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1 Characters

Most of the results that we review in this section can be found in the standard resources [1,
4, 10] (for algebraic groups) and [3] (for algebraic varieties). However, in many places we
use our notation.

Throughout our text, we work with algebraic varieties that are defined over an alge-
braically closed field. We fix the notation k for such a field. In some places we will assume
that k “ C. To work over algebraically closed fields different than C, it is convenient to use
the following definition of an algebraic variety: An algebraic variety is a reduced separated
k-scheme of finite type. Notice here that we do not insist on the irreducibility of an algebraic
variety unlike in [3]. The reason behind this convention is that, algebraic groups may have
more than one connected components. An algebraic group is a group scheme over k whose
underlying scheme is a smooth algebraic variety. If k “ C, then an algebraic group defined
over k will be called a complex algebraic group.

A morphism of algebraic groups is a rational map which is also a group homomorphism.
For example, the map C˚ Ñ C˚ ˆ C˚, z ÞÑ p1{z, z2q is a morphism of complex algebraic
groups. If the underlying variety of an algebraic group G is affine, then G is called an affine
(or linear) algebraic group. In the rest of this text we will be concerned with the affine
algebraic groups only. Note that every finite group is both affine and complete at the same
time. These are precisely the zero-dimensional algebraic groups. Also, the only connected,
zero-dimensional algebraic group is the trivial group.

The multiplicative group structure on kzt0u is often denoted by Gm while the additive
group structure on k is occasionally denoted by Ga. Both of these algebraic groups are
connected, one-dimensional, and affine. Any affine algebraic group having these properties
is isomorphic to either Gm or Ga.
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1.1 Some algebraic geometry terminology.

We continue to review basic notions from algebraic geometry.

Let X be a variety. First we assume that X is a quasi-affine variety in An. This means
that X is the intersection of a Zariski-open set with a subvariety in An. A function f : X Ñ k
is called regular at a point p P X if the exists an open neighborhood U of p, where f is a
rational function of the form f “ h{g, for some polynomials h, g P krx1, . . . , xns where g
is nowhere zero on U . If f is regular at every point of X, then f is said to be a regular
function on X. Next, we assume that X is a quasi-projective variety in Pn´1 (where n ě 1).
This means that X is the intersection of a Zariski-open set with a projective variety in Pn´1.
The notion of a regular function f on U Ď X is defined as before but with the additional
requirement that the polynomials h and g are homogeneous and they are of the same degree.
If U is an open subset of X, the set of regular functions on U will be denoted by OXpUq. It
is easy to check that OXpUq is a ring with respect to point-wise addition and multiplication
of regular functions. The assignment U ÞÑ OXpUq defines a sheaf on X; it is called the
sheaf of regular functions of X, or the structure sheaf of X. For U “ X, there are several
different names and notation for OXpXq. Sometimes it is denoted by krXs, and sometimes
it is denoted by H0pX,OXq. In the former notation it is often called the k-algebra of regular
functions of X; if X is affine, then it is called the coordinate ring of X. If the notation
H0pX,OXq is used, then it is customarily called the k-algebra of global sections of the sheaf
OX . Finally, let us mention that the notation OpXq˚ stands for the group of invertible
elements of the multiplicative semigroup of the ring of regular functions OpXq. For any
irreducible variety X, we will denote the quotient group OpXq˚{k˚ by EpXq.

1.2 Basic abstract representation theory terminology.

Let V be a k-vector space, that is, a vector space defined over k. Let S be a group. A (linear)
k-representation of S is a group homomorphism ρ : S Ñ GLpV q. If such a homomorphism
exists, then V is sometimes called an S-module. In practice, when a linear k-representation
is mentioned one usually writes V or pρ, V q instead of ρ : S Ñ GLpV q.

Example 1.1. Let S be an abelian group. Let pρ, V q be a finite dimensional k-representation
of S. Since S is abelian, there is a basis tv1, . . . , vnu of V such that for every i P rns, vi is a
joint eigenvector for all g P S. By using this basis we identify GLpV q with GLnpkq. Then
the image of S under ρ : S Ñ GLnpkq consists of diagonal matrices.

