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Abstract. The exceptional holonomy groups are G2 in 7 dimensions, and Spin(7)
in 8 dimensions. Riemannian manifolds with these holonomy groups are Ricci-flat.

This is a survey paper on exceptional holonomy, in two parts. Part I introduces
the exceptional holonomy groups, and explains constructions for compact 7- and 8-
manifolds with holonomy G2 and Spin(7). The simplest such constructions work

by using techniques from complex geometry and Calabi–Yau analysis to resolve the
singularities of a torus orbifold T 7/Γ or T 8/Γ, for Γ a finite group preserving a flat
G2 or Spin(7)-structure on T 7 or T 8. There are also more complicated constructions
which begin with a Calabi–Yau manifold or orbifold. Part II discusses the calibrated

submanifolds of G2 and Spin(7)-manifolds: associative 3-folds and coassociative 4-
folds for G2, and Cayley 4-folds for Spin(7). We explain the general theory, following
Harvey and Lawson, and the known examples. Finally we describe the deformation

theory of compact calibrated submanifolds, following McLean.

1. Introduction

In the theory of Riemannian holonomy groups, perhaps the most mysterious are the
two exceptional cases, the holonomy group G2 in 7 dimensions and the holonomy group
Spin(7) in 8 dimensions. This is a survey paper on the exceptional holonomy groups, in
two parts. Part I collects together useful facts about G2 and Spin(7) in §2, and explains
constructions of compact 7-manifolds with holonomyG2 in §3, and of compact 8-manifolds
with holonomy Spin(7) in §4.

Part II discusses the calibrated submanifolds of manifolds of exceptional holonomy,
namely associative 3-folds and coassociative 4-folds in G2-manifolds, and Cayley 4-folds
in Spin(7)-manifolds. We introduce calibrations in §5, defining the three geometries and
giving examples. Finally, §6 explains their deformation theory.

Sections 3 and 4 describe my own work. On this the exhaustive and nearly infallible
reference is my book [18], which also makes an excellent Christmas present. Part II
describes work by other people, principally the very important papers by Harvey and
Lawson [12] and McLean [28], but also more recent developments.

This paper was written to accompany lectures at the 11th Gökova Geometry and Topol-
ogy Conference in May 2004, sponsored by TÜBİTAK. In keeping with the theme of the
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conference, I have focussed mostly on G2, at the expense of Spin(7). In writing it I have
plagiarized shamelessly from my previous works, notably the books [18] and [11, Part I],
and the survey paper [21].

Part I. Exceptional Holonomy

2. Introduction to G2 and Spin(7)

We introduce the notion of Riemannian holonomy groups, and their classification by
Berger. Then we give short descriptions of the holonomy groups G2, Spin(7) and SU(m),
and the relations between them. All the results below can be found in my book [18].

2.1. Riemannian holonomy groups

Let M be a connected n-dimensional manifold, g a Riemannian metric on M , and ∇
the Levi-Civita connection of g. Let x, y be points in M joined by a smooth path γ. Then
parallel transport along γ using ∇ defines an isometry between the tangent spaces TxM
and TyM at x and y.

Definition 2.1. The holonomy group Hol(g) of g is the group of isometries of TxM
generated by parallel transport around piecewise-smooth closed loops based at x in M .
We consider Hol(g) to be a subgroup of O(n), defined up to conjugation by elements of
O(n). Then Hol(g) is independent of the base point x in M .

Let ∇ be the Levi-Civita connection of g. A tensor S on M is constant if ∇S = 0. An
important property of Hol(g) is that it determines the constant tensors on M .

Theorem 2.2. Let (M, g) be a Riemannian manifold, and ∇ the Levi-Civita connection
of g. Fix a base point x ∈M , so that Hol(g) acts on TxM , and so on the tensor powers
⊗k

TxM ⊗
⊗l

T ∗

xM . Suppose S ∈ C∞
(
⊗k

TM ⊗
⊗l

T ∗M
)

is a constant tensor. Then

S|x is fixed by the action of Hol(g). Conversely, if S|x ∈
⊗k

TxM ⊗
⊗l

T ∗

xM is fixed by

Hol(g), it extends to a unique constant tensor S ∈ C∞
(
⊗k

TM ⊗
⊗l

T ∗M
)

.

The main idea in the proof is that if S is a constant tensor and γ : [0, 1] →M is a path
from x to y, then Pγ(S|x) = S|y, where Pγ is the parallel transport map along γ. Thus,
constant tensors are invariant under parallel transport. In particular, they are invariant
under parallel transport around closed loops based at x, that is, under elements of Hol(g).

The classification of holonomy groups was achieved by Berger [1] in 1955.

Theorem 2.3. Let M be a simply-connected, n-dimensional manifold, and g an irre-
ducible, nonsymmetric Riemannian metric on M . Then either

(i) Hol(g) = SO(n),
(ii) n = 2m and Hol(g) = SU(m) or U(m),
(iii) n = 4m and Hol(g) = Sp(m) or Sp(m) Sp(1),
(iv) n = 7 and Hol(g) = G2, or
(v) n = 8 and Hol(g) = Spin(7).
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Here are some brief remarks about each group on Berger’s list.

(i) SO(n) is the holonomy group of generic Riemannian metrics.
(ii) Riemannian metrics g with Hol(g) ⊆ U(m) are called Kähler metrics. Kähler

metrics are a natural class of metrics on complex manifolds, and generic Kähler
metrics on a given complex manifold have holonomy U(m).

Metrics g with Hol(g) = SU(m) are called Calabi–Yau metrics. Since SU(m)
is a subgroup of U(m), all Calabi–Yau metrics are Kähler. If g is Kähler and
M is simply-connected, then Hol(g) ⊆ SU(m) if and only if g is Ricci-flat. Thus
Calabi–Yau metrics are locally more or less the same as Ricci-flat Kähler metrics.

(iii) metrics g with Hol(g) = Sp(m) are called hyperkähler. As Sp(m) ⊆ SU(2m) ⊂
U(2m), hyperkähler metrics are Ricci-flat and Kähler.

Metrics g with holonomy group Sp(m) Sp(1) for m > 2 are called quaternionic
Kähler. (Note that quaternionic Kähler metrics are not in fact Kähler.) They are
Einstein, but not Ricci-flat.

