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In any topological investigation of manifolds, compactness1 is an ultimate tool to have
since it enables combinatorial methods. For algebraic varieties2, the most natural topology
is the Zariski topology, which is usually not Hausdorff. Therefore, the ordinary compactness
notion should be replaced with a notion of a “completeness.” A variety X is called complete
if for every variety Y , the second projection X ˆ Y Ñ Y is a closed mapping in the Zariski
topology. In [6] (Géométrie algébrique et géométrie analytique, 1955), Serre shows that an
algebraic variety X defined over C is compact in the classical Hausdorff topology if and only
if X is complete3. Important examples of complete varieties include all projective varieties4.
In particular every projective complex algebraic variety is compact. It turns out that all
smooth complete algebraic surfaces are projective varieties. However, there exist singular
nonprojective complete algebraic surfaces as well as smooth nonprojective complete three-
folds; see the references in [4, Remark 4.10.2]. For a simple example that is close to the spirit
of this text, see [3, Example 4.2.13]. Later we will see that there are compact complex Lie
groups which are not projective.

Many interesting manifolds (resp. algebraic varieties) are naturally equipped with the
Lie group (resp. algebraic group) actions on them. An orbit of a Lie group or an algebraic
group action is called a homogeneous space. Clearly, the group itself is a homogeneous
space under each of its left-, right-, or two-sided actions. Other examples of homogeneous
spaces include all Grassmann manifolds, all complex tori, all projective spaces, all spaces
of constant curvature, such as the euclidean spaces, the spheres, as well as certain finite
quotients of (pseudo)orthogonal groups, all symmetric spaces.. While some of these orbit
spaces are compact in the Hausdorff topology many of them are not complete. The theory
of compactifications of homogeneous spaces of Lie groups is a vast area of geometry with

1A locally compact Hausdorff topological space is compact if and only if for every topological space Y ,
the projection map X ˆ Y Ñ Y is a closed map.

2For us, an algebraic variety is a reduced and separated scheme of finite type defined over an algebraically
closed field.

3Very roughly summarized, [6] states that the analytification functor X ù Xan from proper C-schemes
to compact Hausdorff C-analytic spaces is fully faithful.

4The vanishing set of a collection of homogeneous polynomials in Pn is called a projective variety.
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connections to almost all known areas of mathematics. In these notes, we will be concerned
with a small combinatorial corner of the theory of equivariant completions for only a certain
type of algebraic group actions. In fact, most of our discussion will not be specifically about
completions of orbits but about their “equivariant embeddings.”

Definition 0.1. Let G be a Lie or an algebraic group, and let H Ď G be a closed subgroup. A
G-equivariant embedding of G{H is an irreducible G-variety X with an open orbit isomorphic
to G{H.

At the heart of the theory of equivariant embeddings of orbits are the equivariant em-
beddings of the group itself. If the group itself is compact then it may look at first sight
that no new information would be gained from its equivariant embeddings. This is correct to
some degree for algebraic groups. Nevertheless, many complex algebraic groups are obtained
from compact Lie groups as we will explain later. We note that any complex algebraic group
has a unique structure of a complex Lie group. The converse of this statement is not true
as it is easily seen from the following example: Let A be denote the image in C2 of the
holomorphic map s ÞÑ pes, eisq, s P C. Then A is a one-dimensional complex Lie group since
it is biholomorphically isomorphic to pC,`q. However it is easy to check that there is no
nonzero polynomial in two (or more) variables fpx, yq P Crx, ys such that fpes, e

?
´1sq “ 0

for all s P C. Therefore, A is not a complex algebraic variety. Since not every (complex) Lie
group is algebraic, we want to know where the complete Lie groups stand in relation with
the algebraic groups. While answering this question, we will explain why the existence of a
faithful finite dimensional linear representation of a Lie group is important for algebraicity.
Let us proceed with a real example.

The three dimensional unit sphere in S3 Ă R4 can be viewed as the special unitary group
via the identification,

SU2pCq :“

"„

a b
´b̄ ā



: aā` bb̄ “ 1, a, b P C
*

ÝÑ S3 :“ tx20 ` x
2
1 ` x

2
2 ` x

2
3 “ 1u

„

a b
´b̄ ā



ÞÝÑ prepaq, impaq, repbq, impbqq.