Example 1.2. Let Sn denote the symmetric group of permutations of the set t1, . . . , nu.
If σ is a permutation from Sn, then we can “represent” σ by the matrix ρpσq “ pσi,jq

n
i,j“1,

where

σi,j :“

#

1 if σpiq “ j;

0 otherwise.
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For example, for S3 “ t123, 213, 132, 231, 312, 321u, we have

tρpσq : σ P S3u “

$

&

%

»

–

1 0 0
0 1 0
0 0 1

fi

fl ,

»

–

0 1 0
1 0 0
0 0 1

fi

fl ,

»

–

1 0 0
0 0 1
0 1 0

fi

fl ,

»

–

0 0 1
1 0 0
0 1 0

fi

fl ,

»

–

0 1 0
0 0 1
1 0 0

fi

fl ,

»

–

0 0 1
0 1 0
1 0 0

fi

fl

,

.

-

.

It is easy to check that the assignment σ ÞÑ ρpσq, where σ P Sn, defines a k-representation
of Sn.

Example 1.3. Let H3 denote the following complex affine algebraic group,

H3 :“

$

&

%

»

–

1 a b
0 1 c
0 0 1

fi

fl : a, b, c P C

,

.

-

.

(In a certain context, H3 is called the complex Heisenberg group of 3 ˆ 3 matrices.) We
consider the conjugate-matrix multiplication action of H3 on C3,

»

–

1 a b
0 1 c
0 0 1

fi

fl ¨

»

–

x
y
z

fi

fl “

»

–

x` ay ` bz
y ` cz
z

fi

fl .

This is an abstract group representation of H3 on C3.

Example 1.4. Let G denote the GL2pCq. Let R denote the polynomial ring R :“ CrX, Y s.
Clearly, R is an infinite dimensional vector space. Let A be an element from G such that

A´1 :“

„

a b
c d



. It is easy to check that the map ϕA : RÑ R defined by

ϕApfpX, Y qq :“ fpaX ` cY, bX ` dY q pfpX, Y q P Rq

is a linear automorphism of R. Furthermore, it is easy to verify that ϕA˝ϕB “ ϕAB for every
A,B P G. Therefore, the map ϕ : G Ñ GLpRq, A ÞÑ ϕA defines an infinite dimensional
representation of G on R.

1.3 Terminology of reductive groups.

An abstract group G is called ‘simple’ if it does not possess any normal subgroups other
than itself and e. For algebraic groups, this definition is too restrictive in the following
sense. A big part of the theory of algebraic groups depends on the theory of Lie algebras.
By definition, the Lie algebra of an algebraic group G is the tangent space of G at the identity
element e P G. However, the passage from G to its Lie algebra does not depend on the finite
central subgroups of G. For example, consider the special linear group G :“ SLnpCq. The
center ZpGq of G is isomorphic to the cyclic group of order n. For any subgroup Z 1 Ă ZpGq,
the Lie algebra of the quotient G{Z 1 is equal to the traceless n ˆ n matrices with complex
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entries. Furthermore, among all such quotients, the only simple group is the full quotient,
G{ZpGq “ PSLnpCq. In this regard, it is more natural to call an algebraic group G a simple
algebraic group (or even better, quasi-simple, or almost-simple), if it has no closed normal
and connected subgroups other than itself and e. For example, SL2pCq is a simple group
but not SL2pCq ˆ SL2pCq. The problem with the second example is that it has more than
one “simple factor.” Later we will see that the simple algebraic groups are parametrized by
certain discrete objects called the “indecomposable, reduced root systems.”

A positive dimensional algebraic group G is called semisimple if it has no closed connected
commutative normal subgroups except e. For example, SL2pCq ˆ SL2pCq is semisimple but
not GL2pCq. The problem with the second example is that it has a one dimensional center.
A Lie algebra g is said to be a semisimple Lie algebra if g has no nontrivial commutative
ideals. If g is the Lie algebra of G, then it is a semisimple Lie algebra if and only if G is a
semisimple algebraic group.

Let G be an algebraic group, and let tGi : i P Iu be the set of all minimal, closed,
connected, and non-commutative subgroups of G such that dimGi ą 0 for i P I. Then Gi’s
are called the simple factors of G. Indeed, they are simple algebraic groups by definition. If
G is semisimple, then the indexing set I is finite, and furthermore, there exists a surjective
algebraic group homomorphism ψ :

ś

iPI Gi Ñ G with finite kernel. Such homomorphisms
are called algebraic covering maps, or isogenies. Converse of this statement also holds.
Another characterization of the semisimplicity is as follows: A connected algebraic group G
is semisimple if and only if G is equal to its commutator subgroup, pG,Gq.

Next, let us assume momentarily that we know the definition of a reductive group. Let
G be a connected reductive group. It follows from [4, Sections 19.5 and 27.5] that G is
isomorphic to a quotient of the form pG0 ˆ Zq{Z0, where

• G0 :“ pG,Gq;

• Z is a central torus;

• Z0 is a finite normal central subgroup of G0 ˆ Z.

This decomposition can be taken as a definition of a connected reductive group. Now let us
introduce reductive groups in a proper way.

Definition 1.5. A reductive algebraic group is an affine algebraic group G that does not
contain a closed normal unipotent subgroup.

For example, GL2pCq is a reductive group; it is isomorphic to pSL2pCq ˆ ZqZ0 , where
Z is the group of diagonal constant matrices in GL2pCq, and Z0 is the subgroup tpg, eq P
SL2pCq ˆ Z : g is diagonal and g2 “ eu. A non-reductive example is Ga (or any unipotent
group).

Let G be an affine algebraic group. A Borel subgroup B of G is a maximal closed
connected solvable subgroup of G. Let us denote the set of all Borel subgroups of G by
BpGq. Then XBPBpGqB is a normal solvable subgroup of G. The connected component
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of the identity element in XBPBpGqB is called the (solvable) radical of G; we denote it by
RpGq. The maximal closed normal unipotent subgroup of RpGq, denoted RupGq, is called
the unipotent radical of G. In this notation, we have

• G is semisimple if and only if RpGq is trivial;

• G is reductive if and only if RupGq is trivial.

1.4 The group of characters of an algebraic group.

In this section, we introduce an essential notion for representation theory. Let S be an affine
algebraic group.

Definition 1.6. An algebraic character of S is an algebraic group homomorphism into Gm.

In other words, an abstract group homomorphism χ : S Ñ k˚ is a character of S if χ is a
nowhere vanishing regular function on S. Equivalently, a group homomorphism χ : S Ñ k˚

is an algebraic character of S if χ is an element of OpSq˚. Clearly, the set of algebraic
characters of S is a group under point-wise multiplication.

Earlier, for an algebraic variety X, we set EpXq to denote EpXq :“ OpXq˚{k˚. We will
show that if S is an algebraic group, then EpSq is nothing but the group algebraic characters
of S. This result was discovered by Rosenlicht ([9]) in the mid-1950s. Our exposition closely
follows [7, §1].

Proposition 1.7. Let S be a connected algebraic group. Let f be an element of OpSq˚. (In
other words, f P krSs and f is nowhere zero on S.) Then f is a character of S if and only if
fpeq “ 1. In particular, the group of algebraic characters of S is isomorphic to the quotient
group EpSq.

Proof. The essential ingredient is the following observation: If X and Y are two irreducible
varieties, then the map OpXq˚ˆOpY q˚ Ñ OpX ˆY q˚ is surjective, [7, Proposition 1.1]. In
particular, OpSq˚ ˆOpSq˚ Ñ OpS ˆ Sq˚ is surjective. Let f : S Ñ k˚ be a regular function
such that fpeq “ 1. We view f as an invertible regular function on S ˆ S via pg1, g2q ÞÑ
fpg1g2q (g1, g2 P S). Then there exist two invertible regular functions r1, r2 P OpSq˚ such
that fpg1g2q “ r1pg1qr2pg2q for every g1, g2 P S. Notice that, since fpeq “ 1, the equality
fpg1g2q “ r1pg1qr2pg2q holds for every g1, g2 P S even if we replace ri by ri{ripeq for i P t1, 2u.
But now we see that f “ ri for i P t1, 2u.

In the same reference the authors prove the following important fact.

Proposition 1.8. Let X be an irreducible variety. Then

(1) EpXq is a finitely generated free abelian group.

(2) For every algebraic action of a connected affine algebraic group S : X, the corresponding
canonical action on EpXq is trivial.
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In the second part of the proposition, the canonical action of S on EpXq is the one that
comes from the action of S on the coordinate ring OpXq.

Proof. We will sketch the idea of the proof of (1). We may assume that X is a normal and
quasi-projective variety in some Pn. Let X denote the normalization of the Zariski closure
of X in Pn. We now consider the principal divisor attached to the elements of OpXq˚,

div : OpXq˚ ÝÑ
m
à

i“1

ZDi

f ÞÝÑ
m
ÿ

i“1

ordDi
pfqDi,

where D1, . . . , Dm are the irreducible components of XzX, and ordDi
’s are the corresponding

order-of-vanishing functions, defined on the field of rational functions on X. It is easy to
check that the constant functions are contained in the kernel of div. Therefore, div descends
to an injection on the group EpXq. Since the target is a finitely generated abelian group, so
is the domain, which is our group EpXq.

(2) Let f P OpXq˚. We will see later that the action of S on krXs “ OpXq defines
a locally finite rational representation. Therefore, the span of the orbit S ¨ f in OpXq
is a finite dimensional vector space. But S is connected, therefore, the S-orbit, which is
contained inOpXq˚, is an irreducible algebraic set. The image of this orbit under the quotient
π : OpXq˚ Ñ OpXq˚{k˚ is irreducible as well. Since EpXq is a lattice, its irreducible subsets
are its points. Therefore, S ¨ f is equal to k˚f . In particular, the action of S on the quotient
group EpXq “ OpXq˚{k˚ is trivial.

We continue with an important observation.

Lemma 1.9. Let G be a connected semisimple algebraic group of dimension at least two (or
three!). Then G does not possess any nontrivial algebraic character. Consequently, we have
EpGq “ 1, or OpGq˚ “ k˚.

Proof. Let χ : G Ñ k˚ be an algebraic character. Then the restriction of χ to any normal
subgroup G1 Ď G is an algebraic character of G1. Therefore, it suffices to prove our claim
for the simple algebraic groups. It is easy to verify that the kernel of an algebraic group
homomorphism is an algebraic subgroup. Therefore, if χ : GÑ k˚ is an algebraic character
of a simple algebraic group G, then kerχ is a normal subgroup of G. Let H denote the
connected component of the identity in kerχ. We proceed with the assumption that χ is a
nontrivial character; kerχ is a proper subgroup of G. Then H is a normal subgroup of finite
index in kerχ, [4, Proposition 7.3]. Since kerχ is normal in G, so is H. But G is a simple
algebraic group and H is connected. Hence, we see that H “ teu. Therefore, kerχ is a finite
group. Hence, we have dimG “ dimpG{ kerχq. But since χpGq Ď k˚ and χpGq – G{ kerχ,
we see that G is one-dimensional. This contradiction shows that χ must be trivial.

We now prove an analogous statement for the unipotent groups.
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Lemma 1.10. Let U be a unipotent group. Then U does not possess any nontrivial algebraic
characters. In particular, we have EpUq “ 1.

Proof. Since any linear representation of Gm is diagonalizable, Gm consists of semisimple
elements. At the same time, by the Jordan-Chevalley Decomposition Theorem, we know that
the image of a unipotent element is unipotent. Now let χ : U Ñ Gm be an algebraic character
of U . The image of χ consists of unipotent elements in Gm. But only unipotent element of
Gm is the identity element. Therefore, χ is the constant (trivial) algebraic character.

Although semisimple and unipotent groups do not have any nontrivial algebraic char-
acters, reductive groups have algebraic characters. For example, tori are reductive groups;
they possess plenty of algebraic characters.

Example 1.11. Let S be the following three dimensional complex torus,

S :“

$

&

%

»

–

a1 0 0
0 a2 0
0 0 a3

fi

fl : a1, a2, a3 P C˚
,

.

-

.

For every i P t1, 2, 3u, the map λi : S Ñ Gm, λippa1, a2, a3qq “ ai, is a character of S. The
constant map S Ñ Gm, pa1, a2, a3q ÞÑ 2 is not a character since it is not a homomorphism.

1.5 Abstract characters vs algebraic characters of algebraic groups.

In the theory of finite group representations, the “trace” function on matrices is used for
defining the “character” of a C-representation. More precisely, if G is a finite group and
ρ : GÑ GLpV q is a representation of G on a finite dimensional C-vector space V , then the
function χ : GÑ C defined by

χpgq “ tracepρpgqq “ sum of eigenvalues of ρpgq

is called the character of ρ. We want to stress the fact that our definition of a character for
affine algebraic groups is not exactly this one! Our definition requires that a character takes
nonzero values only, but the trace of a linear operator might be zero. If for all g P G, the
value χpgq is nonzero, then χ is a linear character as in Definition 1.6.

Example 1.12. The symmetric group Sn has only two linear characters; they are the trivial
and the sign representations of Sn.

Next, we will discuss the algebraic characters of diagonalizable groups.

Lemma 1.13. Let S be an algebraic group. The group of all algebraic characters of S is a
linearly independent subset of the space of all k-valued functions on S.

The proof of this lemma is not difficult but we will not present it here; see [4, §16.1]. We
will demonstrate it by a simple example.
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Example 1.14. We consider S “ Gm. The algebraic characters of S are the regular functions
of the form z ÞÑ zm (z P C˚) where m P Z. Clearly, each such function is an element of the
ring Crz, 1{zs “

À

mPZCzm. The linear independence of the algebraic characters is easily
verified.