(iv), (v) G2 and Spin(7) are the exceptional cases, so they are called the exceptional holo-
nomy groups. Metrics with these holonomy groups are Ricci-flat.

The groups can be understood in terms of the four division algebras: the real numbers
R, the complex numbers C, the quaternions H, and the octonions or Cayley numbers O.

• SO(n) is a group of automorphisms of R
n.

• U(m) and SU(m) are groups of automorphisms of C
m

• Sp(m) and Sp(m) Sp(1) are automorphism groups of H
m.

• G2 is the automorphism group of Im O ∼= R
7. Spin(7) is a group of automorphisms

of O ∼= R
8, preserving part of the structure on O.

For some time after Berger’s classification, the exceptional holonomy groups remained a
mystery. In 1987, Bryant [6] used the theory of exterior differential systems to show that
locally there exist many metrics with these holonomy groups, and gave some explicit,
incomplete examples. Then in 1989, Bryant and Salamon [8] found explicit, complete
metrics with holonomy G2 and Spin(7) on noncompact manifolds.

In 1994-5 the author constructed the first examples of metrics with holonomy G2 and
Spin(7) on compact manifolds [14, 15, 16]. These, and the more complicated constructions
developed later by the author [17, 18] and by Kovalev [22], are the subject of Part I.

2.2. The holonomy group G2

Let (x1, . . . , x7) be coordinates on R
7. Write dxij...l for the exterior form dxi∧dxj∧· · ·∧

dxl on R
7. Define a metric g0, a 3-form ϕ0 and a 4-form ∗ϕ0 on R

7 by g0 = dx2
1+· · ·+dx2

7,

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 and

∗ϕ0 = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247.
(1)

The subgroup of GL(7,R) preserving ϕ0 is the exceptional Lie group G2. It also preserves
g0, ∗ϕ0 and the orientation on R

7. It is a compact, semisimple, 14-dimensional Lie group,
a subgroup of SO(7).
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A G2-structure on a 7-manifold M is a principal subbundle of the frame bundle of M ,
with structure group G2. Each G2-structure gives rise to a 3-form ϕ and a metric g on
M , such that every tangent space of M admits an isomorphism with R

7 identifying ϕ
and g with ϕ0 and g0 respectively. By an abuse of notation, we will refer to (ϕ, g) as a
G2-structure.

Proposition 2.4. Let M be a 7-manifold and (ϕ, g) a G2-structure on M . Then the
following are equivalent:

(i) Hol(g) ⊆ G2, and ϕ is the induced 3-form,
(ii) ∇ϕ = 0 on M , where ∇ is the Levi-Civita connection of g, and
(iii) dϕ = d∗ϕ = 0 on M .

Note that Hol(g) ⊆ G2 if and only if ∇ϕ = 0 follows from Theorem 2.2. We call ∇ϕ
the torsion of the G2-structure (ϕ, g), and when ∇ϕ = 0 the G2-structure is torsion-free.
A triple (M,ϕ, g) is called a G2-manifold if M is a 7-manifold and (ϕ, g) a torsion-free
G2-structure on M . If g has holonomy Hol(g) ⊆ G2, then g is Ricci-flat.

Theorem 2.5. Let M be a compact 7-manifold, and suppose that (ϕ, g) is a torsion-free
G2-structure on M . Then Hol(g) = G2 if and only if π1(M) is finite. In this case the
moduli space of metrics with holonomy G2 on M , up to diffeomorphisms isotopic to the
identity, is a smooth manifold of dimension b3(M).

2.3. The holonomy group Spin(7)

Let R
8 have coordinates (x1, . . . , x8). Define a 4-form Ω0 on R

8 by

Ω0 = dx1234 + dx1256 + dx1278 + dx1357 − dx1368 − dx1458 − dx1467

−dx2358 − dx2367 − dx2457 + dx2468 + dx3456 + dx3478 + dx5678.
(2)

The subgroup of GL(8,R) preserving Ω0 is the holonomy group Spin(7). It also preserves
the orientation on R

8 and the Euclidean metric g0 = dx2
1 + · · · + dx2

8. It is a compact,
semisimple, 21-dimensional Lie group, a subgroup of SO(8).

A Spin(7)-structure on an 8-manifold M gives rise to a 4-form Ω and a metric g on M ,
such that each tangent space of M admits an isomorphism with R

8 identifying Ω and g
with Ω0 and g0 respectively. By an abuse of notation we will refer to the pair (Ω, g) as a
Spin(7)-structure.

Proposition 2.6. Let M be an 8-manifold and (Ω, g) a Spin(7)-structure on M . Then
the following are equivalent:

(i) Hol(g) ⊆ Spin(7), and Ω is the induced 4-form,
(ii) ∇Ω = 0 on M , where ∇ is the Levi-Civita connection of g, and
(iii) dΩ = 0 on M .

We call ∇Ω the torsion of the Spin(7)-structure (Ω, g), and (Ω, g) torsion-free if ∇Ω =
0. A triple (M,Ω, g) is called a Spin(7)-manifold if M is an 8-manifold and (Ω, g) a
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torsion-free Spin(7)-structure on M . If g has holonomy Hol(g) ⊆ Spin(7), then g is
Ricci-flat.

Here is a result on compact 8-manifolds with holonomy Spin(7).

Theorem 2.7. Let (M,Ω, g) be a compact Spin(7)-manifold. Then Hol(g) = Spin(7) if
and only if M is simply-connected, and b3(M) + b4+(M) = b2(M) + 2b4

−
(M) + 25. In

this case the moduli space of metrics with holonomy Spin(7) on M , up to diffeomorphisms
isotopic to the identity, is a smooth manifold of dimension 1 + b4

−
(M).

2.4. The holonomy groups SU(m)

Let C
m ∼= R

2m have complex coordinates (z1, . . . , zm), and define the metric g0, Kähler
form ω0 and complex volume form θ0 on C

m by

g0 = |dz1|
2 + · · · + |dzm|2, ω0 =

i

2
(dz1 ∧ dz̄1 + · · · + dzm ∧ dz̄m),

and θ0 = dz1 ∧ · · · ∧ dzm.
(3)

The subgroup of GL(2m,R) preserving g0, ω0 and θ0 is the special unitary group SU(m).
Manifolds with holonomy SU(m) are called Calabi–Yau manifolds.

