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A generalised Joyce construction for a family of

nonlinear partial differential equations

Simon Donaldson

Abstract. We show that a certain family of nonlinear fourth order partial differen-
tial equations in two variables can be reduced to linear equations. This extends a

construction of Joyce and also the description by Chern and Terng of affine maximal
surfaces.

The title refers to a construction of Dominic Joyce of self-dual Riemannian metrics
with two Killing fields [5]. In this note we show that the equations in this construction
(in the form described by Calderbank and Pedersen in [2]) can be extended to a family
of nonlinear fourth order PDEs in two dimensions, essentially reducing them to linear
equations. One equation in this family is the affine maximal equation, and we show that
the construction in this case is almost identical to one due to Chern and Terng.

1. The main result

We consider convex functions u(xi) defined on a domain in R
n and write J = det(uij),

where (uij) is the Hessian
(

∂2u
∂xi∂xj

)

. Let ψ be any smooth, strictly convex function on

the half-line (0,∞) and consider the functional

F(u) =

∫

ψ(J(u)) dx1 . . . dxn. (1)

The corresponding Euler-Lagrange equations δF = 0 are

∑

ij

∂2

∂xi∂xj

(

Jψ′(J)uij
)

= 0, (2)

where (uij) is the matrix inverse of (uij). This a nonlinear fourth order PDE for the
function u. In the case when ψ(J) = −Jα for some α ∈ (0, 1) these equations have
been studied, from the analytical point of view (estimates, regularity etc.) by Trudinger
and Wang [6], [7]. The case covered by Joyce’s original construction is when n = 2 and
ψ(J) = − log J , as we will discuss further in Section 3. (Of course we only consider the
functional F as a motivation for writing down the partial differential equations (2), and
the actual convergence of the integral (1) is irrelevant.) Let us say that a point (x1, x2)
is an “ordinary point” if the derivative ∇J does not vanish there.
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To state our result, let f be a solution of the equation

f ′(t) = t1/2ψ′′(t).

Thus f ′ > 0 and f is a 1 − 1 map from (0,∞) to some finite or infinite interval I. Let
p be the inverse map raised to the power −1/2, so J−1/2 = p(r) when r = f(J). Now
consider the linear second order PDE for a function ξ(H, r) defined on some domain in
R × I:

∂2ξ

∂H2
+

1

p(r)

∂

∂r

(

p(r)
∂ξ

∂r

)

= 0. (3)

Theorem 1.1. Suppose ξ1, ξ2 are two solutions of equation (3) and det
(

∂(ξ1,ξ2)
∂(H,r)

)

is

positive at some point (H0, r0). Define three 1-forms ǫ1, ǫ2, ǫ by

ǫ1 = p(r)

(

∂ξ2
∂r

dH − ∂ξ2
∂H

dr

)

ǫ2 = p(r)

(

−∂ξ1
∂r

dH +
∂ξ1
∂H

dr

)

ǫ = ξ1ǫ1 + ξ2ǫ2.

Then ǫ, ǫ1, ǫ2 are closed 1-forms and ǫ1 ∧ ǫ2 is non-vanishing near (H0, r0). Thus we can
find functions u, x1, x2 with du = ǫ, dx1 = ǫ1, dx2 = ǫ2 and x1, x2 give local co-ordinates
around (H0, r0). If we regard u as a function of (x1, x2), it is a solution of the equation
(2) on a suitable domain, and all points in this domain are ordinary points.

Conversely, any solution of (2) with n = 2, in the neighbourhood of an ordinary point,
is obtained in this way, with solutions ξ1, ξ2 of (3) which are unique up to translation in
the H-variable and the addition of constants.

In sum, the local study of the nonlinear equation (2) in two dimensions is essentially
equivalent to that of the linear equation (3). The construction has some similarities with
other well-known “explicit” solutions of nonlinear PDE in low dimensions, such as the
Weierstrasse representation of minimal surfaces and the correspondence, also going back
to the nineteenth century, between solutions of the Monge-Ampère equation det(uij) = 1
and harmonic functions, in the two dimensional case.