Let us call an affine group D a diagonalizable group if it is isomorphic to a closed subgroup
of the group of diagonal n ˆ n matrices with entries from k. An important consequence of
the previous lemma is that if D is a diagonalizable group, then EpDq is a vector space basis
for krDs. The proof of the next theorem about the structure of a diagonalizable group can
be found in [4, §16.2].

Theorem 1.15. Let D be a diagonalizable group. Then D is isomorphic to a direct product
of the form S ˆH, where S is a torus (always connected!) and H is a finite abelian group.

1.6 Algebraic actions and rational representations.

Let f : S ˆ X Ñ X be an abstract group action of S on X. If, in addition, the map f is
a morphism of varieties, then S : X is called an algebraic S-action. Also, in this case, X
is said to be an S-variety. Hereafter, when confusion is unlikely, by the notation S : X we
mean an algebraic S-action S ˆX Ñ X.

Let krXs denote the coordinate ring of X. For each algebraic action S on X, there is
a corresponding left translation action of S on the regular functions [1, Ch I, §1.9]. It is
defined as follows. Let s be an element of S. Then we define the linear automorphism
λpsq : krXs Ñ krXs by

λpsqpgpxqq :“ gps´1 ¨ xq pg P krXsq. (1.16)

(The action (1.16) makes perfect sense if we define it as the action of the opposite group Gop

on krXs. Note that Gop is canonically isomorphic to G as an algebraic group.)

A simple but important fact regarding the representation defined by (1.16) is that it is a
locally finite representation. More precisely, we have the following well-known fact.

Lemma 1.17. The k-algebra krXs is a union of finite dimensional vector subspaces that are
S-stable.

Proof. Let α : S ˆ X Ñ X be the morphism that defines the action S : X. Then the
comorphism α˚ : krXs Ñ krSˆXs is defined by α˚pgqps, xq “ gpαps, xqq, where g P krXs, s P
S, and x P X. Now let f be a function from krXs. We will construct an S-stable, finite
dimensional vector subspace V of krXs such that f P V .

Since the coordinate ring of SˆX is given by the tensor product, krSˆXs “ krSsbkrXs,
we write α˚pfq in the form

α˚pfq :“
r
ÿ

i“1

φi b ψi
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for some φi P krSs (i P t1, . . . , ru) and ψi P krXs (i P t1, . . . , ru). In other words, we have

fps ¨ xq “ fpαps, xqq “ α˚pfqps, xq “
r
ÿ

i“1

φipsqψipxq. (1.18)

Note that fps¨xq “ ps´1 ¨fqpxq for every s P S and x P X. Thus, we conclude from (1.18) that
the set ts¨fpxq : s P S, x P Xu is not only S-stable but also contained in the linear span of the
functions ψ1, . . . , ψr in krXs. In particular, the linear span V :“ spankts¨fpxq : s P S, x P Xu
is a finite dimensional, S-stable subspace of krXs. This finishes the proof.

Let G be an affine algebraic group. Let M be a k-module, that is, a k-vector space. Let
σ : G Ñ GLpMq be an abstract group homomorphism. We have two possibilities for the
vector space dimension of M .

(1) First, we assume that dimM ă 8. If, in addition, σ is an algebraic group homomor-
phism, then M is called a rational G-module, and σ is called a (rational) representation
of G.

(2) Next, we assume that dimM “ 8. If for each element x P M there exists a finite
dimensional σpGq-stable linear subspace V ĂM such that x P V , and σV : GÑ GLpV q
is a rational G-module as in (1), then we say that M is a (rational) G-module. Also in
this case, we say that ϕ is a rational representation of G.

Lemma 1.17 shows that if X is an G-variety, then the coordinate ring of X has the
structure of a rational G-module. In our first Example 1.3, C3 is not a rational H3pCq-
module, since the action there is not an algebraic action. All of the other examples in this
section contain rational modules.

Let us agree on the following abbreviation. When we discuss rational G-modules, if there
is no danger for confusion, then let us just write a G-module instead of writing a ‘rational
G-module’.

Now, a nonzero G-module M is called simple if M has no G-submodule other than 0 and
itself. In this case we call the representation σ : GÑ GLpMq irreducible. There is no harm
in mixing up these terminologies. For a given simple G-module V , the sum of all simple
G-submodules of M isomorphic to V is called the V -isotypic component of M .

