \triangle$ of integral length

$$d := \mathsf{dist}_{\mathsf{int}}(x, \partial \triangle)$$

and extend this segment to a segment in \triangle of length > 2d.

Over this segment we find a disc D^2 in M of area > 2d containing the smaller factor $S^1(d)$ of T(x).

Take a compactly supported Hamiltonian diffeomorphism ϕ_H of D^2 such that

$$\phi_{H}(S^{1}(d))\cap S^{1}(d)=\emptyset \quad ext{ and } \quad \|H\|\leq d+arepsilon.$$

By cutting off we can extend H to \widetilde{H} on M such that

$$\|\widetilde{H}\| \leq \|H\| \leq d + \varepsilon.$$

Then also

$$\phi_{\widetilde{H}}(T(x))\cap T(x)=\emptyset$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

and so $e(T(x)) \leq d$.

≥: Recall that $\mathbb{C}\mathsf{P}^2$ is a symplectic reduction of $S^5 \subset \mathbb{C}^3$. The preimage of T(a, b) is T(a, b, 1 - a - b).

A Hamiltonian isotopy of $\mathbb{C}P^2$ that disjoins T(a, b) lifts to a Hamiltonian isotopy of \mathbb{C}^3 of the same Hofer norm that disjoins T(a, b, 1 - a - b):

 $e(T(a,b); \mathbb{C}\mathsf{P}^2) \geq e(T(a,b,1-a-b;\mathbb{C}^3)).$

By **Sikorav** (extending Hofer's argument, by the calculus of variations for the action functional of classical mechanics) or, again, by Chekanov's theorem:

$$e(T(a, b, 1-a-b); \mathbb{C}^3) = \min\{a, b, 1-a-b\}$$

= dist_{int}(T(a, b), $\partial \triangle$).

Since the transferring the cut is done by a half-shear (in $SL(2,\mathbb{Z})$):

(away from thin neighbourhoods of rays!)

i.e. the level lines know the ATF up to $SL(2,\mathbb{Z})$

Hence the set of integral angles of the ATF is an invariant of the central torus.

Third application:

Non-isotopic symplectic embeddings of cubes

The problem

Take a "good" compact set $K \subset (\mathbb{R}^{2n}, \omega_0)$, $\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$ like a ball or a cube of an ellipsoid or a polydisc

 (M^{2n},ω) connected symplectic manifold

 $\mathsf{Emb}_{\omega}(K,M) := \mathsf{space} \text{ of symplectic embeddings } K o M$

Question 1 Is $\text{Emb}_{\omega}(K, M)$ non-empty?

Question 2 Is $\operatorname{Emb}_{\omega}(K, M)$ connected? If not, what is $\pi_0(\operatorname{Emb}_{\omega}(K, M))$?

Question 3 What is the topology (π_k, H_k) of $\text{Emb}_{\omega}(K, M)$?

・ロ・ ・ 日・ ・ 田・ ・ 田・

æ

Let's look at Question 2.

Examples

1. Gromov's camel theorem: For the camel-space $\mathcal{C}(1)$ in \mathbb{R}^{2n} ,

 $\mathsf{Emb}_{\omega}(\mathsf{B}^{2n}(a),\mathcal{C}(1))$

A D M 4 目 M 4 日 M 4 1 H 4

is **not** connected for a > 1

2. McDuff: Emb_{ω}(B⁴(*a*), $\mathring{B}^4(A)$) is connected $\forall a < A$

ATFs can be used to say something on Question 2 for the domain a cube $C^4(a) := D^2(a) \times D^2(a)$:

Theorem 1 $M = \mathring{B}^4(3)$ or $\mathbb{C}P^2(3)$

(i) Consider the sequence

$$s_n = \frac{1}{g_n^2 + g_{n+1}^2}, \qquad n \ge 0$$

where g_n is the *n*'th odd-index Fibonacci number. Hence

$$(s_0, s_1, s_2, s_3, \dots) = \left(\frac{1}{2}, \frac{1}{5}, \frac{1}{29}, \frac{1}{194}, \dots\right).$$

Then for $a \in (1, 1 + s_n)$ there are at least n + 1 non-equivalent symplectic embeddings of C⁴(a) into $\mathring{B}^4(3)$ and $\mathbb{CP}^2(3)$. (ii) There are infinitely many non-equivalent symplectic embeddings of C⁴(1) into $\mathring{B}^4(3)$ and $\mathbb{CP}^2(3)$.

Proof

Have a symplectomorphism $\Phi: \operatorname{ATF}_1 \to \mathbb{CP}^2$ For $a < 1 + \frac{1}{5}$: $\operatorname{C}^4(a) \subset \operatorname{ATF}_1$ Hence obtain $\varphi := \Phi|_{\operatorname{C}^4(a)}$: $\operatorname{C}^4(a) \stackrel{s}{\to} \mathbb{CP}^2$ Also have id: $\operatorname{C}^4(a) \subset \operatorname{TF} = \mathbb{CP}^2$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Claim: $\operatorname{id} \not\sim \varphi$ if $a \in [1, 1 + \frac{1}{5})$ Proof: If not, \exists a symplectomorphism ψ of $\mathbb{C}P^2$ such that $(\psi \circ \operatorname{id})(C^4(a)) = \varphi(C^4(a)).$

Restricting to the central torus $L := T(1) \times T(1)$ we obtain

 $\psi(L)=\varphi(L).$

But the Clifford torus *L* and $\varphi(L)$ are not symplectomorphic !

The same question for $C^4(a) \stackrel{s}{\hookrightarrow} C^4(2)$ is more interesting:

