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Elliptic Gromov-Witten
Invariants of Del-Pezzo surfaces

Chitrabhanu Chaudhuri and Nilkantha Das

Abstract. We obtain a formula for the number of genus one curves with a variable
complex structure of a given degree on a del-Pezzo surface that pass through an
appropriate number of generic points of the surface. This is done using Getzler’s
relationship among cohomology classes of certain codimension 2 cycles in M1,4 and
recursively computing the genus one Gromov-Witten invariants of del-Pezzo surfaces.
Using completely different methods, this problem has been solved earlier by Bertram
and Abramovich ([3]), Ravi Vakil ([23]), Dubrovin and Zhang ([8]) and more recently
using Tropical geometric methods by M. Shoval and E. Shustin ([22]). We also subject
our formula to several low degree checks and compare them to the numbers obtained
by the earlier authors. Our numbers agree with the numbers obtained by Ravi Vakil,
except for one number where we get something different. We give geometric reasons
to explain why our answer is likely to be correct and hence conclude that the number
written by Ravi Vakil is likely to be a minor typo (since our numbers are consistent
with the other numbers he has obtained).

1. Introduction
One of the most fundamental problems in enumerative algebraic geometry is:

Question 1.1. What is E
(g)
d , the number of genus g degree d curves in CP2 (with a

variable complex structure) that pass through 3d− 1 + g generic points?

Although the computation of E
(g)
d is a classical question, a complete solution to the

above problem (even for genus zero) was unknown until the early 90
′s when Ruan–Tian

([21]) and Kontsevich–Manin ([16]) obtained a formula for E
(0)
d .

The computation of E(g)
d is now very well understood from several different perspectives.

The formula by Caporasso–Harris [6], computes E(g)
d for all g and d. Since then, the com-

putation of E(g)
d has been studied from many different perspectives; these include (among

others), the algorithm by Gathman ([10], [11]) and the method of virtual localization by
Graber and Pandharipande ([15]) to compute the genus g Gromov-Witten invariants of
CPn (although for n > 2 and g > 0, the Gromov-Witten invariants are not enumerative).
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More recently, the problem of computing E
(g)
d has been studied using the method of trop-

ical geometry by Mikhalkin in [18] (using the results of that paper, one can in principle
compute E

(g)
d for all g and d).

A more general situation is as follows: let X be a projective manifold and
β ∈ H2(X;Z) a given homology class. Given cohomology classes µ1, . . . , µk ∈ H∗(X,Q),
the k-pointed genus g, Gromov-Witten invariant of X is defined to be

N
(g)
β,X(µ1, . . . , µk) :=

∫
Mg,k(X,β)

ev∗1(µ1) ⌣ . . . ⌣ ev∗k(µk) ⌣
[
Mg,k(X,β)

]vir
, (1)

where Mg,k(X,β) denotes the moduli space of genus g stable maps into X with k marked
points representing β and evi denotes the ith evaluation map. For g = 0, this is a
smooth, irreducible and proper Deligne-Mumford stack and has a fundamental class.
However, for g > 0, Mg,k(X,β) is not smooth or irreducible, hence it does not posses
a fundamental class. Behrend, Behrend-Fantechi and Li-Tian, have however defined the
virtual fundamental class[

Mg,k(X,β)
]vir ∈ H2Θ(Mg,k(X,β)), Θ := c1(TX) · β + (dimX − 3)(1− g) + k;

which is used to define the Gromov-Witten invariants (see [4],[5] and [17]). When all the
µ1, . . . , µk represent the class Poincare dual to a point (and the degree of the cohomology
class that is being paired in (1), is equal to the virtual dimension of the moduli space),
then we abbreviate N

(g)
β,X(µ1, . . . , µk) as N

(g)
β . The number of genus g curves of degree

β in X, that pass through c1(TX) · β + (dimX − 3)(1− g) generic points is denoted by
E

(g)
β . In general, E(g)

β is not necessarily equal to N
(g)
β , i.e. the Gromov-Witten invariant

is not necessarily enumerative (this happens for example when X := CP3 and g = 1).
An important class of surfaces for which the enumerative geometry is particularly im-
portant are Fano surfaces, which are also called del-Pezzo surfaces (see section 4 for the
definition of a del-Pezzo surface). When g = 0, it is proved in ([14], Theorem 4.1, Lemma
4.10) that for del-Pezzo surfaces N

(0)
β = E

(0)
β .

In [23], Vakil generalizes the approach of Caporasso-Harris in [6] to compute the num-
bers E

(g)
β for all g and β for del-Pezzo surfaces. It is also shown in ([23], Section 4.2)

that all the genus g Gromov-Witten invariants of del-Pezzo surfaces are enumerative (i.e.
N

(g)
β = E

(g)
β ). The enumerative geometry of del-Pezzo surfaces has also been studied

extensively by Abramovich and Bertram (in [3]). More recently, this question has been
approached using methods of tropical geometry. In [22], M. Shoval and E. Shustin give a
formula to compute all the genus g Gromov-Witten invariants of del-Pezzo surfaces using
methods of tropical geometry.
The genus one Gromov-Witten invariants of CPn can also be computed from a com-
pletely different method from the ones developed in [10], [11] and [15]. In [12], Getzler
finds a relationship among certain codimension two cycles in M1,4 and uses that to com-
pute the genus one Gromov-Witten invariants of CP2 and CP3. In [9], using ideas from
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Physics, Eguchi, Hori and Xiong made a remarkable conjecture concerning the genus g
Gromov-Witten invariants of projective manifolds; this is known as the Virasoro conjec-
ture. The conjecture in particular produces an explicit formula for N

(1)
d (for CP2), which

aprori looks very different from the formula obtained by Getzler (in [12]). It is shown by
Pandharipande (in [20]), that the formula obtained by Getzler for CP2 is equivalent to a
completely different looking formula predicted in [9].
In this paper, we extend the approach of Getzler to compute the genus one Gromov-Witten
invariants of del-Pezzo surfaces. The formula we obtain has a completely different ap-
pearance from the one obtained by Vakil in [23]. We verify that our final numbers are
consistent with the numbers he obtains, except for one number (see section 8 for details).
The Virasoro conjecture for projective manifolds (which is conjectured in [9]) has been a
topic of active research in mathematics for the last twenty years. In [8], Dubrovin and
Zhang compute the genus one Gromov-Witten invariants of CP1 × CP1 by showing that
it follows from the Virasoro conjecture. We have verified that our numbers agree with all
the numbers computed by them ([8], Page 463). They prove that the genus zero and genus
one Virasoro Conjecture is true for all projective manifolds having semi-simple quantum
cohomology. It is proved in [1] that the quantum cohomology of del-Pezzo surfaces is
semi simple. It would be interesting to see if one can use the result of this paper and
apply the method of [20] to obtain a formula for the genus one Gromov-Witten invariants
of del-Pezzo surfaces, analogous to the one predicted for CP2 by Eguchi Hori and Xiong
(in [9]). That would give a direct confirmation of the Virasoro conjecture in genus one
for del-Pezzo surfaces. A detailed survey of the Virasosro conjecture is given in [13].

2. Main Result
The main result of this paper is the following:

Main Result. Let X be a del-Pezzo surface and β ∈ H2(X,Z) be a given effective
homology class. We obtain a formula for N

(1)
β (equation (2)) using Getzler’s relation

Remark. We note that by ([23], Section 4.2), we conclude that N
(1)
β = E

(1)
β . Alterna-

tively, we note that N
(1)
β = E

(1)
β follows from ([24], Theorem 1.1).

Our formula for N (1)
β is a recursive formula, involving N

(0)
β . The latter can be computed

via the algorithm given in [16] and [14]. The base case of our recursive formula are given
by equations (3) and (4). We have written a C++ program that implements (2); it is
available on our web page:

http://www.iiserpune.ac.in/~chitrabhanu/.
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3. Recursive formula
We will now give the recursive formula to compute N

(1)
β . First, we will develop some

notation that is used throughout this paper. Let
ξX := c1(TX), for both the cohomology class and the divisor,
κβ := ξX · β, where β ∈ H2(X,Z),
b2(X) := dimH2(X,Q), the second betti number of X,
dX := ξX · ξX , the degree of X.

Moreover, · is used for both the cup product in cohomology as well as cap product between
a homology and a cohomology class.

We are now ready to state the formula. First, let us define the following four quantities:

T1 :=
∑

β1+β2+β3=β

(
κβ − 2

κβ2 − 1, κβ3 − 1

)
2κβ2κ

2
β3
(β1 · β2)((

4κβ1
+ κβ2

− 2κβ3

)
(β2 · β3)− 3κβ2

(β1 · β3)

)
N

(1)
β1

N
(0)
β2

N
(0)
β3

,

T2 :=
∑

β1+β2=β

[(
κβ − 2

κβ1
− 1

)
4κ2

β2

(
2κβ1

κβ2
− κ2

β2
− 3dX(β1 · β2)

)
+

(
κβ − 2

κβ1

)
2κβ2

(
dX(β1 · β2)

(
4κβ1 + κβ2

)
+ 2κβ1κβ2

(
2κβ1 − κβ2

)) ]
N

(1)
β1

N
(0)
β2

,

T3 :=− 1

12

∑
β1+β2=β

(
κβ − 2

κβ1
− 1

)
κ2
β2
(β1 · β2)

[
κ2
β1

(
κβ1

− 2κβ2
− 6(β1 · β2)

)

+ κβ2
(β1 · β1)

(
4κβ1

+ κβ2
)

)]
N

(0)
β1

N
(0)
β2

,

T4 :=− 1

12
κ3
β

(
(2 + b2(X))κβ − dX

)
N

(0)
β .

The number N
(1)
β satisfies the following recursive relation:

6d2XN
(1)
β = T1 + T2 + T3 + T4. (2)

We will now give the initial conditions for the recursion (2). Let X be P2 blown up at
upto k = 8 points. Then the initial condition of the recursion is

N
(1)
L = 0 and N

(1)
Ei

= 0 ∀i = 1 to k. (3)
Here L denotes the class of a line and Ei denotes the exceptional divisors. If X := P1×P1,
then

N (1)
e1 = 0 and N (1)

e2 = 0. (4)
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Here e1 and e2 denote the class of [pt×P1] and [P1×pt] respectively. The initial conditions
(3) and (4), combined with the values of N

(0)
β obtained from [16] and [14], give us the

values of N (1)
β for any β.

Remark. We would like to mention that the formula (2) yields Getzler’s recursion re-
lation, equation (0.1) of [12], after some symmetrization of the summation indices of T1

and T3.

4. Del-Pezzo surfaces
A del-Pezzo surface X is a smooth projective algebraic surface with an ample anti-

canonical divisor ξX . The degree of the surface is defined to be the self-intersection
number

dX = ξX · ξX .

This degree dX varies between 1 and 9. X can be obtained as a blow-up of P2 at k = 9−dX
general points, except, when dX = 8 the surface can also be P1 × P1.

If X has degree 9 − k and is not P1 × P1, then we have the blow up morphism Bl :
X → P2. We denote by E1, . . . , Ek the exceptional divisors of Bl and by L the pull-back
of the class of a hyperplane in P2. We have

H2(X,Z) = Z⟨L,E1, . . . , Ek⟩,

and L · L = 1, Ei · Ei = −1, L · Ei = Ei · Ej = 0 for all i, j ∈ {1, . . . , k} with i ̸= j. The
anti-canonical divisor is given by ξX = 3L− E1 − . . .− Ek.

If X = P1 × P1, let e1 = pr∗1[pt] and e2 = pr∗2[pt], then ξX = 2e1 + 2e2, e1 · e2 = 1 and
e2 · e1 = 1 whereas ei · ei = 0 for i = 1, 2.

5. Basic Strategy
We will now recall the basic setup of [12], where Getzler computes the number N

(1)
d

when X is CP2. First, let us consider the space M1,4, the moduli space of genus one curves
with four marked points. We shall be interested in certain S4 invariant codimension 2
boundary strata in M1,4 which we list in Figure 1. In the figure we draw the topological
type and the marked point distribution of the generic curve in each strata. We use the
same nomenclature as [12] except for δ0,0 which was denoted by δβ in [12], (to avoid
confusion between notations). See section 1 of [12] for a list of all the codimension 2
strata. There the strata are denoted by the dual graph of the generic curve.

These strata define cycles in H4(M1,4,Q). Let us now define the following cycle in
H4(M1,4,Q), given by

R := −2δ2,2 +
2

3
δ2,3 +

1

3
δ2,4 − δ3,4 −

1

6
δ0,3 −

1

6
δ0,4 +

1

3
δ0,0.
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•
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•
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•
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Figure 1. Codimension 2 strata in M1,4.

The main result of [12] is that R = 0. This will subsequently be referred to as Getzler’s
relation. In [20], Pandharipande has shown that this relation, in fact, comes from a
rational equivalence.

Now we explain how to obtain our formula. Consider the natural forgetful morphism

π : M1,κβ+2(X,β) −→ M1,4.

We shall pull-back the cycle R to H∗(M1,κβ+2(X,β),Q) and intersect it with a cycle of
a complementary dimension; that will give us an equality of numbers and subsequently
the formula. Let µ ∈ H4(X,Q) be the class of a point. Define

Z := ev∗1(ξX) · . . . · ev∗4(ξX) · ev∗5(µ) · . . . · ev∗κβ+2(µ).

The class ξX is used since it is ample and hence numerically effective. Since R = 0 by
Getzler’s relation, we conclude that∫

M1,κβ+2(X,β)

(π∗R · Z) ·
[
M1,κβ+2(X,β)

]vir
= 0. (5)
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We can also compute the left hand side of (5) using the composition axiom for Gromov-
Witten invariants which will give us the recursive formula.

6. Axioms for Gromov-Witten Invariants
We shall make use of certain axioms for Gromov-Witten invariants. These are quite

standard, see for example [7], however for completeness we list them here. We assume X
is a smooth projective variety.

Degree axiom: If degµ1 + . . .+ degµn ̸= 2n+ 2κβ + 2(3− dimX)(g − 1) then

N
(g)
β,X(µ1, . . . , µn) = 0.

Fundamental class axiom: If [X] is the fundamental class of X and 2g + n ≥ 4
or β ̸= 0, then

N
(g)
β,X([X], µ1, . . . , µn−1) = 0.

Divisor axiom: If D is a divisor of X and 2g + n ≥ 4. then

N
(g)
β,X(D,µ1, . . . , µn−1) = (D · β)N (g)

β,X(µ1, . . . , µn−1).

Composition axiom: This is a bit complicated to write down, so we refer to [12],
section 2.11. It is a combination of the splitting and reduction axioms of [16]
section 2.

We also need the following results which do not follow from the above axioms:

N
(0)
0,X(µ1, µ2, µ3) =

∫
X

µ1 ⌣ µ2 ⌣ µ3,

and

N
(1)
0,X(µ) = − 1

24
c1(TX) · µ.

7. Intersection of cycles
Now we are in a position to compute the left hand side of (5). Fix a homogeneous

basis {γ1, . . . , γb(X)} of H∗(X,Q). Let gij =
∫
X
γi ⌣ γj and ((gij)) = ((gij))

−1. For a
cycle δ in H∗(Mg,n(X,β),Q), we introduce the following notation

Nδ
β,X(µ1, . . . , µn) =

∫
Mg,n(X,β)

δ · ev∗1(µ1) · · · ev∗n(µn) ·
[
Mg,n(X,β)

]vir
.
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Let µ1 = . . . = µ4 = ξX , and µ5 = . . . = µκβ+2 = [pt] be the class of a point. If
δ = π∗δ2,2, by the composition axiom

Nδ
β,X =Nδ

β,X(µ1, . . . , µκβ+2)

=
∑

β1+β2+β3=β
A,B,C

∑
i,j,k,l

gijgklN
(1)
β1,X

(γi, γk, µα|α ∈ A)

×N
(0)
β2,X

(γj , µα|α ∈ B)×N
(0)
β3,X

(γl, µα|α ∈ C),

where the second sum is over i, j, k, l ranging from 1 to b(X) and the first sum is over
disjoint sets A,B,C satisfying

A ⊔B ⊔ C = {1, . . . , κβ + 2}, |B ∩ {1, 2, 3, 4}| = |C ∩ {1, 2, 3, 4}| = 2.

Note that if β1, β2, β3 > 0, by the degree axiom the only non-trivial terms occur when
|A| = κβ1

, |B| = κβ2
+ 1, |C| = κβ3

+ 1. The limiting case β1 = 0 does not yield
anything, however β2 = 0 or β3 = 0 have non-trivial contributions to the sum. When
β3 = 0, β1, β2 > 0, the non-trivial contribution occurs precisely when |C| = 2, γl = [X],
|A| = κβ1 − 1, γk = [pt], and |B| = κβ2 + 1. Finally when β2 = β3 = 0, the only non-zero
term occurs when |B| = |C| = 2, γl = γj = [X] and γk = γi = [pt]. Making use of the
fact that for any σ, τ ∈ H∗(X,Q)

b(X)∑
i=1

b(X)∑
j=1

gij(σ · γi)(γj · τ) = (σ · τ),

we obtain the following expression
N

π∗δ2,2
β,X =3(ξX · ξX)2N

(1)
β

+ 3
∑

β1+β2+β3=β

(
κβ − 2

κβ2
− 1, κβ3

− 1

)
(β2 · ξX)2(β3 · ξX)2(β1 · β2)(β1 · β3)N

(1)
β1

N
(0)
β2

N
(0)
β3

+ 6
∑

β1+β2=β

(
κβ − 2

κβ1 − 1

)
(ξX · ξX)(β1 · β2)(β2 · ξX)2N

(1)
β1

N
(0)
β2

. (6)

Next, let us consider the cycle δ2,3. We then have

N
π∗δ2,3
β,X =

∑
β1+β2+β3=β

A,B,C

∑
i,j,k,l

gijgklN
(1)
β1,X

(γi, µα|α ∈ A)

×N
(0)
β2,X

(γj , γk, µα|α ∈ B)×N
(0)
β3,X

(γl, µα|α ∈ C),

where the sum is over sets A,B,C satisfying
A ⊔B ⊔ C = {1, . . . , κβ + 2}, |A ∩ {1, 2, 3, 4}| = |B ∩ {1, 2, 3, 4}| = 1.

All the cases are similar to the previous calculation except, when β2 = 0. In this case we
can either have |B| = 1, |A| = κβ1 , γi = [pt] and γj = [X]; or |B| = 1, |C| = κβ3 , γk = [X]
and γl = [pt]. We get
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N
π∗δ2,3
β,X

= 12
∑

β1+β2+β3=β

(
κβ − 2

κβ2
− 1, κβ3

− 1

)
(β1 · ξX)(β2 · ξX)(β3 · ξX)2(β1 · β2)(β2 · β3)N

(1)
β1

N
(0)
β2

N
(0)
β3

+ 12
∑

β1+β2=β

(
κβ − 2

κβ1

)
(β1 · ξX)(β2 · ξX)

(
(ξX · ξX)(β1 · β2) + (β1 · ξX)(β2 · ξX)

)
N

(1)
β1

N
(0)
β2

+ 12
∑

β1+β2=β

(
κβ − 2

κβ1
− 1

)
(β1 · ξX)(β2 · ξX)3N

(1)
β1

N
(0)
β2

. (7)

Moving on to δ2,4 we have

N
π∗δ2,4
β,X =

∑
β1+β2+β3=β

A,B,C

∑
i,j,k,l

gijgklN
(1)
β1,X

(γi, µα|α ∈ A)

×N
(0)
β2,X

(γj , γk, µα|α ∈ B)×N
(0)
β3,X

(γl, µα|α ∈ C),

where the sum is over sets A,B,C satisfying

A ⊔B ⊔ C = {1, . . . , κβ + 2}, |B ∩ {1, 2, 3, 4}| = |C ∩ {1, 2, 3, 4}| = 2.

Now there is no contribution when β2 = 0, however we have a non-trivial contribution
when β1 = 0. We can use (6) to calculate this

N
π∗δ2,4
β,X = 6

∑
β1+β2+β3=β

(
κβ − 2

κβ2
− 1, κβ3

− 1

)
(β2 · ξX)2(β3 · ξX)2(β1 · β2)(β2 · β3)N

(1)
β1

N
(0)
β2

N
(0)
β3

+ 6
∑

β1+β2=β

(
κβ − 2

κβ1

)
(β2 · ξX)2(ξX · ξX)(β1 · β2)N

(1)
β1

N
(0)
β2

+ 6
∑

β1+β2=β

(
− 1

24

)(
κβ − 2

κβ1
− 1

)
(ξX · β1)

3(β2 · ξX)2(β1 · β2)N
(0)
β1

N
(0)
β2

+ 6

(
− 1

24

)
(ξX · β)3(ξX · ξX)N

(0)
β . (8)

For δ3,4 we have

N
π∗δ3,4
β,X =

∑
β1+β2+β3=β

A,B,C

∑
i,j,k,l

gijgklN
(1)
β1,X

(γi, µα|α ∈ A)

×N
(0)
β2,X

(γj , γk, µα|α ∈ B)×N
(0)
β3,X

(γl, µα|α ∈ C),

where the first sum is over sets A,B,C satisfying

A ⊔B ⊔ C = {1, . . . , κβ + 2}, |B ∩ {1, 2, 3, 4}| = 1, |C ∩ {1, 2, 3, 4}| = 3.
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The calculation is similar to the previous cases, so we omit the details. We obtain

N
π∗δ3,4
β,X = 4

∑
β1+β2+β3=β

(
κβ − 2

κβ2
− 1, κβ3

− 1

)
(β2 · ξX)(β3 · ξX)3(β1 · β2)(β2 · β3)N

(1)
β1

N
(0)
β2

N
(0)
β3

+ 4
∑

β1+β2=β

(
κβ − 2

κβ1

)
(β2 · ξX)3(β1 · ξX)N

(1)
β1

N
(0)
β2

+ 4
∑

β1+β2=β

(
κβ − 2

κβ1
− 1

)
(β2 · ξX)4N

(1)
β1

N
(0)
β2

+ 4
∑

β1+β2=β

(
κβ − 2

κβ1 − 1

)(
− 1

24

)
(ξX · β1)

2(β2 · ξX)3(β1 · β2)N
(0)
β1

N
(0)
β2

+ 4

(
− 1

24

)
(ξX · ξX)(β · ξX)3N

(0)
β . (9)

The remaining cycles all have 2 genus zero components so the calculations are simpler.
We will first consider δ0,3:

N
π∗δ0,3
β,X =

1

2

∑
β1+β2=β

A,B

∑
i,j,k,l

gijgklN
(0)
β1,X

(γi, γj , γk, µα|α ∈ A)

×N
(0)
β2,X

(γl, µα|α ∈ B),

where the first sum is over sets A,B satisfying

A ⊔B = {1, . . . , κβ + 2}, |A ∩ {1, 2, 3, 4}| = 1.