Calabi–Yau manifolds are automatically Ricci-flat and Kähler, with trivial canonical
bundle. Conversely, any Ricci-flat Kähler manifold (M,J, g) with trivial canonical bundle
has Hol(g) ⊆ SU(m). By Yau’s proof of the Calabi Conjecture [31], we have:

Theorem 2.8. Let (M,J) be a compact complex m-manifold admitting Kähler metrics,
with trivial canonical bundle. Then there is a unique Ricci-flat Kähler metric g in each
Kähler class on M , and Hol(g) ⊆ SU(m).

Using this and complex algebraic geometry one can construct many examples of com-
pact Calabi–Yau manifolds. The theorem also applies in the orbifold category, yielding
examples of Calabi–Yau orbifolds.

2.5. Relations between G2, Spin(7) and SU(m)

Here are the inclusions between the holonomy groups SU(m), G2 and Spin(7):

SU(2) −−−−→ SU(3) −−−−→ G2




y





y





y

SU(2) × SU(2) −−−−→ SU(4) −−−−→ Spin(7).

We shall illustrate what we mean by this using the inclusion SU(3) →֒ G2. As SU(3) acts
on C

3, it also acts on R ⊕ C
3 ∼= R

7, taking the SU(3)-action on R to be trivial. Thus we
embed SU(3) as a subgroup of GL(7,R). It turns out that SU(3) is a subgroup of the
subgroup G2 of GL(7,R) defined in §2.2.

Here is a way to see this in terms of differential forms. Identify R ⊕ C
3 with R

7 in
the obvious way in coordinates, so that

(

x1, (x2 + ix3, x4 + ix5, x6 + ix7)
)

in R ⊕ C
3 is

identified with (x1, . . . , x7) in R
7. Then ϕ0 = dx1 ∧ω0 + Re θ0, where ϕ0 is defined in (1)
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and ω0, θ0 in (3). Since SU(3) preserves ω0 and θ0, the action of SU(3) on R
7 preserves

ϕ0, and so SU(3) ⊂ G2.
It follows that if (M,J, h) is Calabi–Yau 3-fold, then R×M and S1 ×M have torsion-

free G2-structures, that is, are G2-manifolds.

Proposition 2.9. Let (M,J, h) be a Calabi–Yau 3-fold, with Kähler form ω and complex
volume form θ. Let x be a coordinate on R or S1. Define a metric g = dx2 + h and a
3-form ϕ = dx∧ω+Re θ on R×M or S1×M . Then (ϕ, g) is a torsion-free G2-structure
on R ×M or S1 ×M , and ∗ϕ = 1

2ω ∧ ω − dx ∧ Im θ.

Similarly, the inclusions SU(2) →֒ G2 and SU(4) →֒ Spin(7) give:

Proposition 2.10. Let (M,J, h) be a Calabi–Yau 2-fold, with Kähler form ω and complex
volume form θ. Let (x1, x2, x3) be coordinates on R

3 or T 3. Define a metric g = dx2
1 +

dx2
2 + dx2

3 + h and a 3-form ϕ on R
3 ×M or T 3 ×M by

ϕ = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ ω + dx2 ∧ Re θ − dx3 ∧ Im θ. (4)

Then (ϕ, g) is a torsion-free G2-structure on R
3 ×M or T 3 ×M , and

∗ ϕ = 1
2ω ∧ ω + dx2 ∧ dx3 ∧ ω − dx1 ∧ dx3 ∧ Re θ − dx1 ∧ dx2 ∧ Im θ. (5)

Proposition 2.11. Let (M,J, g) be a Calabi–Yau 4-fold, with Kähler form ω and complex
volume form θ. Define a 4-form Ω on M by Ω = 1

2ω∧ω+Re θ. Then (Ω, g) is a torsion-
free Spin(7)-structure on M .

3. Constructing G2-manifolds from orbifolds T 7/Γ

We now explain the method used in [14, 15] and [18, §11–§12] to construct examples
of compact 7-manifolds with holonomy G2. It is based on the Kummer construction for
Calabi–Yau metrics on the K3 surface, and may be divided into four steps.

Step 1. Let T 7 be the 7-torus and (ϕ0, g0) a flat G2-structure on T 7. Choose a finite
group Γ of isometries of T 7 preserving (ϕ0, g0). Then the quotient T 7/Γ is a
singular, compact 7-manifold, an orbifold.

Step 2. For certain special groups Γ there is a method to resolve the singularities of
T 7/Γ in a natural way, using complex geometry. We get a nonsingular, compact
7-manifold M , together with a map π : M → T 7/Γ, the resolving map.

Step 3. On M , we explicitly write down a 1-parameter family of G2-structures (ϕt, gt)
depending on t ∈ (0, ǫ). They are not torsion-free, but have small torsion when
t is small. As t → 0, the G2-structure (ϕt, gt) converges to the singular G2-
structure π∗(ϕ0, g0).

Step 4. We prove using analysis that for sufficiently small t, the G2-structure (ϕt, gt)
on M , with small torsion, can be deformed to a G2-structure (ϕ̃t, g̃t), with zero
torsion. Finally, we show that g̃t is a metric with holonomy G2 on the compact
7-manifold M .

We will now explain each step in greater detail.
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3.1. Step 1: Choosing an orbifold

Let (ϕ0, g0) be the Euclidean G2-structure on R
7 defined in §2.2. Suppose Λ is a lattice

in R
7, that is, a discrete additive subgroup isomorphic to Z

7. Then R
7/Λ is the torus

T 7, and (ϕ0, g0) pushes down to a torsion-free G2-structure on T 7. We must choose a
finite group Γ acting on T 7 preserving (ϕ0, g0). That is, the elements of Γ are the push-
forwards to T 7/Λ of affine transformations of R

7 which fix (ϕ0, g0), and take Λ to itself
under conjugation.

Here is an example of a suitable group Γ, taken from [18, §12.2].

