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1 Root Systems, Weyl Groups, Fundamental Weights

Simple algebraic groups are parametrized by the “indecomposable and reduced root sys-
tems.” There are four infinite families, labeled A`, B` (` ě 2), C` (` ě 3), and D` (` ě 4), and
five exceptional types, denoted E6, E7, E8, F4, G2 of such root systems. We will briefly review
some of the relevant definitions.

We fix a euclidean space E. This means that E is a finite dimensional real vector space
together with an inner product p¨, ¨q : E ˆ E Ñ R. For each vector α P E, we have the
corresponding reflection operator, denoted sα : E Ñ E, that reflects the vectors with respect
to the hyperplane that is perpendicular to α. To formulate this more precisely, let us define
another ‘product’ map:

xβ, αy :“
2pβ, αq

pα, αq
pα, β P E, α ‰ 0q.

Then for every β P E we have

sαpβq “ β ´ xβ, αyα.

Definition 1.1. Let E be a finite dimensional vector space over Q. A root system in E,
denoted R, is a finite set of nonzero vectors, called roots, in E such that

(1) R spans E;

(2) for every root α P R, the corresponding reflection operator sα : E Ñ E permutes R;

(3) for every α and β from R, we have xβ, αy P Z.

If, in addition, for each α P R, the condition cα P R, where c P Q, implies that c P t´1,`1u,
then R is said to be a reduced root system in E. In general, if α and cα (c P Q) are two
proportional elements of a root system, then c can be any of the elements of t˘1

2
,˘1,˘2u.

A root system is called indecomposable if it cannot be partitioned into the union of two
mutually orthogonal proper subsets. The rank of R is the dimension of E.
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Remark 1.2. In the standard textbooks such as [3], where only the root systems associ-
ated with reductive algebraic groups are considered, the indecomposable root systems are
called the indecomposable root systems. Since we will consider the root systems of spherical
varieties, which can be reduced, we prefer not to use the word “irreducible” for our root
systems.
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Figure 1.1: All rank one and rank two root systems. The abbreviations “Ind.” and “Dec.”
stand for the words indecomposable and decomposable, respectively. The simple roots are
indicated by α and β.

Let us define the root system of a reductive group. Let pG,B, T q be the data of a connected
reductive group G, a Borel subgroup B, and a maximal torus T contained in B. An algebraic
group homomorphism ϕ : Ga Ñ G will be called a one-parameter subgroup, abbreviated to
1-psg. We will call a character α P ÖpT q a root of G relative to T if there exists a 1-psg
ϕ : Ga Ñ G such that

tϕpcqt´1 “ ϕpαptqcq pt P T, c P Gaq. (1.3)
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We call the image of ϕ, denoted Uα, a root subgroup with respect to T . Although Uα is
uniquely determined by α, the 1-psg ϕ does not need to be unique; we can always change
the speed of ϕ by multiplying it its variable by a nonzero scaler from k˚. The set of all roots
of G relative to T is denoted by RG,T . It turns out that G is generated by its maximal torus
along with the unipotent subgroups, see [3, Theorem 26.3 (d)].

A closely related construction of the root system RG,T is obtained via the adjoint repre-
sentation of G on its tangent space of TeG. The Lie algebra structure on TeG will be denoted
by g. Since G is a linear algebraic group, it admits an embedding into a suitable general
linear group as a closed subgroup. Then the adjoint representation of G on its Lie algebra
LiepGq is given by the ‘conjugation action’:

Ad : G ÝÑ GLpgq

g ÞÝÑ Adpgq,

where AdpgqpAq “ gAg´1 for every A P g. By differentiating this algebraic group homomor-
phism, we arrive at the adjoint representation ad : gÑ Endpgq, x ÞÑ ad x, where ad x is the
left translation map ad xpyq “ rx, ys. By restricting the adjoint representation to the Lie
algebra t :“ LiepT q, which is abelian, we obtain the weight space decomposition,

g “ t‘
à

αPRG,T

gα,

where gα is the Lie algebra of the root subgroup Uα. The action of t on gα is given by

rs, xs “ pdαpsqqx ps P t, x P gαq,

where dα : t Ñ k is the differential of the character α P ÖpT q. Below, we will discuss more
general weight space decompositions from the group theory viewpoint.

