For the next four problems the following notation is fixed: let G denote $\mathbf{S L}_{3}(\mathbb{C})$, let B denote the Borel subgroup of upper triangular matrices in G, and let T denote the maximal diagonal torus in B.

1. Compute the weight lattice of (G, B, T).
2. Compute the Weyl group W of (G, T).
3. Let $\left\{\varpi_{1}, \varpi_{2}\right\}$ be the set of fundamental dominant weights of (G, B, T). Compute the W-orbits of ϖ_{1} and $\varpi_{1}+\varpi_{2}$.
4. Let W denote the vector space of 3×3 skew-symmetric matrices on which G acts by the congruence action:

$$
g \cdot A=g A g^{\top} \quad(g \in G, A \in W)
$$

Show that W is an irreducible representation of G. Find the highest weight of W.

For the next three problems the following notation is fixed: let G denote $\mathbf{S L}_{2}(\mathbb{C})$, let B denote the Borel subgroup of upper triangular matrices in G, and let T denote the maximal diagonal torus in B.

1. Find the character group $\ddot{\mathrm{O}}(B)$ of B.
2. Let V denote the two dimensional complex vector space of 2×1 column matrices on which G acts by matrix multiplication. Compute the weight lattice of V in $\ddot{\mathbf{O}}(B)$.
3. For each $n \in \mathbb{Z}^{+}$find an irreducible rational representation V of G such that $\operatorname{dim} V=n$. Show that in each dimension, there is exactly one irreducible representations of G.