The factor of 1
2 appears since the dual graph of a generic curve in δ0,3 has an automorphism

of order 2. Neither β1 = 0, nor β2 = 0 has any non-trivial contribution so it is straight
forward to see that

N
π∗δ0,3
β,X =

∑
β1+β2=β

2

(
κβ − 2

κβ1
− 1

)
(β1 · ξX)(β2 · ξX)3(β1 · β2)(β1 · β1)N

(0)
β1

N
(0)
β2

. (10)

The calculation for δ0,4 is a bit more subtle:

N
π∗δ0,4
β,X =

1

2

∑
β1+β2=β

A,B

∑
i,j,k,l

gijgklN
(0)
β1,X

(γi, γj , γk, µα|α ∈ A)

×N
(0)
β2,X

(γl, µα|α ∈ B),

where the first sum is over sets A,B satisfying

A ⊔B = {1, . . . , κβ + 2}, A ∩ {1, 2, 3, 4} = ∅.

10
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Contribution from β2 = 0 is 0. When β1 = 0, we must have A = ∅ which leads to

N
π∗δ0,4
β,X =

1

2

∑
β1+β2=β

(
κβ − 2

κβ1 − 1

)
(β2 · ξX)4(β1 · β2)(β1 · β1)N

(0)
β1

N
(0)
β2

+
1

2
(2 + b2(X))(β · ξX)4N

(0)
β . (11)

Finally, let us consider the cycle δ0,0:

N
π∗δ0,0
β,X =

1

2

∑
β1+β2=β

A,B

∑
i,j,k,l

gijgklN
(0)
β1,X

(γi, γk, µα|α ∈ A)

×N
(0)
β2,X

(γj , γl, µα|α ∈ B),

where the first sum is over sets A,B satisfying

A ⊔B = {1, . . . , κβ + 2}, |A ∩ {1, 2, 3, 4}| = 2.

By an analogous calculation as the previous situations we have

N
π∗δ0,0
β,X =

3

2

∑
β1+β2=β

(
κβ − 2

κβ1
− 1

)
(β1 · ξX)2(β2 · ξX)2(β1 · β2)

2N
(0)
β1

N
(0)
β2

. (12)

Now collecting all these terms and using relation (5) we obtain the desired formula (2).

8. Low degree checks
We will now describe some concrete low degree checks that we have performed. Let Xk

be a del-Pezzo surface obtained by blowing up P2 at k ≤ 8 points. We claim that

N
(1)
dL+σ1E1+...+σrEr,Xk

= N
(1)
dL+σ1E1+...+σr−1Er−1,Xk−1

,

if σr is −1 or 0. Let us explain why this is so. Consider X1 which is P2 blown up at the
point p. Let us consider the number N

(1)
dL−E1,X1

; this is the number of genus one curves
in X1 representing the class dL−E1 and passing through 3d− 1 generic points. Let C be
one of the curves counted by the above number. The curve C intersects the exceptional
divisor exactly at one point. Furthermore, since the 3d − 1 points are generic, they can
be chosen not to lie in the exceptional divisor; let us call the points p1, p2, . . . , p3d−1.
Hence, when we consider the blow down from X1 to P2, the curve C becomes a curve in
P2 passing through p1, p2, . . . , p3d−1 and the blow up point p. We thus get a genus one,
degree d curve in P2 passing through 3d points. There is a one to one correspondence
between curves representing the class dL − E1 in X1 passing through 3d − 1 points and
degree d curves in P2 passing through 3d points. Hence N

(1)
dL−E1,X1

= N
(1)
dL,P2 . A similar

argument holds when there are more than one blowup points. The same argument also
shows that N

(1)
dL+0E1,X1

= N
(1)
dL,P2 ; the same reasoning holds by taking a curve in the

blowup and then considering its image under the blow down. The blow down gives a one

11
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to one correspondence between the two sets and hence, the corresponding numbers are
the same.