Hence, it admits the two-sided multiplication action of SU2pCq. Since S3 is a compact subset
of R4, the Lie group SU2pCq is compact as a real Lie group. But notice that the equation
aā ` bb̄ “ 1, a, b P C that defines SU2pCq as a matrix group is not really a polynomial
equation. Therefore we cannot regard SU2pCq as a complex Lie group or as a complex
algebraic variety5 although it is still a “real algebraic group.”

5 A group G equipped with the structure of a differentiable manifold (resp. complex manifold, resp.
complex algebraic variety) is said to be a real Lie group (resp. a complex Lie group, resp. a complex algebraic
group) if the underlying group operations are smooth maps (resp. holomorphic maps, resp. algebraic
morphisms). Equivalently, a real Lie group (resp. a complex Lie group, resp. a complex algebraic group) is a
group object in the category of differentiable manifolds (resp. category of complex manifolds, resp. category
of algebraic varieties).
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An algebraic variety in Rn6 is a subset of the form

XS :“ tx P Rn : fpxq “ 0 for every f P Su,

where S is a set of polynomials in Rrx1, . . . , xns. Clearly, any real polynomial, that is to say
a polynomial with real coefficients, is also a complex polynomial. Therefore, regarding S as
a subset of Crx1, . . . , xns we obtain an affine complex algebraic variety,

XSpCq :“ tx P Cn : fpxq “ 0 for every f P Su,

called the complexification of XS. Conversely, let X Ď Cn be an affine complex algebraic
variety. Then we can view X as an algebraic variety in R2n – Cn. A real form X0 of X is
an algebraic variety in R2n such that X0 is a closed subset of X (as an algebraic variety in
R2n), and the complexification of X0 is isomorphic to X as a complex algebraic variety.

Let CrXs denote the C-algebra of C-valued polynomial functions on X. Let z1, . . . , zn
denote the restriction to X of the coordinate functions of Cn. Then CrXs is generated by
z1, . . . , zn over C. Let CrXs denote the C-algebra Crz̄1, . . . , z̄ns, where z̄i (i P t1, . . . , nu)
is the complex conjugate of the polynomial function zi (i P t1, . . . , nu). Let Y be another
complex affine algebra. A map of complex affine varieties f : X Ñ Y is called an anti-
holomorphic morphism if f˚CrY s Ď CrXs. For every real affine variety X0 Ă Rn there exists
a unique anti-holomorphic automorphism of the complexification τ : X0pCq Ñ X0pCq such
that τpx0q “ x0 for all x0 P X0 and τ 2pxq “ x for all x P X0pCq. It turns out that, with a
small restriction, the converse of this observation holds as well: For every anti-holomorphic
involutory morphism τ : X Ñ X, where X is a complex affine algebraic variety, if the fixed
point set X0 of τ contains a smooth point of X, then X0 is a real form of X. Now let Y Ď Cn

be a subset defined by a set of algebraic equation in the coordinate variables z1, . . . , zn, and
their complex conjugates z̄1, . . . , z̄n. Since these coordinate functions and their conjugates
are equivalent to the coordinate functions on R2n by linear transformations, Y is an algebraic
variety in R2n. Our first example, the special unitary group SU2pCq, is a complete (compact)
real form of SL2pCq, which is a complex hypersurface in C4.

A compact group is any topological group which is compact and Hausdorff. A compact
group called a compact linear group if it admits an injective topological group homomor-
phism into GLpV q, where V is a finite dimensional complex vector space. Thanks to Stone-
Weierstrass theorem, it can be shown without much difficulty that every compact linear
group has the structure of an algebraic variety in Rn for some n P Z`. In particular, the
compact linear groups are real linear Lie groups. Since they are algebraic, every compact
linear group K has a complexification KpCq, which is a complex affine algebraic group. It
turns out that KpCq is a reductive group, meaning that the it does not contain any non-
trivial normal unipotent subgroup. Furthermore, the assignment K ù KpCq defines an
equivalence of categories between the category of linear compact groups and the category of
complex reductive algebraic groups. In summary, we learn from this equivalence of categories
that

6Strictly speaking, this is the set of “R-rational points” of the complex affine scheme defined by the
polynomials in S.
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1. for every reductive complex algebraic group G there exists a unique complete (compact)
real form K of G such that KpCq – G.

2. Every reductive complex algebraic group G is linear, that is to say, it admits a faithful
algebraic group representation on some finite dimensional complex vector space.

The above discussion shows that the representation theory of compact linear groups is
related to the theory of reductive groups in a fundamental way. We note that reductive
groups are not complete unless they are zero dimensional. Next, we will consider complete
(compact) complex Lie groups. The completeness assumption on such a group puts a very
severe restriction on the multiplicative structure.