2. The proof

This is entirely elementary. From now on we always suppose the dimension n is 2, and
we work locally so we will not specify the precise domains of definition of the various func-
tions. Given a convex function u we consider the Riemannian metric g =

∑

uij dxidxj ,
and in particular the conformal structure which this defines. Write ξi for the Legendre
transform co-ordinates ξi = ∂u

∂xi
. Suppose now that we have some other local co-ordinates

λ1, λ2, inducing the same orientation as x1, x2 (i.e. det
(

∂xi

∂λa

)

> 0). We can write the

metric g =
∑

gab dλadλb in these co-ordinates. Recall that the co-ordinates are called
isothermal if the matrix (gab) is a multiple of the identity matrix at each point, or in
other words

g = V
(

dλ2
1 + dλ2

2

)
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for a positive function V (λ1, λ2). Let ǫij denote the alternating tensor ǫ11 = ǫ22 = 0,
ǫ12 = −ǫ21 = 1.

Observation 1. The co-ordinates λ1, λ2 are isothermal if and only if the partial derivatives
∂xi

∂λa
,

∂ξj

∂λb
are related by the four equations

∂ξi
∂λa

= ǫabǫij
√
J
∂xj

∂λb
, (4)

where J is now considered a function of λ1, λ2.

To see this we write

g =
∑

ij

uij dxidxj =
∑

j

dξjdxj =
∑

j,a,b

∂ξj
∂λa

∂xj

∂λb
dλadλb.

So the isothermal condition is
∑

j

∂ξj
∂λa

∂xj

∂λb
= V δab.

In matrix notation, if A =
(

∂xi

∂λa

)

, B =
(

∂ξi

∂λa

)

, this is

ATB = V · I,
or in other words

BT = V A−1. (5)

Taking determinants we have detB detA = V 2. On the other hand, the matrix (uij) is

BA−1, so J = detB detA−1. Thus V =
√
J detA and (5) is

BT =
√
J(detA) A−1,

which is the same as (4) by the formula for the inverse of a 2 × 2 matrix.

Now consider any positive function P (λ1, λ2) and the pair of second order linear PDEs

∂

∂λ1

(

P
∂ξ

∂λ1

)

+
∂

∂λ2

(

P
∂ξ

∂λ2

)

= 0, (6)

∂

∂λ1

(

P−1 ∂x

∂λ1

)

+
∂

∂λ2

(

P−1 ∂x

∂λ2

)

= 0. (7)

Observation 2. If ξ(λ1, λ2) is a solution of (6) then there is a solution x(λ1, λ2) of the
first order system

∂x

∂λa
= Pǫab

∂ξ

∂λb
, (8)

unique up to the addition of a constant, and x(λ1, λ2) satisfies (7).
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This is because the consistency condition for the first order system is

∂

∂λ2

(

P
∂ξ

∂λ2

)

=
∂

∂λ1

(

−P ∂ξ

∂λ1

)

,

which is the equation (6). In a different language, we are saying that the 1-form

ǫ = P
∂ξ

∂λ2
dλ1 − P

∂ξ

∂λ1
dλ2

is closed, so can be written as dx for a function x. Note that, changing P to P−1, there
is a complete symmetry between x and ξ so we can also start with a solution of (7) and
construct a solution of (6).

Observation 3. Suppose ξ1, ξ2 are two solutions of (6), with det
(

∂ξi

∂λa

)

> 0. Let x2 be the

solution of (7) corresponding to ξ1 by (8), and x1 be the solution corresponding to −ξ2.
Then det

(

∂xi

∂λa

)

> 0, so x1, x2 give local co-ordinates. Write

ǫ = ξ1dx1 + ξ2dx2.

Then ǫ is a closed 1-form and so ǫ = du for a function u. If we express u as a function of
x1, x2 then ∂u

∂xi
= ξi.

This is straightforward. The conditions (8) imply that

det

(

∂xi

∂λa

)

= P 2 det

(

∂ξi
∂λa

)

> 0.