1.7 Algebraic covering homomorphisms.

Let G and G̃ be two connected affine algebraic groups. Let f : G̃ Ñ G be a surjective
algebraic group homomorphism. If the kernel of f is a finite group, then f is called a covering
homomorphism or an isogeny. The group G is called (algebraically) simply connected if every
isogeny onto G is an isomorphism of algebraic groups. A convenient characterization of
simply connected groups is that they are precisely the connected affine groups G such that
every finite dimensional representation of the Lie algebra of G is the differential of a rational
representation of G.
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Let us note that if G is a connected affine complex algebraic group, then viewed as
a real Lie group, if G is topologically simply connected, then G is algebraically simply
connected. To see this, recall from the Serre’s GAGA that the analytification functor is fully
faithful. Therefore, the covering homomorphisms of G as an algebraic group are the covering
homomorphisms of G as a complex Lie group and vice versa. Therefore, the topological
fundamental group of G is trivial if and only if every algebraic covering homomorphism of
G is trivial. Another proof of this useful result can be found in [2, Remark 6.3.10].

1.8 A word on the notation.

Let G be an algebraic group. Some authors call an algebraic character of G a linear character.
Hereafter, when we feel that it will not cause any confusion, we will drop the adjectives like
‘linear’ or ‘algebraic’ from our terminology.

In standard textbooks, the set of characters of G is usually denoted by one of the following
notations: XpGq, X˚pGq, X

˚pGq, XG, X pGq, X˚pGq, X ˚pGq.. Also, we just learned that the
quotient group OpGq˚{k˚, denoted by EpGq, is isomorphic to the group of characters of G
as well. In this text, the character group of an algebraic group will be denoted by ÖpGq1.
In the sequel, for a G-variety X, where G is a reductive group and B Ď G a Borel subgroup,
we will use the notation ÖpXq to denote a certain sublattice of the character group of B.
We note here that, in general, EpXq “ OpXq˚{k˚ is not the same thing as ÖpXq.

2 Geometric interpretations

In this section we will review some well-known results about the geometric aspects of char-
acters. Our main references for this section are [8, 7, 6]. We proceed with the assumption
that k is an algebraically closed field of characteristic 0.

Let X be an algebraic variety. The Picard group of X, denoted by PicpXq, is the group
of isomorphism classes of line bundles on X. For homogeneous spaces G{H, there is a close
relationship between the Picard group of G{H and the characters of H. In the special case
of a Borel subgroup of a reductive group, there is a well-known construction of a line bundle
from a character of B; it is sometimes called the “Borel-Weil-Bott construction.” We will
present the general formulation.

A construction of line bundles. Let G be an affine algebraic group, and let H be a
closed subgroup of G. Let χ : H Ñ Gm be a character of ÖpHq. We consider the following
diagonal action of H on Gˆ k:

h ¨ pg, xq :“ pgh´1, χphqxq ph P H, g P G, x P kq.

Let us assume that the quotient pGˆkq{H, denoted by Lχ, exists as a variety. Then via the
first projection map p : Lχ Ñ G{H, Lχ becomes a line bundle on G{H. We notice that G

1We decided to denote the set of algebraic characters of G by ÖpGq, since the letter O with umlaut is
the initial of the Turkish word öz, which could be translated as “one’s own.”

10



acts on Lχ “ pGˆ kq{H via its action on the first factor. Furthermore, the projection map
is equivariant with respect to this action. Therefore, the space of global sections of Lχ has
the structure of a G-module. If H is a Borel subgroup of a connected reductive group G,
then under some assumptions on the character χ, the vector space H0pG{B,Lχq turns out
to be an irreducible representation of G. In fact, the Borel-Weil-Bott theorem states that
all irreducible representations of G can be constructed this way, [5, Part II, Ch 5].

It is a natural question to ask if any line bundle on a G-variety has any representation
theoretic meaning. The answer is yes under suitable assumptions. To explain the scope of
this question, a notion of an ‘equivariant Picard group’ will be useful.

The equivariant Picard group. As before, let G be an affine algebraic group. Let
X be a G-variety, and let π : L Ñ X be a line bundle on X. A G-linearization of L is a
G-action

ϕ : Gˆ LÑ L

such that

(1) the natural map π : LÑ X is G-equivariant;

(2) for every x P X, g P G, the map ϕx : Lx Ñ Lgx is linear. Here, Lx is the fiber of L at
x P X.

Definition 2.1. Let X be a G-variety. The equivariant Picard group of X, denoted by
PicGpXq, is the group of isomorphism classes of G-linearized line bundles on X.

The following proposition is useful for computing the (equivariant) Picard groups of G-
varieties; it is proved in [7, Proposition 5.1].