We have verified this assertion in many cases. For instance we have verified that

N
(1)
5L−E1−E2,X2

= N
(1)
5L−E1,X1,

= N
(1)
5L+0E1,X1

= N
(1)
5L,P2 .

The reader is invited to use our program and verify these assertions. Hence without
ambiguity we write N

(1)
dL+σ1E1+...+σrEr

for N
(1)
dL+σ1E1+...+σrEr,Xr

.
Next, we note that in [8], Dubrovin has computed the genus one Gromov-Witten

Invariants of P1 × P1; our numbers agree with the numbers he has listed in his paper
(Page 463).

Finally, in [23], Ravi Vakil has explicitly computed some N
(g)
β for del-Pezzo surfaces

(Page 78). Our numbers agree with the following numbers he has listed:

N
(1)
5L−2E1

= 13775, N
(1)
5L−2E1−2E2−2E3

= 225, N
(1)
5L−2E1−2E2−2E3−2E4

= 20,

N
(1)
5L−3E1

= 240, N
(1)
5L−3E1−2E2

= 20 and N
(1)
5L−3E1−2E2−2E3

= 1.

However, there is one number he has listed which does not agree with what we obtain:
our formula predicts that

N
(1)
5L−2E1−2E2

= 1920.

However, in Ravi Vakil’s paper ([23], Page 78), it is given that

N
(1)
5L−2E1−2E2

= 1887.

The value of 1920 is in agreement with the value communicated to us by Ritiwik Mukher-
jee, which we now briefly explain. Let us first consider the following question: what is
f(d), the number of degree d curves (not necessarily irreducible) in P2, passing through
d(d+3)

2 − 9 generic points, having 3 nodes (unordered) and having two more nodes at two
fixed points? By modifying the result of his thesis [19], Ritwik Mukherjee has obtained
the value of f(d) to be

f(d) = −1026− 4207

2
d+ 248d2 +

927

2
d3 − 117

2
d4 − 27d5 +

9

2
d6.

We first note that f(6) = 19581. This is precisely equal to the number R6,5
22 obtained by

Ravi Vakil in [23] (Page 79); it is the number of degree 6 maps (not necessarily reducible)
from a genus 5 surface into X2, representing the class 6L− 2E1 − 2E2.
Next, we note that f(5) = 1969. We will now determine the reducible configurations
counted by f(5); recall that f(5) is the number of quintics in P2 passing through 11
generic points, having 3 unordered nodes and having two more nodes at two fixed points.
The following reducible configurations can take place: we can place a line through the two
fixed point and place a nodal quartic through the remaining 11 points (and also through
the two fixed points). There are 27 nodal quartics through 13 generic points (it is a well
known fact that the number of degree d curves in P2 through d(d+3)

2 − 1 points, having
one node is 3(d − 1)2; there are several references for this fact such as [2]). Next, we

12
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could choose 10 out of the 11 points and place a quartic through one of the fixed points
with a node at the other fixed point and place a line through the first fixed point and the
remaining 11th point. The number of quartics through 11 points having a node at a fixed
given point is 1. Hence, there are a total of 11 such configurations (22 by interchanging
the role of the fixed points). Hence, the total number of reducible configurations counted
by f(5) is 27+11+11 = 49. Hence, the number of irreducible quintics through 11 generic
points, having 3 unordered nodes and having two more nodes at two fixed points is

1969− (27 + 11 + 11) = 1920.

This number is precisely equal to N1
5L−2E1−2E2

. Hence, we believe that the number
obtained by our formula is correct as it satisfies this nontrivial geometric consistency
check. We believe that the number 1887 written in [23] is likely to be a minor typo made
by the author (since our numbers are consistent with the other numbers the author has
written and our formula staisfies several other non trivial low degree checks).
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