1. Show that the dimension of a complex semisimple algebraic group is at least 3 .
2. Explain why a finite group is an algebraic group. Show that a finite group consists of semisimple elements only.
3. Calculate the group of algebraic characters of the following groups:
(a) The cyclic group of order $n$.
(b) The symmetric group $S_{n}$.
(c) The alternating subgroup $A_{n} \subseteq S_{n}$.
(d) The $n$-dimensional complex torus.
(e) The general linear group $\mathbf{G L}_{2}(\mathbb{C})$.
(f) The special linear group $\mathrm{SL}_{2}(\mathbb{C})$.
(g) $P=\left\{\left[\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & f & g\end{array}\right] \in \mathbf{G L}_{3}(\mathbb{C})\right\}$.
(h) $Q=\left\{\left[\begin{array}{cccc}a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & a_{32} & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44}\end{array}\right] \in \mathbf{G L}_{4}(\mathbb{C})\right\}$.
(i) $H=\left\{\left[\begin{array}{lll}1 & b & 0 \\ 0 & 1 & 0 \\ 0 & 0 & g\end{array}\right] \in \mathbf{G L}_{3}(\mathbb{C})\right\}$.
4. Which of the groups in the previous exercise are simple, semisimple, or reductive?
5. Determine the Picard group of $\mathbb{P}^{n}$.
6. Determine the Picard group of the Grassmann variety of 2 planes in $\mathbb{C}^{4}$.
7. Show that $\mathbf{G L}_{n}(\mathbb{C})$ is not simply connected in the Hausdorff topology. Show directly that $\mathbf{G L}_{n}(\mathbb{C})$ is not algebraically simply connected.
8. Let $G$ be a complex semisimple algebraic group. Determine the equivariant Picard group $\operatorname{Pic}_{G \times G}(G)$, where $G \times G$ acts on $G$ as follows:

$$
(g, h) \cdot x=g x h^{-1} \quad(g, h, x \in G) .
$$