1.1 Weyl groups

The relative positioning of the root subgroups in a reductive group is controlled by a finite
group called the Weyl group, which is defined by W :“ NGpT q{T , where NGpT q is the
normalizer of T in G. The Weyl group acts as a group of automorphisms of the abelian
group ÖpT q. The action is given as follows. For w P W and α P ÖpT q, the function
w ¨ χ : T Ñ Gm is defined by

pw ¨ χqptq “ χpw´1twq pt P T q. (1.4)

Furthermore, we have w ¨ pχµq “ pw ¨ χqpw ¨ µq for every χ, µ P ÖpT q.

Let σ : G Ñ GLpV q be a finite dimensional rational representation of G. We will
verify that the action of W in (1.4) descends to a permutation action on a certain set of
characters called the “weights of σ.” To this end let us view σ (by restriction) as a rational
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representation of T . Then we have a decomposition V “
À

χPRpσq Vχ, where Vχ’s are the joint
eigenspaces for the elements of T :

Vχ :“ tv P V : t ¨ v “ χptqv for all t P T u.

It is easy to verify that the functions χ P Rpσq are actually algebraic characters of the
maximal torus. We call them the weights of the representation σ. For χ P Rpσq, the elements
of Vχ are called the weight vectors of weight χ.

Now let χ be a weight of σ : GÑ GLpV q. Let v P Vχ be a weight vector of weight χ. Let
w be an element of W . Let 9w be a representative of w in NGpT q. We will check to see where
v is sent to via the action of w. To this end, we will compute the action of T on σp 9wqv:

σptqpσp 9wqpvqq “ pσptqσp 9wqqpvq “ σp 9wqpσp 9w´1t 9wqpvqq “ σp 9wqpχp 9w´1t 9wq vq

“ σp 9wqppw ¨ χqptq vq

“ pw ¨ χqptqσp 9wqpvq.

Hence, we conclude that w ¨ χ is also a weight of σ. In particular, if we use the adjoint
representation in place of σ, then we see that W ¨ RG,T “ RG,T .

It is a consequence of the general theory that RG,T is indeed a reduced root system in the

euclidean space ÖpT qbZQ, where the inner product is chosen so that it is W -invariant. We
will not verify this assertion in these notes; most of the details are clearly presented in [1,
Ch IV, §14], or [3, Chapter X].

1.2 Terminology of weights

Let G be a connected reductive algebraic group. As usual, let B and T denote a Borel
subgroup of G, and a maximal torus contained in B. Let RG,T denote the root system

determined by pG, T q. Recall that RG,T is a finite subset of the character lattice ÖpT q of the

torus T . The elements of the character lattice ÖpT q are sometimes called the weights of G
relative to T .

A root α P RG,T is called positive if the corresponding root subgroup Uα is contained in B.
The set of positive roots will be denoted by R`G,T . Note that there are several equivalent ways
of defining the positive roots. We introduced them by using Borel subgroups to emphasize
the combinatorial nature of such subgroups. Similarly to the definition a positive root, an
element α P RG,T is called negative if the corresponding root subgroup Uα is contained in the
“opposite” Borel subgroup B´. The notion of an opposite Borel subgroup will be explained
in the next subsection. The set of negative roots will be denoted by R´G,T . It is easy to check

that R´G,T “ ´R`G,T . (In fact, we could introduce the negative roots this way!) A positive

root α P R`G,T is called simple if it cannot be written as a sum of two positive roots. The set
of all simple roots will be denoted by S.

It is easy to show that S is a basis for the vector space ÖpT q bZ Q. In general, S is not
a basis for the lattice ÖpT q but there is a natural closely related basis for ÖpT q. To define

4



it, first we label the simple roots as in S “ tα1, . . . , αlu. For i P t1, . . . , lu, the fundamental
dominant weight is a character $i P ÖpT q such that x$i, α

_
j y “ δi,j, where α_j is the coroot

of αj. A character $ P ÖpT q is said to be a dominant weight if it is can be written as
a nonnegative integral combination of the fundamental dominant weights. Thus, set of all
dominant weights becomes a submonoid of the free abelian group ÖpT q. The cone span
of the monoid of dominant weights in ÖpT q bZ Q is called the fundamental (or dominant)
Weyl chamber. The anti-dominant Weyl chamber is the cone spanned by t´α_1 , . . . ,´α

_
l u

in ÖpT q bZ Q.

The Weyl group acts simply-transitively on the nonzero elements of the vector space
ÖpT q bZ Q. Furthermore, it is well-known that the fundamental Weyl chamber is a domain
of transitivity for the action of W .

Before we move to our next topic, we want to mention a partial order on the weights.
As before, let S “ tα1, . . . , αlu be a set of simple roots for RG,T . Let χ and µ be two weights

from ÖpT q. We define

µ ĺ χ ðñ χ´ µ “
ÿ

i

aiαi,

where ai P N for every i P t1, . . . , lu.

1.3 The Bruhat-Chevalley decomposition and Schubert varieties.

In this subsection we will introduce one of the most important results on the structure of
a reductive group. We will work with a fixed tripled pG,B, T q, where G is a connected
reductive group, B is a Borel subgroup, and T is a maximal torus of B. Note that B is
naturally isomorphic to the semidirect product of T with the unipotent radical RupBq. By
our definition of a positive root system R`G,T , we know that RupBq is directly spanned by the
corresponding (positive) root subgroups,

RupBq “
ź

αPR`G,T

Uα,

where the product can be taken in any order [3, Proposition 28.1].

Let W denote the Weyl group. Every element w P W has a representative, denoted 9w, in
the subgroup NGpT q Ă G. Hereafter, unless there is danger for confusion, we will omit using
the dotted notation for w. The Bruhat-Chevalley decomposition of G is the decomposition
of G into two-sided orbits of B in G:

G “
ğ

wPW

BwB. (1.5)

Since a Borel subgroup is the semidirect product of its maximal unipotent subgroup U and a
maximal torus T , and since T normalizes U , the double-coset BwB is canonically isomorphic
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to UwB. The decomposition in (1.5) descends to a similar decomposition for each standard
parabolic subgroup, that is, a closed subgroup P Ď G such that B Ď P . More generally, if
a closed subgroup of G contains a Borel subgroup (not necessarily equal to B), then it is
called a parabolic subgroup. A characterizing property of the parabolic subgroups P in G is
that G{Q is a projective variety.

Let P be a standard parabolic subgroup. Then P “ RupP q ¸ L, where RupP q is the
unipotent radical of P and L is a (maximal) reductive subgroup of P that normalizes RupP q.
Since P is standard, the maximal torus T is contained in L. Then the Weyl group of pL, T q,
denoted by WP , is a subgroup of W generated by the simple reflections sα, where α is a
simple root such that the corresponding root subgroup Uα is contained in L. Then we have
analogous decomposition

P “
ğ

wPWP

BwB. (1.6)

Recall that G{P is a projective variety. Since both of G and P have related Bruhat-Chevalley
decompositions, the structure of the variety G{P is closely related to the finite quotient set
W {WP .

The projective variety G{P is called a partial flag variety of G. If P “ B, then it will be
called the full flag variety of G. Thanks to (1.6) every partial flag variety has a decomposition
into B-, equivalently, U -orbits,

G{P “
ğ

wPWP

BwB{P, (1.7)

where W P Ď W is a certain transversal for WP in W . There is a canonical choice for this
transversal. It is defined in terms of a “grading” on the Weyl group,

` : W ÝÑ N
w ÞÝÑ dimpBwB{Bq. (1.8)

Here, dimpBwB{Bq “ dimpUwB{Bq is the dimension of the B-orbit of w in G{B. Then,
the canonical transversal for the subgroup WP Ď W is given by

w P W P
ðñ `pwq ď `pvq for all v P wWP .

From now on, W P will denote this set of minimal length left-coset representatives of WP in
W .

One of the most enticing features of the B-orbits in partial flag varieties is that they
carry a deep topological meaning. A proof of the following well-known fact can be found
in [1, Ch IV, §14].

Lemma 1.9. Let P be a parabolic subgroup of G. Then the decomposition of G{P in (1.7)
is a cellular decomposition of G{P .

We are now ready to introduce the Schubert varieties.
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Definition 1.10. Let w be an element of W P . The U -orbit of w in G{P is called a Schubert
cell; we denote it by CwP . The Zariski closure of UwB{P in G{P is called a Schubert variety
in G{P ; we denote it by XwP .

The Schuber subvarieties of G{B (or of G{P ) are partially ordered according to the gluing
of their Schubert cells. To make this more precise, next, we introduce the “Bruhat-Chevalley
order”.