Proposition 2.2. Let G be a reductive group, and let X be an irreducible G-variety which
admits a geometric quotient π : X Ñ X{{G. Then we have the following commutative
diagram whose rows and columns are exact:

1

EpX{{Gq

EpXqG 1

EpGq PicpX{{Gq

1 H1
algpG,OpXq˚q PicGpXq PicpXq

H1
pG{G0, EpXqq

ś

xPC EpGxq

γ

δ

11



In the diagram of the proposition, G0 stands for the connected component of the identity
in G. The product

ś

xPC EpGxq is taken over a set of representatives of the closed G-orbits
in X. For x P C, the group Gx is the stabilizer of x in G. The map δ is obtained by
associating to a line bundle L the characters of the isotropy groups on the fibers Lx (x P C).
Finally, H1

algpG,OpXq˚q denotes the group of classes of algebraic cocycles. (A morphism
γ : G Ñ OpXq˚ is said to be an algebraic cocycle if γpghq “ pg ¨ γphqqγphq holds for every
g, h P G.)

Remark 2.3. If G is connected, then we know that EpXqG “ EpXq by Proposition 1.8. Of
course, if G is connected, then we have H1

pG{G0, EpXqq “ 0 as well.

The previous proposition is a culmination of several useful theorems that we want to
state here.

Theorem 2.4. Let G be a connected affine group, and let H be a closed subgroup of G.
Then there exists a canonical isomorphism,

δ : PicGpG{Hq Ñ ÖpHq.

Identify PicGpG{Hq and ÖpHq via δ, and let ε be the morphism of “forgetting the G-action”,

ε : PicGpG{Hq Ñ PicpG{Hq.

If PicG “ 0, then ε is surjective and the kernel of ε is the subgroup respÖpGqq “: ÖGpHq Ď
ÖpHq of characters that are obtained from ÖpGq by restricting to ÖpHq.

Remark 2.5. For any connected affine algebraic group G, and a closed subgroup H Ď G,
the quotient group ÖpHq{ ÖGpHq is isomorphic to the character group ÖpH X pG,Gqq, [8,
§4, Lemma 4]. Therefore, if PicG “ 0, then by Theorem 2.4, we see that the Picard group
of G{H is ÖpH X pG,Gqq.

Theorem 2.6. Let G be a connected affine group, and let H be a closed subgroup of G. Let ε
be as in Theorem 2.4, and let π : GÑ G{H be the canonical projection. Then the following
statements hold:

1. The sequence

ÖpGq
res
ÝÝÑ ÖpHq

ε
ÝÑ PicpG{Hq

π˚

ÝÑ PicpGq (2.7)

is exact.

2. If H is a connected solvable subgroup of G, then the natural morphism π˚ : PicpG{Hq Ñ
PicpGq is surjective.

3. Let R denote the radical of G. We assume that pG,Gq XR “ 0 holds. Then PicpGq
is isomorphic to the fundamental group of G{R. It is also isomorphic to the kernel of

the covering homomorphism rG Ñ G, where rG is simply connected. Important: This
statement is not correct if the assumption pG,Gq XR “ 0 is missing.

12



4. If G is simply connected, then PicpGq “ 0.

The proofs of 1. and 2. are given in [7, Proposition 3.2]. Notice that, in light of Re-
mark 2.5, part 1 can be seen as a restatement of Theorem 2.4. The proofs of 3. and 4.
are given in [8]. For part 3, see https://math.stackexchange.com/questions/1999823/

picard-groups-and-fundamental-groups-of-connected-algebraic-groups. The state-
ment in part 4 was first proven by Voskserenskii in characteristic 0 [11].

Corollary 2.8. Let B be a Borel subgroup of a connected reductive group G. Let T be a
maximal torus of B. Then we have

• PicpG{Bq – ÖpT0q, where T0 is the maximal torus in the semisimple part pG,Gq of G.

• PicGpG{Bq – ÖpT q.

Proof. The statement in the second bullet follows directly from Theorem 2.4. We proceed
with the proof of the claim in first bullet.