We have dǫ = dξ1dx1 + dξ2dx2 and, writing ξi,a = ∂ξi

∂λa
,

dǫ = (ξ1,1dλ1 + ξ1,2dλ2)(−ξ2,2dλ1 + ξ2,1dλ2) + (ξ2,1dλ1 + ξ2,2dλ2)(ξ1,2dλ1 − ξ1,1dλ2) = 0.

Now return to our functions ψ(J), f(J) and the Euler-Lagrange equation (2).

Observation 4. A convex function u satisfies equation (2) if and only if f(J) is harmonic
with respect to the metric g =

∑

uijdxidxj .

This is true in any dimension. The formula for the derivative of an inverse matrix is

∂

∂xk
uij = −

∑

pq

uipupqku
qj ,

whereas the formula for the derivative of the determinant is

∂J

∂xi
= J

∑

pq

upqupqi.
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These yield the identity
∑

j

∂

∂xj
uij = −

∑

pqj

uipujpqu
qj = −

∑

p

uipJ−1 ∂J

∂xp
. (9)

Our Euler-Lagrange equation (2) is

∑

i

∂vi

∂xi
= 0,

where v is the vector field in the (x1, x2) plane with components

vi =
∑

j

∂

∂xj
(Jψ′(J)uij) (10)

=
∑

j

∂(Jψ′(J))

∂xj
uij + Jψ′(J)

∂uij

∂xj
.

By the definition of the function f we have

∂

∂xj
(Jψ′(J)) =

√
J
∂f(J)

∂xj
+ ψ′(J)

∂J

∂xj
.

Using (9) we obtain

vi =
√
J
∂f(J)

∂xj
uij .

Thus the equation (10) is the Laplace equation in the metric g:

∑

i

∂

∂xi

(√
J uij ∂f(J)

∂xj

)

= 0.

With these four observations the main result, Theorem 1, is almost obvious. Suppose
we start with an ordinary point of a solution u to (2). Then r = f(J) is harmonic
by Observation 4, and we can suppose that its derivative does not vanish in the region
considered. There is then a conjugate harmonic functionH, which by definition is one such
that the local co-ordinates (H, r) are isothermal. By Observations 1 and 2 the functions
xi, ξj satisfy the equations (6),(7) respectively with λ1 = H,λ2 = r and P = p(r). Since
P does not depend on H, equation (6) can be written in the form (3). By Observations
2 and 3 we can recover the original function u from the two solutions ξ1, ξ2 of the linear
PDE (or, equally well, the two solutions x1, x2). It is also clear that, conversely, starting
with any two solutions ξ1, ξ2 to the linear equation we construct a solution to (2) by this
method.

Note that the conjugate function H, in this situation, can be defined simply as the
solution of the system

∂H

∂xi
= ǫijvj , (11)
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so we can also think of H as the Hamiltonian generating the area-preserving vector field
v defined by (10). We leave this as an exercise for the reader.

3. Examples and discussion

(1) The functional F and hence the differential equation (2) depends on the choice of a
function ψ. Such functions come in pairs which give rise to essentiallty equivalent
equations. To see this, let u∗(ξ1, ξ2) be the Legendre transform of u(x1, x2). The

Hessian ( ∂2u∗

∂ξi∂ξj
) at the point ξi = ∂u

∂xi
is the inverse of the Hessian of u at xi.

Thus we can write

F =

∫

ψ(J−1
∗

)J∗ dξ1dξ2,

where J∗ = det( ∂2u∗

∂ξi∂ξj
). This implies that the Legendre transform takes a solution

u of the equation (2) associated with ψ to a solution u∗ of the equation associated
to the function

ψ∗(t) = tψ(t−1).

In our construction this just means replacing the function p(r) by p(−r)−1 and
interchanging the roles of the co-ordinates xi, ξi.