Example 3.1. Let (x1, . . . , x7) be coordinates on T 7 = R
7/Z7, where xi ∈ R/Z. Let

(ϕ0, g0) be the flat G2-structure on T 7 defined by (1). Let α, β and γ be the involutions
of T 7 defined by

α : (x1, . . . , x7) 7→ (x1, x2, x3,−x4,−x5,−x6,−x7), (6)

β : (x1, . . . , x7) 7→ (x1,−x2,−x3, x4, x5,
1
2 − x6,−x7), (7)

γ : (x1, . . . , x7) 7→
(

−x1, x2,−x3, x4,
1
2 − x5, x6,

1
2 − x7). (8)

By inspection, α, β and γ preserve (ϕ0, g0), because of the careful choice of exactly which
signs to change. Also, α2 = β2 = γ2 = 1, and α, β and γ commute. Thus they generate
a group Γ = 〈α, β, γ〉 ∼= Z

3
2 of isometries of T 7 preserving the flat G2-structure (ϕ0, g0).

Having chosen a lattice Λ and finite group Γ, the quotient T 7/Γ is an orbifold, a singular
manifold with only quotient singularities. The singularities of T 7/Γ come from the fixed
points of non-identity elements of Γ. We now describe the singularities in our example.

Lemma 3.2. In Example 3.1, βγ, γα, αβ and αβγ have no fixed points on T 7. The fixed
points of α, β, γ are each 16 copies of T 3. The singular set S of T 7/Γ is a disjoint union
of 12 copies of T 3, 4 copies from each of α, β, γ. Each component of S is a singularity
modelled on that of T 3 × C

2/{±1}.

The most important consideration in choosing Γ is that we should be able to resolve
the singularities of T 7/Γ within holonomy G2. We will explain how to do this next.

3.2. Step 2: Resolving the singularities

Our goal is to resolve the singular set S of T 7/Γ to get a compact 7-manifold M with
holonomy G2. How can we do this? In general we cannot, because we have no idea of
how to resolve general orbifold singularities with holonomy G2. However, suppose we can
arrange that every connected component of S is locally isomorphic to either

(a) T 3 × C
2/G, where G is a finite subgroup of SU(2), or

(b) S1 × C
3/G, where G is a finite subgroup of SU(3) acting freely on C

3 \ {0}.

One can use complex algebraic geometry to find a crepant resolution X of C
2/G or Y

of C
3/G. Then T 3×X or S1×Y gives a local model for how to resolve the corresponding

component of S in T 7/Γ. Thus we construct a nonsingular, compact 7-manifold M by
using the patches T 3 × X or S1 × Y to repair the singularities of T 7/Γ. In the case of
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Example 3.1, this means gluing 12 copies of T 3 ×X into T 7/Γ, where X is the blow-up
of C

2/{±1} at its singular point.
Now the point of using crepant resolutions is this. In both case (a) and (b), there exists

a Calabi–Yau metric on X or Y which is asymptotic to the flat Euclidean metric on C
2/G

or C
3/G. Such metrics are called Asymptotically Locally Euclidean (ALE). In case (a),

the ALE Calabi–Yau metrics were classified by Kronheimer [23, 24], and exist for all finite
G ⊂ SU(2). In case (b), crepant resolutions of C

3/G exist for all finite G ⊂ SU(3) by
Roan [29], and the author [19], [18, §8] proved that they carry ALE Calabi–Yau metrics,
using a noncompact version of the Calabi Conjecture.

By Propositions 2.9 and 2.10, we can use the Calabi–Yau metrics onX or Y to construct
a torsion-free G2-structure on T 3 × X or S1 × Y . This gives a local model for how to
resolve the singularity T 3 × C

2/G or S1 × C
3/G with holonomy G2. So, this method

gives not only a way to smooth out the singularities of T 7/Γ as a manifold, but also a
family of torsion-free G2-structures on the resolution which show how to smooth out the
singularities of the G2-structure.

The requirement above that S be divided into connected components of the form (a)
and (b) is in fact unnecessarily restrictive. There is a more complicated and powerful
method, described in [18, §11–§12], for resolving singularities of a more general kind. We
require only that the singularities should locally be of the form R

3 × C
2/G or R × C

3/G,
for a finite subgroup G of SU(2) or SU(3), and when G ⊂ SU(3) we do not require that
G act freely on C

3 \ {0}.
If X is a crepant resolution of C

3/G, where G does not act freely on C
3 \ {0}, then

the author shows [18, §9], [20] that X carries a family of Calabi–Yau metrics satisfying a
complicated asymptotic condition at infinity, called Quasi-ALE metrics. These yield the
local models necessary to resolve singularities locally of the form R×C

3/G with holonomy
G2. Using this method we can resolve many orbifolds T 7/Γ, and prove the existence of
large numbers of compact 7-manifolds with holonomy G2.

3.3. Step 3: Finding G2-structures with small torsion

For each resolution X of C
2/G in case (a), and Y of C

3/G in case (b) above, we can
find a 1-parameter family {ht : t > 0} of metrics with the properties

(a) ht is a Kähler metric on X with Hol(ht) = SU(2). Its injectivity radius satisfies
δ(ht) = O(t), its Riemann curvature satisfies

∥

∥R(ht)
∥

∥

C0
= O(t−2), and ht =

h + O(t4r−4) for large r, where h is the Euclidean metric on C
2/G, and r the

distance from the origin.
(b) ht is Kähler on Y with Hol(ht) = SU(3), where δ(ht) = O(t),

∥

∥R(ht)
∥

∥

C0
=

O(t−2), and ht = h+O(t6r−6) for large r.

In fact we can choose ht to be isometric to t2h1, and then (a), (b) are easy to prove.
Suppose one of the components of the singular set S of T 7/Γ is locally modelled on

T 3 × C
2/G. Then T 3 has a natural flat metric hT 3 . Let X be the crepant resolution of

C
2/G and let {ht : t > 0} satisfy property (a). Then Proposition 2.10 gives a 1-parameter

117



D. Joyce

family of torsion-free G2-structures (ϕ̂t, ĝt) on T 3 ×X with ĝt = hT 3 + ht. Similarly, if
a component of S is modelled on S1 × C

3/G, using Proposition 2.9 we get a family of
torsion-free G2-structures (ϕ̂t, ĝt) on S1 × Y .