Recall that an isogeny is a surjective algebraic group homomorphism whose kernel is
finite. It is easy to verify that the flag varieties are invariant under the morphisms in-
duced by isogenies. Therefore, we can replace G{B by G̃{B̃, where G̃ is a simply connected
cover of G, and B̃ is the preimage of B in G̃. Then by Part 2 of Theorem 2.6, we have
PicpG{Bq – ÖpB̃q{respÖpG̃qq. We notice that the quotient ÖpB̃q{respÖpG̃qq is isomorphic
to the quotient ÖpBq{respÖpGqq. Finally, we notice that every central torus of G is con-
tained in B; these facts follows from our remark in Subsection 1.3 about the definition of
a connected reductive group. Hence, the quotient ÖpBq{respÖpGqq is isomorphic to the
corresponding quotient ÖpB0q{respÖpG0qq, where G0 is the semisimple part G0 “ pG,Gq
and B0 is the Borel subgroup B X G0. Since G0 is a connected semisimple group, we know
that ÖpG0q “ 1. Therefore, PicpG{Bq “ ÖpB0q “ ÖpT0q, where T0 is the maximal torus of
B0. This finishes the proof of our assertion.

Remark 2.9. Let G be a connected affine group, G̃ Ñ G be a simply connected cover. If
H is a closed subgroup of G, then let H̃ denote preimage of H in G̃. The arguments that
we used in the proof of Corollary 2.8 hold in general. First, we have the isomorphism

G{H – G̃{H̃.

It follows that G{H is a G̃-variety. Secondly, since G̃ is simply connected, PicpG̃q “ 0, hence,
every line bundle on G{H is G̃-linearizable. This is proved in [6, Proposition 2.4 and its
Remark]. We now apply Theorem 2.4 (or part 1. of Theorem 2.6), which gives us

PicpG{Hq “ PicpG̃{H̃q “ ÖpH̃q{respÖpG̃qq. (2.10)

2.1 The Picard group of GLnpCq.
Next, we want to prove another useful statement, that is,

PicpGLnpCqq “ 0. (2.11)
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We begin with an algebraic reinterpretation of Picard groups.

We begin with recalling some facts from [3, Ch II, §2]. First, we let X be a noetherian,
integral, separated scheme which is regular in codimension one. The last condition means
that every local ring Ox of X of dimension one is regular. For example, if X is a normal
algebraic variety, then it has these properties.

Let Z be a prime divisor in X. The local ring OZ,X is a discrete valuation ring in kpXq. In
particular, the total quotient field of OZ,X is equal to the function field of X. Let vZ denote
the valuation corresponding to OZ,X . For every element f P kpXq, there are only finitely
many prime divisors Z (depending on f) in X such that vZpfq ‰ 0. Thus, we associate a
divisor to f as follows:

divpfq :“
ÿ

Z

vZpfqZ.

This is called the principal divisor defined by f . The free abelian group that is generated by
all divisors is called the group of Weil divisors, denoted by DivpXq.

Two divisors D and D1 are said to be linearly equivalent if D ´D1 is a principal divisor.
Since pf{gq “ pfq´pgq for f, g P kpXqzt0u, the principal divisors form a subgroup of DivpXq.
The quotient of DivpXq by the subgroup of principal divisors is called the (divisor) class
group, denoted by ClpXq.

Lemma 2.12. Let A be a noetherian domain. Then A is a UFD if and only if the affine
scheme X :“ SpecA is normal and ClpXq “ 0.

Another well-known important property of the class groups is the following:

Lemma 2.13. Let Z be a proper closed subset of X, and let U denote the open set XzZ. If
Z is an irreducible subset of codimension one in X, then the sequence

ZÑ ClpXq Ñ ClpUq Ñ 0,

where the first map is given by 1 ÞÑ 1 ¨ rZs, is exact.

A variety X is said to be locally factorial if for every x P X the local ring of x is a unique
factorization domain. The relation of the class group to our discussion is the following result:

Lemma 2.14. Let X be a noetherian, integral, separated scheme. If X is locally factorial,
then ClpXq is isomorphic to PicpXq.

Notice that, for a normal, noetherian, integral affine scheme X “ SpecA, if ClpXq “ 0,
then A is a UFD by Lemma 2.12. In particular, X is locally factorial. Hence, by Lemma 2.14,
we find that PicpXq “ 1.

Corollary 2.15. Let n be a positive integer. Then the Picard group of GLnpkq is trivial.

Proof. Since U :“ GLnpkq is nonsingular, it is normal. Furthermore, it is connected, hence
it is irreducible. Therefore, PicpUq – ClpUq. We now view U as the complement of the
hypersurface ta P Matnpkq : det a “ 0u in Matnpkq. Since X :“ Matnpkq is an affine
space, we see from Lemma 2.12 that its class group is trivial. It follows from the short exact
sequence in Lemma 2.14 that ClpUq “ 0. Since ClpUq is isomorphic to PicpUq, the proof of
our assertion is finished.
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