Definition 1.11. The Bruhat-Chevalley order ď on W is the partial order defined by

w ď v ðñ CwB Ď XvB pw, v P W q.

The pair pW,ďq is a ranked poset with respect to the grading function ` : W Ñ Z.

A closely related partial order on W , which is also graded by ` : W Ñ Z, is the left
weak order. Let us introduce this partial order by using the combinatorial structure of W .
Let S be a set of simple roots for RG,T . Then the reflections corresponding to the elements
of S generate W . The elements of the generating set, S :“ tsα : α P Su, are called the
Coxeter generators of W with respect to S. The left weak order on W , denoted by ďL, is the
transitive closure of the following covering relations:

w ÌL v ðñ v “ sw and `pvq “ `pwq ` 1 ps P S, v, w P W q. (1.12)

Example 1.13. Let us consider G “ GL3. We take T as the group of diagonal matrices in G,
and we take B as the group of upper triangular matrices in G. The Weyl group W of pG, T q
is the symmetric group S3. The root system of pG, T q is given by tεi ´ εj : 1 ď i ‰ j ď 3u,
where εi : T Ñ k˚ is the character of T defined by εipdiagpt1, t2, t3qq “ ti for i P t1, 2, 3u.
The set S “ tε1 ´ ε2, ε2 ´ ε3u is a set of simple roots for RG,T . Let si P S3 (i P t1, 2u) denote
the Coxeter generator corresponding to the simple root εi ´ εi`1. Then the Hasse diagrams
of the weak order and the Bruhat-Chevalley order on S3 are as depicted in Figure 1.2.

e

s1 s2

s2s1 s1s2

s1s2s1 “ s2s1s2

e

s1 s2

s2s1 s1s2

s1s2s1 “ s2s1s2

Figure 1.2: pS3,ďLq on the left, and pS3,ďq on the right.
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The right weak order on W , denoted by ďR, is defined similarly to ďL. The only dif-
ference is that one uses the right multiplication by the Coxeter generators instead of the
left multiplications. In fact, the left and the right weak orders are isomorphic as posets,
pW,ďLq – pW,ďRq.

We close this subsection by a simple application of the Bruhat-Chevalley order. Recall
that the Bruhat-Chevalley decomposition of G gives a cellular decomposition of the flag
variety G{B. Let us consider the case of G “ GL2. Since W is the symmetric group with
two elements, S2 :“ te, su, we have

GL2{B “ BeB{B YBsB{B.

The cell BsB{B is the one-dimensional affine space A1, and the cell BeB{B is just a point.
Therefore, GL2{B is the smooth projective variety that is obtained from A1 by attaching
a zero cell to it. There is only one such variety; it is P1. Of course, there are other more
conceptual ways of seeing the isomorphism, GL2{B – P1.

2 Eigenvectors of an algebraic action

Let S be an affine algebraic group, and let V be an S-module. A nonzero vector v P V is
said to be an S-eigenvector, or an S-semiinvariant, if there exists a character χ in ÖpSq such
that s ¨ v “ χpsqv for all s P S. We set

V pSq :“ tv P V : v is an S-semiinvariantu.

If S :“ T is a torus and χ is a character of T , then the T -semiinvariants are precisely the
weight vectors of weight χ as we defined before.

Example 2.1. Let T denote the maximal diagonal torus of GL2pCq. We will compute the
semiinvariants of the natural action of T on the coordinate ring of C2, that is, R :“ CrX, Y s.
The action of T on R is given by the restriction of the action in Example ??. Let fpX, Y q be
a T -semiinvariant. Then there exists χf in ÖpT q such that, for every A “ diagpa´1, d´1q P T ,

A ¨ fpX, Y q “ fpaX, dY q “ χf pAqfpX, Y q.

First by setting d “ 1 and varying a P C˚, and then by setting a “ 1 and varying d in C˚,
we see that fpX, Y q is a monomial of the form αXsY r for some α P C˚ and r, s P N.

The semiinvariants of a Borel subgroup are contained in the semiinvariants of its maximal
tori. More generally, we have the following statement.

Lemma 2.2. Let S be an affine algebraic group, and let H ď S be a closed subgroup. If V
is an S-module, then V pSq Ď V pHq.

Proof. Let v be an element of V pSq, and let χv denote the corresponding S-semiinvariant.
Then, the restriction of χv to H is a character of H. Therefore, we have v P V pHq.
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Example 2.3. Let B denote the Borel subgroup of upper triangular matrices in GL2pCq.
We will compute directly the B-semiinvariants in R :“ CrX, Y s for the action that we
discussed in Example ??. Since RpBq Ď RpT q, we will determine which T -semiinariants are
B-semiinvariants. It follows from the argument of Example 2.1 that a B-semiinvariant is a
monomial of the form αXrY s, where α P C˚, r, s P N. Let A´1 be an element of B such that

A “

„

a b
0 d



. Then the action of A on αXrY s is given by

A ¨ αXrY s
“ αarXr

pbX ` dY qs. (2.4)

Unless b “ 0 or s “ 0, the right hand side of (2.4) cannot be a scaler multiple of αXrY s.
Since for an arbitrary A P B, the entry b can be different than zero, we must have s “ 0. In
other words, αXrY s is a B-semiinvariant if and only if s “ 0. This argument shows that

RpBq “ tαXr : α P C˚, r P Nu.

On the other hand, as we observed in Example 2.1, the T -semiinvariants is given by

RpT q “ tαXrY s : α P C˚, r, s P Nu.

2.1 The weight monoid of an action.

Let B be a Borel subgroup of a reductive group. In this section we will introduce some basic
representation theoretic invariants of normal B-varieties. Hereafter, by writing B “ TU , we
implicitly assume that T is a maximal torus in B and U is the unipotent radical of B. We
begin with reviewing some well-known facts.

The character groups of B and T are canonically isomorphic. This follows from the
decomposition B “ TU and the fact that the character group of U is trivial. It follows
that ÖpBq – ÖpT q is a free abelian group of rank r :“ dimT with respect to pointwise
multiplication of characters. Note that it is sometimes more convenient to switch to the
additive notation for the characters.

Example 2.5. If B is the Borel subgroup of upper triangular matrices in GL2pCq, then
ÖpBq is freely generated by the characters λi : B Ñ Gm (i P t1, 2u) where

λi

ˆ„

a11 a12
0 a22

˙

“ aii.

If we identify λ1 (resp. λ2) with the vector p1, 0q (resp. by p0, 1q), then we see that the
multiplication of the generators in ÖpBq corresponds to the addition of the corresponding
integer vectors. Therefore, ÖpBq is isomorphic to Z2.

We proceed with the assumption that G is a connected reductive group such that B is
a Borel subgroup of G. It is well-known that the set of all rational simple G-modules is in
bijection with a submonoid of ÖpT q. The geometric result that leads to this parametrization
of simple modules is the following statement which follows from [3, Theorem 31.3]. Since
its proof uses several important ideas that we will use in the sequel, we sketch its main
arguments here.
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Lemma 2.6. Let G be a connected reductive group having B “ TU as a Borel subgroup.
If V is a simple G-module, then the subspace of U-invariants in V , that is V U “ tv P V :
u ¨v “ v for all u P Uu contains a one-dimensional subspace on which B acts by a character,
χ P ÖpBq. Furthermore, V is uniquely determined by χ up to G-isomorphism.

Proof. By the Lie-Kolchin Theorem we know that V contains a B-stable one-dimensional
weight subspace, Vχ Ď V , such that B acts on Vχ by a character χ, see [3, Theorem 17.6].
Let v be a nonzero vector (weight vector) in Vχ. We claim that U ¨ v “ v. Towards a
contradiction, assume otherwise that U ¨ v ‰ v. Since b ¨ v “ χpbqv for every b P B, the
restriction χ to U gives a nontrivial character for U , which is absurd. This contradiction
shows that U fixes the line Vχ point-wise. This proves our first assertion.

For our second assertion, we fix some terminology; let us call the vector v of the previous
paragraph a maximal vector for V . Let B´ denote the unique Borel subgroup opposite
to B. Let U´ denote the maximal unipotent subgroup of B´. Let U´ “

ś

αPR´ Uα and
U “

ś

αPR Uα be the root subgroup decompositions of these unipotent subgroups. It is well-
known that for all α P R, the root subgroup Uα maps Vχ into

ř

kPZ` Vχ`kα, see [3, Proposition
27.3]. Let V 1 denote the G-submodule of V that is generated by v. Since V is simple, we have
V 1 “ V . The weights of V 1 are of the form χ´

ř

αPR` cαα, where cα P Z`, see [3, Proposition
31.2] (which essentially follows from [3, Proposition 27.3]). In other words, χ is the highest
weight with respect to the partial order ĺ. Let us assume that there exists another ‘maximal
vector’ w P V zVχ so that U ¨ w “ w and on which B acts by a weight µ. Then by repeating
the previous argument for w, we see that the span of χ ň µ which contradicts with the
maximality of the weight χ. It follows from the uniqueness of the maximal vector in a
simple module that if two simple G-modules V and W possess the same highest weight χ
then they must be isomorphic. This finishes the proof of our second assertion.

Let us strengthen the statement about the space of unipotent invariants in Lemma 2.6.

Corollary 2.7. Let G be a connected reductive group having B “ TU as a Borel subgroup.
If V is a simple G-module, then V U is one-dimensional.

Proof. Let v and w be two non-proportional vectors in V such that U ¨w “ w and U ¨ v “ v.
Without loss of generality we assume that v is a highest weight vector of weight χ. Then
V decomposes as V 1 ‘ Vχ, where w is an element of V 1. Since V 1 is spanned by the weight
spaces Vµ, where µ ň χ, it is T -stable. In particular, we see that B ¨w Ď V 1. We now observe
that the B´ orbit of w cannot be entirely contained in V 1. Otherwise, since B´B is dense
in G, we would have the span of G ¨ w entirely contained in V 1, which is absurd. Now let
b1 P B´ be such that b1w “ v. Then we have w “ u ¨w “ ub1´1v for every u P U . Since both
of the spans of B´v and B´w are dense in V , the equalities ub1´1v “ b1´1v (for all u P U)
imply that b1 P T . But then the span of w in V is a line on which B acts by the character
χ. This contradicts with our assumption that w is a weight vector of weight µ such that
µ ‰ χ.

Notation 2.8. Let G,B, T, U be as in Lemma 2.6. Hereafter, the group ÖpBq will be called
the weight lattice and its elements will be called the weights. The highest weight of a simple
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G-module as in the proof of Lemma 2.6 is called a dominant weight of pG,B, T q. The set of
all dominant weights will be denoted by ÖpBq`. In other words, we set

ÖpBq` :“ tχ P ÖpBq : χ is the highest weight of a simple G-moduleu.

This set has the structure of a submonoid in ÖpBq.

Now let X be an irreducible affine G-variety. Then kpXq is the total quotient field of
the ring of regular functions krXs. Clearly, kpXq has the structure of a G-module. For the
analysis of this representation, the following fact, which was originally proved separately by
Hadziev and Grosshans, is essential; it will enable us to define some important combinatorial
invariants for the action G : X.

Lemma 2.9. (Hadziev-Grosshans Theorem) The algebra of U-invariant regular functions
krXsU is a finitely generated k-algebra.

Remark 2.10. Hadziev-Grosshans Theorem allows us to reduce the analyses of the coordi-
nate rings of many affine varieties to the coordinate rings of toric varieties.

One proof of Hadziev-Grosshans theorem relies on a useful method that is known as the
“transfer principle” from a closed subgroup. In our case this principle says that

krXsU – krX ˆG{U sG – pkrXs b krGsUqG.

Since G is reductive, the k-algebra of G-invariants of a finitely generated algebra is finitely
generated. Note that krXs is already a finitely generated k-algebra. Therefore, to prove
the Hadziev-Grosshans theorem, it suffices to prove the finite generation of krGsU only. In
the literature, this invariant ring is sometimes called the flag algebra of G. It is naturally
identified with the coordinate ring of G{U . We note here without proof that for arbitrary
affine algebraic group G and a maximal unipotent subgroup U ď G, the invariants ring
krG{U s “ krGsU is finitely generated; see the paragraph after [2, Theorem 5.6].

Lemma 2.11. Let X be an irreducible quasi-affine S-variety, where S is a connected solvable
affine algebraic group. Then any S-invariant in kpXq is the quotient of two S-semiinvariants
in krXs with the same weight. Furthermore, if S is a unipotent group, then kpXqS is iso-
morphic to the total quotient field of krXsS.

Proof. Let f “ p{q be a S-invariant in kpXq, where p and q are regular functions. Since any
element of the coordinate ring krXs is contained in a finite dimensional S-stable subspace,
we see that the subspace V :“ spants ¨ q : s P Su Ă krXs is finite dimensional. Then by
the Lie-Kolchin Theorem, there is a nonzero semiinvariant h :“

ř

iPI cisiq P V , where I is a
finite set of indices. Then for every i P I we have f “ si ¨ f “

si¨p
si¨q

. Equivalently, we have

the following equations: pcisi ¨ qqf “ pcisi ¨ pq for i P t1, . . . , |I|u. It follows that f is also

equal to f “
ř

iPI cisi¨p
ř

iPI cisi¨q
. But since the denominator is a semiinvariant, and f is invariant,

the numerator must also be a semiinvariant with the same weight as the denominator. This
finishes the proof of our first assertion. For the proof of our second assertion, it suffices to
mention that every semiinvariant of a unipotent group action is an invariant since such a
group does not possess any nontrivial characters.
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Remark 2.12. 1. The arguments that we used in the proof of Lemma 2.11 can be used
for proving the following statement: any S-semiinvariant in kpXq is the quotient of
two S-semiinvariants in krXs.

2. The first assertion of Lemma 2.11 holds true even without the assumption on solvability
as long as X is a “factorial” quasi-affine variety. Here, X is factorial means that the
coordinate ring krXs is a unique factorization domain.

3. Let U be a unipotent group. If χ is a character of U , then it is the constant function;
χpuq “ 1 for every u P U . Therefore, for every rational U -module M , we have M pUq “

MU .

We are now going to focus on the B-semiinvariants of a quasi-affine irreducible B-variety
X, where B is a Borel subgroup of some connected reductive group. Although initially
we do not need to require that X admits an algebraic G-action, let us first assume that
this is the case. Recall that the coordinate ring of X is a locally finite representation of G
which decomposes as a sum of finite dimensional irreducible G-modules. We further note
that the B-highest weights of this representation is closed under addition. In other words,
the B-semiinvariants that appear in krXs all belong to the monoid of dominant weights
in the character group ÖpBq. Since the monoid of dominant weights is a strictly convex
rational polyhedral cone in ÖpBq bQ R, the inverse weight ´χ (in additive notation) does
not appear as the weight of a regular function in krXs. However, if a nonzero element
f P krXs is a B-semiinvariant of weight χ, then certainly the rational function 1{f P kpXq
is a B-semiinvariant of weight ´χ in kpXq. Also, since the pointwise multiplication of two
B-semiinvariants in kpXqpBq is another B-semiinvariant in kpXq, we see that kpXqpBq is a
subgroup of the multiplicative group of the field kpXq, and the weights that correspond to the
elements of kpXqpBq form a subgroup of ÖpBq. In other words, the monoid homomorphism
krXspBq Ñ ÖpBq`, f ÞÑ χf extends to a group homomorphism kpXqpBq Ñ ÖpBq. We are
now ready to ramp up our Notation 2.8.

Definition 2.13. Let X be an irreducible affine (or, quasi-affine) G-variety. The map

r : kpXqpBq ÝÑ ÖpBq

f ÞÝÑ χf

is a Z-module homomorphism. We call the image of r, that is,

ÖpXq :“ rpkpXqpBqq,

the weight lattice of X. (Some authors call ÖpXq the rank group of X.) Since ÖpBq is a free
abelian group, and ÖpXq is a subgroup, ÖpXq is a free abelian group as well. Its Z-module
rank, which we denote by rkGpXq, will be called the rank of the action G : X.

The above definition of a weight lattice of a variety depends on the coordinate ring.
Therefore, for a projective G-variety, some care is need for defining a similar object. In
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our next example we show that already for an important class of homogeneous spaces, the
notion of a weight lattice is not helpful. Nevertheless, we will see later that this class of
homogeneous spaces is actually singled out by the fact that their weight lattices are trivial.