The idea is to make a G2-structure (ϕt, gt) on M by gluing together the torsion-free
G2-structures (ϕ̂t, ĝt) on the patches T 3 × X and S1 × Y , and (ϕ0, g0) on T 7/Γ. The
gluing is done using a partition of unity. Naturally, the first derivative of the partition
of unity introduces ‘errors’, so that (ϕt, gt) is not torsion-free. The size of the torsion
∇ϕt depends on the difference ϕ̂t −ϕ0 in the region where the partition of unity changes.
On the patches T 3 ×X, since ht − h = O(t4r−4) and the partition of unity has nonzero
derivative when r = O(1), we find that ∇ϕt = O(t4). Similarly ∇ϕt = O(t6) on the
patches S1 × Y , and so ∇ϕt = O(t4) on M .

For small t, the dominant contributions to the injectivity radius δ(gt) and Riemann
curvature R(gt) are made by those of the metrics ht onX and Y , so we expect δ(gt) = O(t)
and

∥

∥R(gt)
∥

∥

C0
= O(t−2) by properties (a) and (b) above. In this way we prove the

following result [18, Th. 11.5.7], which gives the estimates on (ϕt, gt) that we need.

Theorem 3.3. On the compact 7-manifold M described above, and on many other 7-
manifolds constructed in a similar fashion, one can write down the following data explicitly
in coordinates:

• Positive constants A1, A2, A3 and ǫ,
• A G2-structure (ϕt, gt) on M with dϕt = 0 for each t ∈ (0, ǫ), and
• A 3-form ψt on M with d∗ψt = d∗ϕt for each t ∈ (0, ǫ).

These satisfy three conditions:

(i) ‖ψt‖L2 6 A1t
4, ‖ψt‖C0 6 A1t

3 and ‖d∗ψt‖L14 6 A1t
16/7,

(ii) the injectivity radius δ(gt) satisfies δ(gt) > A2t,
(iii) the Riemann curvature R(gt) of gt satisfies

∥

∥R(gt)
∥

∥

C0
6 A3t

−2.

Here the operator d∗ and the norms ‖ . ‖L2 , ‖ . ‖L14 and ‖ . ‖C0 depend on gt.

Here one should regard ψt as a first integral of the torsion ∇ϕt of (ϕt, gt). Thus the
norms ‖ψt‖L2 , ‖ψt‖C0 and ‖d∗ψt‖L14 are measures of ∇ϕt. So parts (i)–(iii) say that ∇ϕt

is small compared to the injectivity radius and Riemann curvature of (M, gt).

3.4. Step 4: Deforming to a torsion-free G2-structure

We prove the following analysis result.

Theorem 3.4. Let A1, A2, A3 be positive constants. Then there exist positive constants
κ,K such that whenever 0 < t 6 κ, the following is true.

Let M be a compact 7-manifold, and (ϕ, g) a G2-structure on M with dϕ=0. Suppose
ψ is a smooth 3-form on M with d∗ψ = d∗ϕ, and

(i) ‖ψ‖L2 6 A1t
4, ‖ψ‖C0 6 A1t

1/2 and ‖d∗ψ‖L14 6 A1,
(ii) the injectivity radius δ(g) satisfies δ(g) > A2t, and
(iii) the Riemann curvature R(g) satisfies

∥

∥R(g)
∥

∥

C0
6 A3t

−2.
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Then there exists a smooth, torsion-free G2-structure (ϕ̃, g̃) on M with ‖ϕ̃−ϕ‖C0 6Kt1/2.

Basically, this result says that if (ϕ, g) is a G2-structure on M , and the torsion ∇ϕ
is sufficiently small, then we can deform (ϕ, g) to a nearby G2-structure (ϕ̃, g̃) that is
torsion-free. Here is a sketch of the proof of Theorem 3.4, ignoring several technical
points. The detailed proof is given in [18, §11.6–§11.8], which is an improved version of
the proof in [14].

We have a 3-form ϕ with dϕ = 0 and d∗ϕ = d∗ψ for small ψ, and we wish to construct
a nearby 3-form ϕ̃ with dϕ̃ = 0 and d̃∗ϕ̃ = 0. Set ϕ̃ = ϕ+ dη, where η is a small 2-form.
Then η must satisfy a nonlinear p.d.e., which we write as

d∗dη = −d∗ψ + d∗F (dη), (9)

where F is nonlinear, satisfying F (dη) = O
(

|dη|2
)

.
We solve (9) by iteration, introducing a sequence {ηj}

∞

j=0 with η0 = 0, satisfying the
inductive equations

d∗dηj+1 = −d∗ψ + d∗F (dηj), d∗ηj+1 = 0. (10)

If such a sequence exists and converges to η, then taking the limit in (10) shows that η
satisfies (9), giving us the solution we want.

The key to proving this is an inductive estimate on the sequence {ηj}
∞

j=0. The inductive
estimate we use has three ingredients, the equations

‖dηj+1‖L2 6 ‖ψ‖L2 + C1‖dηj‖L2‖dηj‖C0 , (11)

‖∇dηj+1‖L14 6 C2

(

‖d∗ψ‖L14 + ‖∇dηj‖L14‖dηj‖C0 + t−4‖dηj+1‖L2

)

, (12)

‖dηj‖C0 6 C3

(

t1/2‖∇dηj‖L14 + t−7/2‖dηj‖L2

)

. (13)

Here C1, C2, C3 are positive constants independent of t. Equation (11) is obtained from
(10) by taking the L2-inner product with ηj+1 and integrating by parts. Using the fact

that d∗ϕ = d∗ψ and ‖ψ‖L2 = O(t4), |ψ| = O(t1/2) we get a powerful estimate of the
L2-norm of dηj+1.

Equation (12) is derived from an elliptic regularity estimate for the operator d + d∗

acting on 3-forms on M . Equation (13) follows from the Sobolev embedding theorem, since
L14

1 (M) →֒ C0(M). Both (12) and (13) are proved on small balls of radius O(t) in M ,
using parts (ii) and (iii) of Theorem 3.3, and this is where the powers of t come from.