(2) If ψ(t) = − log t then equation (2) is
∑

∂2uij

∂xi∂xj
= 0. This is the equation defining a

zero scalar curvature Kahler metric in “symplectic” co-ordinates, see [1], [4]. Ex-
plicitly, we introduce two further co-ordinates θ1, θ2 and consider the Riemannian
metric, in four dimensions,

∑

uijdxidxj +
∑

uijdθidθj .

The well-known fact that a Kahler metric on a complex surface is self-dual if and
only if the scalar curvature vanishes gives the link with Joyce’s original formula-
tion of his construction. Under the Legendre transform we get another description
corresponding to the function ψ∗(t) = t log t. This leads to the equations describ-
ing zero scalar curvature metrics in “complex” co-ordinates. When ψ(t) = − log t
we get p(r) = r and equation (3) is the equation defining axi-symmetric harmonic
functions on R

3.
(3) For any function p(r) there is an obvious solution ξ = H to (3). Thus we get a

special family of solutions to (2) with ξ1 = H and ξ2 some other solution of (3).
There is another special family, which corresponds to this under the Legendre
transform, when ξ1 is a function of r only, so x2 = H. These correspond to
second order equations of Monge-Ampère type which give special solutions of (2).
For example, in the zero scalar curvature case above we have the special solutions

where ξ1 = log r. The function u satisfies the equation det
(

∂2u
∂xi∂xj

)

= e−ξ1/2 and

the corresponding four dimensional Riemannian metric is Ricci-flat.
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(4) For the Trudinger-Wang equations, when ψ(t) = −tα with 0 < α < 1/2, we
get p(r) = r1/(1−2α) (up to factor which is irrelevant because it drops out of the
equation (3)). If α = 1/2 we get p(r) = er/2.

(5) Consider the graph of a function u(x1, x2) as a surface in R
3. The Gauss curvature

is

K =
det(uij)

(1 + |∇u|2)2 =
J

(1 + |∇u|2)2 ,

and the induced area form is

dA = (1 + |∇u|2)1/2dx1dx2.

Thus

K1/4dA = J1/4dx1dx2.

The left hand side is invariant under Euclidean transformations of R
3 while the

right hand side is invariant under unimodular affine transformations of R
2. Since

these two groups generate all unimodular affine transformations of R
3 we see

that this 2-form is an affine invariant of the surface. Hence the integral (1), when
we take ψ(t) = t1/4, is an affine invariant—the affine area of the surface. The
graphs of the solutions of equation (2), when ψ(t) = t1/4, are “affine maximal”
surfaces in R

3. According to Chern and Terng [3] these surfaces can be described
locally as follows. Let F1, F2, F3 be harmonic functions of variables H, r and write
~F = ~F (H, r) for the corresponding vector-valued function. Then the condition
∂2 ~F
∂r2 + ∂2 ~F

∂H2 = 0 implies the consistency of the first order system

∂ ~Z

∂H
= ~F × ∂ ~F

∂r

∂ ~Z

∂r
= −~F × ∂ ~F

∂H
(12)

so there is a solution ~Z which, under appropriate non-degeneracy conditions,
parametrises a surface in R

3. Chern and Terng show that these surfaces are
precisely the affine maximal surfaces. We want to relate this description to ours.
Notice first that our equations can be written in a similar form. Given a pair
of solutions ξ1, ξ2 of (3) we define a vector valued function Ξ with components

ξ1, ξ2, 1. Then if ~Z = (x1, x2, u) our description is the first order system

∂ ~Z

∂H
= p(r) Ξ × ∂Ξ

∂r

∂ ~Z

∂r
= −p(r) Ξ × ∂Ξ

∂H
. (13)

In the case when ψ(t) = t1/4 we get p(r) = r2 so the equation (3) is not the
ordinary Laplace equation in the variables (H, r). However, it is easy to check
that a function F (H, r) satisfies the Laplace equation if and only if ξ = r−1F
satisfies the equation (3), with p(r) = r2. Now take two harmonic functions F1, F2

and set F3(H, r) = r. Then a few lines of calculation show that the system (12) is
identical to the system (13), when in the latter we use the functions ξi = r−1Fi.
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