Example 2.14. Let P be a parabolic subgroup. We fix a Borel subgroup B in P , and let T
be a maximal torus contained in B. By the Bruhat-Chevalley decomposition, we know that
B has an open orbit in G{P . Let W denote the Weyl group NGpT q{T , and let WP denote
its subgroup corresponding to the parabolic subgroup P . Let O denote the open orbit of B
in G{P . It is well-known that O contains a unique T -fixed point, that is, z0 :“ wP0 B, where
wP0 is the longest element of W {WP . Then we have O “ B ¨ z0 – B{Bz0 , where Bz0 is the
stabilizer of z0 in B. Now let fpxq be a B-semiinvariant from kpOq, and let χf denote the
corresponding character. For b P B, let t P T and u P U be such that b “ tu. Then we have
b´1 ¨ z0 “ u´1 ¨ z0. It follows that b ¨ fpz0q “ fpb´1 ¨ z0q “ fpu´1 ¨ z0q “ χf puq ¨ fpz0q “ fpz0q.
At the same time, as b varies in B, b´1z0 varies over all points of O. In other words, we have
fpOq “ fpz0q. Since O is open in G{P , we see that fpxq is a constant rational function,
hence, χf “ 1. In conclusion, we see that the weight lattice of G{P is trivial.

The discouraging situation (?) of the previous example is remedied by passing to the
affine cones over. Let us demonstrate this by the simplest example in our hands.

Example 2.15. Let X denote SL2{B – P1. We denote by π : LÑ X the hyperplane bundle
OXp1q on X. Clearly, SL2 acts on the total space of L, and π is a SL2-equivariant morphism.
In other words, L is a G-linearized line bundle for the simply connected semisimple group
G :“ SL2. Let us define the section ring of L by

RpX,Lq :“
à

ně0

H0
pX,Lnq. (2.16)

Notice that this section ring is nothing but the (graded) coordinate ring of the total space of
the dual line bundle L_. The fiber of L_ at a point p P X is the line in k2 passing through
the origin and the point p. By definition, the affine cone associated with the line bundle
L Ñ X is the affine variety whose coordinate ring is RpX,Lq. Let X̃ denote this cone.
Clearly, in our case, we have X̃ – k2. Let us have a closer look at the SL2 ˆ Gm-module
structure on the coordinate ring RpX,Lq – krx, ys. The Gm-action gives the usual grading
on the polynomial ring krx, ys. In particular, the n-th graded part, that is H0pX,Lnq, is
isomorphic to the space of homogeneous polynomials of degree n in krx, ys. Furthermore,
for every n P N, the subspace H0pX,Lnq is an SL2-module. It is well-known that this is an
irreducible SL2-module of highest weight χn :“ n ` 1, n P N. Since the semisimple part of
SL2 ˆ Gm is SL2, the weight χn is also the highest weight of H0pX,Lnq as an irreducible
rational representation of the reductive group SL2 ˆ Gm. In conclusion, the weight lattice
of the line bundle L_ – OP1p´1q as an SL2 ˆGm-variety is given by

ÖpOP1p´1qq – Z.

Remark 2.17. It is not difficult to see that the homogeneous space SL2{U , where U is the
unipotent radical of B, is isomorphic to k2zt0u. Thus, the weight lattice of SL2{U as an
SL2-variety is identical to the weight lattice of k2 as an SL2 ˆGm-variety.
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2.2 Summary.

Let X be an irreducible quasi-affine G-variety, where G is a connected reductive group. Then
coordinate ring krXs has a natural decomposition into G-submodules as follows:

krXs –
à

λPÖpBq`

pkrXs
pBq
λ q b V pλq,

where V pλq is the simple G-module with highest weight λ, and krXs
pBq
λ is the G-module

krXs
pBq
λ :“ HomGpV pλq, krXsq,

that is the space of all G-equivariant morphisms from V pλq into krXs. In characteristic 0,

dim krXs
pBq
λ is equal to the number of occurrence of V pλq in krXs. To justify the notation, let

us note the well-known fact that, for every λ and µ from ÖpBq`, the simple module V pλ`µq
occurs exactly once in the tensor product V pλq b V pµq. Therefore, the B-semiinvariants of
simple G-submodules of krXs form a subsemigroup in ÖpBq.

Definition 2.18. Let X be an irreducible affine (or, quasi-affine) G-variety. The weight
monoid of G : X, denoted ÖpXq`, is the following submonoid of ÖpXq:

ÖpXq` :“ tλ P ÖpXq : V pλq occurs in krXsu.

We have learned from the discussion preceding Remark 2.12 that the weight monoid
ÖpXq` generates the weight lattice ÖpXq. Furthermore, we observed that ÖpXq` spans a
rational polyhedral cone in ÖpXq bZ Q. We denote the Q-vector space defined by the dual
of ÖpXq as follows:

HÖpXq :“ HomZpÖpXq,Zq bZ Q “ HomZpÖpXq,Qq.
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