Using (11)-(13) and part (i) of Theorem 3.3 we show that if

‖dηj‖L2 6 C4t
4, ‖∇dηj‖L14 6 C5, and ‖dηj‖C0 6 Kt1/2, (14)

where C4, C5 and K are positive constants depending on C1, C2, C3 and A1, and if t
is sufficiently small, then the same inequalities (14) apply to dηj+1. Since η0 = 0, by
induction (14) applies for all j and the sequence {dηj}

∞

j=0 is bounded in the Banach

space L14
1 (Λ3T ∗M). One can then use standard techniques in analysis to prove that this

sequence converges to a smooth limit dη. This concludes the proof of Theorem 3.4.
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Figure 1. Betti numbers (b2, b3) of compact G2-manifolds
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¿From Theorems 3.3 and 3.4 we see that the compact 7-manifold M constructed in
Step 2 admits torsion-free G2-structures (ϕ̃, g̃). Theorem 2.5 then shows that Hol(g̃) = G2

if and only if π1(M) is finite. In the example above M is simply-connected, and so
π1(M) = {1} and M has metrics with holonomy G2, as we want.

By considering different groups Γ acting on T 7, and also by finding topologically dis-
tinct resolutions M1, . . . ,Mk of the same orbifold T 7/Γ, we can construct many compact
Riemannian 7-manifolds with holonomy G2. A good number of examples are given in [18,
§12]. Figure 1 displays the Betti numbers of compact, simply-connected 7-manifolds with
holonomy G2 constructed there. There are 252 different sets of Betti numbers.

Examples are also known [18, §12.4] of compact 7-manifolds with holonomy G2 with
finite, nontrivial fundamental group. It seems likely to the author that the Betti numbers
given in Figure 1 are only a small proportion of the Betti numbers of all compact, simply-
connected 7-manifolds with holonomy G2.

3.5. Other constructions of compact G2-manifolds

Here are two other methods, taken from [18, §11.9], of constructing compact 7-manifolds
with holonomy G2. The first was outlined by the author in [15, §4.3].

Method 1. Let (Y, J, h) be a Calabi–Yau 3-fold, with Kähler form ω and holomorphic
volume form θ. Suppose σ : Y → Y is an involution, satisfying σ∗(h) = h, σ∗(J) = −J
and σ∗(θ) = θ̄. We call σ a real structure on Y . Let N be the fixed point set of σ in
Y . Then N is a real 3-dimensional submanifold of Y , and is in fact a special Lagrangian
3-fold.

Let S1 = R/Z, and define a torsion-free G2-structure (ϕ, g) on S1×Y as in Proposition
2.9. Then ϕ = dx∧ω+Re θ, where x ∈ R/Z is the coordinate on S1. Define σ̂ : S1×Y →
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S1 × Y by σ̂
(

(x, y)
)

=
(

−x, σ(y)
)

. Then σ̂ preserves (ϕ, g) and σ̂2 = 1. The fixed points

of σ̂ in S1 × Y are {Z, 1
2 + Z} ×N . Thus (S1 × Y )/〈σ̂〉 is an orbifold. Its singular set is

2 copies of N , and each singular point is modelled on R
3 × R

4/{±1}.
We aim to resolve (S1 × Y )/〈σ̂〉 to get a compact 7-manifold M with holonomy G2.

Locally, each singular point should be resolved like R
3 ×X, where X is an ALE Calabi–

Yau 2-fold asymptotic to C
2/{±1}. There is a 3-dimensional family of such X, and we

need to choose one member of this family for each singular point in the singular set.
Calculations by the author indicate that the data needed to do this is a closed, coclosed

1-form α on N that is nonzero at every point of N . The existence of a suitable 1-form α
depends on the metric on N , which is the restriction of the metric g on Y . But g comes
from the solution of the Calabi Conjecture, so we know little about it. This may make
the method difficult to apply in practice.

The second method has been successfully applied by Kovalev [22], and is based on an
idea due to Simon Donaldson.

Method 2. Let X be a projective complex 3-fold with canonical bundle KX , and s a
holomorphic section of K−1

X which vanishes to order 1 on a smooth divisor D in X. Then
D has trivial canonical bundle, so D is T 4 or K3. Suppose D is a K3 surface. Define
Y = X \D, and suppose Y is simply-connected.

Then Y is a noncompact complex 3-fold with KY trivial, and one infinite end modelled
on D×S1× [0,∞). Using a version of the proof of the Calabi Conjecture for noncompact
manifolds one constructs a complete Calabi–Yau metric h on Y , which is asymptotic to
the product on D × S1 × [0,∞) of a Calabi–Yau metric on D, and Euclidean metrics on
S1 and [0,∞). We call such metrics Asymptotically Cylindrical.

Suppose we have such a metric on Y . Define a torsion-free G2-structure (ϕ, g) on
S1 × Y as in Proposition 2.9. Then S1 × Y is a noncompact G2-manifold with one end
modelled on D×T 2×[0,∞), whose metric is asymptotic to the product on D×T 2×[0,∞)
of a Calabi–Yau metric on D, and Euclidean metrics on T 2 and [0,∞).

Donaldson and Kovalev’s idea is to take two such products S1 ×Y1 and S1 ×Y2 whose
infinite ends are isomorphic in a suitable way, and glue them together to get a compact
7-manifold M with holonomy G2. The gluing process swaps round the S1 factors. That is,
the S1 factor in S1×Y1 is identified with the asymptotic S1 factor in Y2 ∼ D2×S1×[0,∞),
and vice versa.

4. Compact Spin(7)-manifolds from Calabi–Yau 4-orbifolds

In a very similar way to theG2 case, one can construct examples of compact 8-manifolds
with holonomy Spin(7) by resolving the singularities of torus orbifolds T 8/Γ. This is
done in [16] and [18, §13–§14]. In [18, §14], examples are constructed which realize 181
different sets of Betti numbers. Two compact 8-manifolds with holonomy Spin(7) and
the same Betti numbers may be distinguished by the cup products on their cohomologies
(examples of this are given in [16, §3.4]), so they probably represent rather more than
181 topologically distinct 8-manifolds.
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The main differences with the G2 case are, firstly, that the technical details of the
analysis are different and harder, and secondly, that the singularities that arise are typi-
cally more complicated and more tricky to resolve. One reason for this is that in the G2

case the singular set is made up of 1 and 3-dimensional pieces in a 7-dimensional space, so
one can often arrange for the pieces to avoid each other, and resolve them independently.

But in the Spin(7) case the singular set is typically made up of 4-dimensional pieces
in an 8-dimensional space, so they nearly always intersect. There are also topological
constraints arising from the Â-genus, which do not apply in the G2 case. The moral
appears to be that when you increase the dimension, things become more difficult.