Let G be a connected complex Lie group, let e P G be the identity element. For every
vector v in the tangent space of G at e, there exists a unique holomorphic one-parameter
semigroup homomorphism ψv : C Ñ G such that dpψvq0 : T0C Ñ TeG maps 1 P T0C
to v P TeG. Consequently, we get the exponential map exp : TeG Ñ G by exppvq :“
ψvp1q. In particular, we have ψvptq “ expptvq (by the uniqueness of ψv). Thanks to implicit
function theorem, we know that the exponential map exp is a local diffeomorphism. This
fact immediately implies that the kernel of exp is a discrete subgroup of the vector space
TeG. We will mention another important property of the exponential map. The uniqueness
property of ψv also implies that the differential of any complex Lie group automorphism
f : X Ñ X commutes with exp:

fpexppvqq “ exppdfepvqq pv P TeGq. (0.2)

Let Cg : G Ñ G (g P G) denote the conjugation map x ÞÑ gxg´1, x P G. Then we see that
Cgpexppvqq “ exppdpCgqepvqq for every v P TeG.

We now proceed with the assumption that G is a complete connected complex Lie group.
It follows that G does not admit any non-constant holomorphic map to an affine space,
hence, its adjoint representation on TeG is the trivial representation. In other words the
differentials of the conjugation maps, dCg (g P G), are the identity maps. In particular by
(0.2) we have Cgpexppvqq “ exppvq for every v P TeG. This means that exppvq is contained
in the center of G for every v P TeG. But G is connected, so, the image of exp generates
G as a group. We conclude from these observations that every complete connected complex
Lie group has the structure of an abelian group.

Furthermore, G is isomorphic to a quotient of a vector space TeG by a discrete subgroup,
ker exp. The induced map TeG{ ker exp Ñ G is a holomorphic map between two equal
dimensional complex manifolds. Therefore, it is an isomorphism of complex Lie groups.
Also, since lattices are the only discrete subgroups of vector spaces with compact quotient,
ker exp is a lattice.

Notice that, since a complete complex Lie group G cannot be a compact linear group, we
cannot apply the easy ‘complexification’ method to conclude that G is an algebraic group.
In fact, this is not true beyond dimension one. The crucial point here is to know whether the
complete complex Lie group admits an embedding into a projective space or not. Indeed,
the Theorem of Chow states that if X is a complete algebraic variety, and Y Ď X is a
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closed analytic subset of the analytic space structure on X, then Y is Zariski closed in X.
In [5], Mumford shows that for a complete complex Lie group of the form X :“ V {L, where
V is a g-dimensional complex vector space, L Ď V a lattice, the following statements are
equivalent:

1. The underlying variety of X is a projective variety.

2. There exist g algebraically independent meromorphic functions on X.

3. There is a positive definite hermitian form H on V such that the image of H on LˆL
is integral.

A complete algebraic group is called an abelian variety. We just saw that the complete
complex Lie groups are closely related to the abelian varieties although there are subtle
differences (the existence of a projective embedding, also known as a polarization). We
also know that the complete real Lie groups lead to the theory of reductive groups, which
are affine algebraic groups. Of course, there are many algebraic groups which are neither
affine nor projective. But we will not discuss the completions of non-affine algebraic groups
beyond this introduction. The reason is a classical theorem of Chevalley (1953), which states
that a connected algebraic group is an extension of an abelian variety by a connected affine
algebraic group. We will restrict our attention mostly to the equivariant embeddings of the
orbits of connected affine algebraic groups. Our aim is to show that this study not only
produces new geometric and combinatorial structures related to the actions of affine groups
but also reveals new facts about these groups. Furthermore, surprisingly, some equivariant
affine embeddings of affine groups appear rather naturally as homogeneous vector bundles on
abelian groups see [1, 2]. This already indicates the strong categorical relationship between
affine equivariant embeddings and the category of homogeneous vector bundles on abelian
varieties.

Some highlights for the reader: The study of the compact linear real Lie groups is equiv-
alent to the study of the complex reductive algebraic groups. A complex reductive algebraic
group is not complete unless it is a finite group. The compact complex Lie groups are given
by the quotients of vector spaces by sublattices. A compact complex Lie group is an abelian
variety if it is polarized, which means that it has an embedding into a projective space by
some meromorphic functions. Now an outstanding question that motivates our other lectures
is: how do we describe the completions of reductive groups?
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