
1. Show that the dimension of a complex semisimple algebraic group is at least 3.

2. Explain why a finite group is an algebraic group. Show that a finite group consists of
semisimple elements only.

3. Calculate the group of algebraic characters of the following groups:

(a) The cyclic group of order n.

(b) The symmetric group Sn.

(c) The alternating subgroup An Ď Sn.

(d) The n-dimensional complex torus.

(e) The general linear group GL2pCq.
(f) The special linear group SL2pCq.
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4. Which of the groups in the previous exercise are simple, semisimple, or reductive?

5. Determine the Picard group of Pn.

6. Determine the Picard group of the Grassmann variety of 2 planes in C4.

7. Show that GLnpCq is not simply connected in the Hausdorff topology. Show directly
that GLnpCq is not algebraically simply connected.

8. Let G be a complex semisimple algebraic group. Determine the equivariant Picard
group PicGˆGpGq, where GˆG acts on G as follows:

pg, hq ¨ x “ gxh´1
pg, h, x P Gq.
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