Anyway, we will not discuss this further, as the principles are very similar to the
G2 case above. Instead, we will discuss an entirely different construction of compact 8-
manifolds with holonomy Spin(7) developed by the author in [17] and [18, §15], a little
like Method 1 of §3.5. In this we start from a Calabi–Yau 4-orbifold rather than from T 8.
The construction can be divided into five steps.

Step 1. Find a compact, complex 4-orbifold (Y, J) satisfying the conditions:
(a) Y has only finitely many singular points p1, . . . , pk, for k > 1.
(b) Y is modelled on C

4/〈i〉 near each pj , where i acts on C
4 by complex

multiplication.
(c) There exists an antiholomorphic involution σ : Y → Y whose fixed point

set is {p1, . . . , pk}.
(d) Y \ {p1, . . . , pk} is simply-connected, and h2,0(Y ) = 0.

Step 2. Choose a σ-invariant Kähler class on Y . Then by Theorem 2.8 there exists a
unique σ-invariant Ricci-flat Kähler metric g in this Kähler class. Let ω be
the Kähler form of g. Let θ be a holomorphic volume form for (Y, J, g). By
multiplying θ by eiφ if necessary, we can arrange that σ∗(θ) = θ̄.

Define Ω = 1
2ω ∧ ω + Re θ. Then, by Proposition 2.11, (Ω, g) is a torsion-

free Spin(7)-structure on Y . Also, (Ω, g) is σ-invariant, as σ∗(ω) = −ω and
σ∗(θ) = θ̄. Define Z = Y/〈σ〉. Then Z is a compact real 8-orbifold with isolated
singular points p1, . . . , pk, and (Ω, g) pushes down to a torsion-free Spin(7)-
structure (Ω, g) on Z.

Step 3. Z is modelled on R
8/G near each pj , where G is a certain finite subgroup of

Spin(7) with |G| = 8. We can write down two explicit, topologically distinct
ALE Spin(7)-manifolds X1,X2 asymptotic to R

8/G. Each carries a 1-parameter
family of homothetic ALE metrics ht for t > 0 with Hol(ht) = Z2 ⋉ SU(4) ⊂
Spin(7).

For j = 1, . . . , k we choose ij = 1 or 2, and resolve the singularities of Z
by gluing in Xij

at the singular point pj for j = 1, . . . , k, to get a compact,
nonsingular 8-manifold M , with projection π : M → Z.

Step 4. On M , we explicitly write down a 1-parameter family of Spin(7)-structures
(Ωt, gt) depending on t ∈ (0, ǫ). They are not torsion-free, but have small tor-
sion when t is small. As t → 0, the Spin(7)-structure (Ωt, gt) converges to the
singular Spin(7)-structure π∗(Ω0, g0).
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Step 5. We prove using analysis that for sufficiently small t, the Spin(7)-structure (Ωt, gt)

on M , with small torsion, can be deformed to a Spin(7)-structure (Ω̃t, g̃t), with
zero torsion.

It turns out that if ij = 1 for j = 1, . . . , k we have π1(M) ∼= Z2 and Hol(g̃t) =
Z2 ⋉ SU(4), and for the other 2k − 1 choices of i1, . . . , ik we have π1(M) = {1}
and Hol(g̃t) = Spin(7). So g̃t is a metric with holonomy Spin(7) on the compact
8-manifold M for (i1, . . . , ik) 6= (1, . . . , 1).

Once we have completed Step 1, Step 2 is immediate. Steps 4 and 5 are analogous to
Steps 3 and 4 of §3, and can be done using the techniques and analytic results developed
by the author for the first T 8/Γ construction of compact Spin(7)-manifolds, [16], [18, §13].
So the really new material is in Steps 1 and 3, and we will discuss only these.

4.1. Step 1: An example

We do Step 1 using complex algebraic geometry. The problem is that conditions (a)–(d)
above are very restrictive, so it is not that easy to find any Y satisfying all four conditions.
All the examples Y the author has found are constructed using weighted projective spaces,
an important class of complex orbifolds.

Definition 4.1. Letm > 1 be an integer, and a0, a1, . . . , am positive integers with highest
common factor 1. Let C

m+1 have complex coordinates (z0, . . . , zm), and define an action
of the complex Lie group C

∗ on C
m+1 by

(z0, . . . , zm)
u

7−→(ua0z0, . . . , u
amzm), for u ∈ C

∗.

The weighted projective space CP
m
a0,...,am

is
(

C
m+1\{0}

)

/C∗. The C
∗-orbit of (z0, . . . , zm)

is written [z0, . . . , zm].

Here is the simplest example the author knows.

Example 4.2. Let Y be the hypersurface of degree 12 in CP
5
1,1,1,1,4,4 given by

Y =
{

[z0, . . . , z5] ∈ CP
5
1,1,1,1,4,4 : z12

0 + z12
1 + z12

2 + z12
3 + z3

4 + z3
5 = 0

}

.

Calculation shows that Y has trivial canonical bundle and three singular points p1 =
[0, 0, 0, 0, 1,−1], p2 =[0, 0, 0, 0, 1, eπi/3] and p3 =[0, 0, 0, 0, 1, e−πi/3], modelled on C

4/〈i〉.
Now define a map σ : Y → Y by

σ : [z0, . . . , z5] 7−→ [z̄1,−z̄0, z̄3,−z̄2, z̄5, z̄4].

Note that σ2 = 1, though this is not immediately obvious, because of the geometry of
CP

5
1,1,1,1,4,4. It can be shown that conditions (a)–(d) of Step 1 above hold for Y and σ.

More suitable 4-folds Y may be found by taking hypersurfaces or complete intersections
in other weighted projective spaces, possibly also dividing by a finite group, and then doing
a crepant resolution to get rid of any singularities that we don’t want. Examples are given
in [17], [18, §15].
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4.2. Step 3: Resolving R
8/G

Define α, β : R
8 → R

8 by

α : (x1, . . . , x8) 7→ (−x2, x1,−x4, x3,−x6, x5,−x8, x7),

β : (x1, . . . , x8) 7→ (x3,−x4,−x1, x2, x7,−x8,−x5, x6).

Then α, β preserve Ω0 given in (2), so they lie in Spin(7). Also α4 = β4 = 1, α2 = β2 and
αβ = βα3. Let G = 〈α, β〉. Then G is a finite nonabelian subgroup of Spin(7) of order
8, which acts freely on R

8 \ {0}. One can show that if Z is the compact Spin(7)-orbifold
constructed in Step 2 above, then Tpj

Z is isomorphic to R
8/G for j = 1, . . . , k, with an

isomorphism identifying the Spin(7)-structures (Ω, g) on Z and (Ω0, g0) on R
8/G, such

that β corresponds to the σ-action on Y .
In the next two examples we shall construct two different ALE Spin(7)-manifolds

(X1,Ω1, g1) and (X2,Ω2, g2) asymptotic to R
8/G.

Example 4.3. Define complex coordinates (z1, . . . , z4) on R
8 by

(z1, z2, z3, z4) = (x1 + ix2, x3 + ix4, x5 + ix6, x7 + ix8),

Then g0 = |dz1|
2 + · · · + |dz4|

2, and Ω0 = 1
2ω0 ∧ ω0 + Re(θ0), where ω0 and θ0 are the

usual Kähler form and complex volume form on C
4. In these coordinates, α and β are

given by

α : (z1, . . . , z4) 7→ (iz1, iz2, iz3, iz4),

β : (z1, . . . , z4) 7→ (z̄2,−z̄1, z̄4,−z̄3).
(15)

Now C
4/〈α〉 is a complex singularity, as α ∈ SU(4). Let (Y1, π1) be the blow-up of

C
4/〈α〉 at 0. Then Y1 is the unique crepant resolution of C

4/〈α〉. The action of β on
C

4/〈α〉 lifts to a free antiholomorphic map β : Y1 → Y1 with β2 = 1. Define X1 = Y1/〈β〉.
Then X1 is a nonsingular 8-manifold, and the projection π1 : Y1 → C

4/〈α〉 pushes down
to π1 : X1 → R

8/G.
There exist ALE Calabi–Yau metrics g1 on Y1, which were written down explicitly by

Calabi [9, p. 285], and are invariant under the action of β on Y1. Let ω1 be the Kähler form
of g1, and θ1 = π∗

1(θ0) the holomorphic volume form on Y1. Define Ω1 = 1
2ω1∧ω1+Re(θ1).

Then (Ω1, g1) is a torsion-free Spin(7)-structure on Y1, as in Proposition 2.11.
As β∗(ω1) = −ω1 and β∗(θ1) = θ̄1, we see that β preserves (Ω1, g1). Thus (Ω1, g1)

pushes down to a torsion-free Spin(7)-structure (Ω1, g1) on X1. Then (X1,Ω1, g1) is an
ALE Spin(7)-manifold asymptotic to R

8/G.

Example 4.4. Define new complex coordinates (w1, . . . , w4) on R
8 by

(w1, w2, w3, w4) = (−x1 + ix3, x2 + ix4,−x5 + ix7, x6 + ix8).

Again we find that g0 = |dw1|
2 + · · · + |dw4|

2 and Ω0 = 1
2ω0 ∧ ω0 + Re(θ0). In these

coordinates, α and β are given by

α : (w1, . . . , w4) 7→ (w̄2,−w̄1, w̄4,−w̄3),

β : (w1, . . . , w4) 7→ (iw1, iw2, iw3, iw4).
(16)
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Observe that (15) and (16) are the same, except that the rôles of α, β are reversed.
Therefore we can use the ideas of Example 4.3 again.

Let Y2 be the crepant resolution of C
4/〈β〉. The action of α on C

4/〈β〉 lifts to a free
antiholomorphic involution of Y2. Let X2 = Y2/〈α〉. Then X2 is nonsingular, and carries a
torsion-free Spin(7)-structure (Ω2, g2), making (X2,Ω2, g2) into an ALE Spin(7)-manifold
asymptotic to R

8/G.

We can now explain the remarks on holonomy groups at the end of Step 5. The
holonomy groups Hol(gi) of the metrics g1, g2 in Examples 4.3 and 4.4 are both isomorphic
to Z2 ⋉ SU(4), a subgroup of Spin(7). However, they are two different inclusions of
Z2 ⋉SU(4) in Spin(7), as in the first case the complex structure is α and in the second β.

The Spin(7)-structure (Ω, g) on Z also has holonomy Hol(g) = Z2 ⋉ SU(4). Under
the natural identifications we have Hol(g1) = Hol(g) but Hol(g2) 6= Hol(g) as subgroups
of Spin(7). Therefore, if we choose ij = 1 for all j = 1, . . . , k, then Z and Xij

all
have the same holonomy group Z2 ⋉ SU(4), so they combine to give metrics g̃t on M
with Hol(g̃t) = Z2 ⋉ SU(4).

However, if ij = 2 for some j then the holonomy of g on Z and gij
on Xij

are different
Z2 ⋉SU(4) subgroups of Spin(7), which together generate the whole group Spin(7). Thus
they combine to give metrics g̃t on M with Hol(g̃t) = Spin(7).

4.3. Conclusions

The author was able in [17] and [18, Ch. 15] to construct compact 8-manifolds with
holonomy Spin(7) realizing 14 distinct sets of Betti numbers, which are given in Table 1.
Probably there are many other examples which can be produced by similar methods.

Table 1. Betti numbers (b2, b3, b4) of compact Spin(7)-manifolds

(4, 33, 200) (3, 33, 202) (2, 33, 204) (1, 33, 206) (0, 33, 208)
(1, 0, 908) (0, 0, 910) (1, 0, 1292) (0, 0, 1294) (1, 0, 2444)
(0, 0, 2446) (0, 6, 3730) (0, 0, 4750) (0, 0, 11 662)

Comparing these Betti numbers with those of the compact 8-manifolds constructed in
[18, Ch. 14] by resolving torus orbifolds T 8/Γ, we see that these examples the middle
Betti number b4 is much bigger, as much as 11 662 in one case.

Given that the two constructions of compact 8-manifolds with holonomy Spin(7) that
we know appear to produce sets of 8-manifolds with rather different ‘geography’, it is
tempting to speculate that the set of all compact 8-manifolds with holonomy Spin(7)
may be rather large, and that those constructed so far are a small sample with atypical
behaviour.
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Part II. Calibrated Geometry

5. Introduction to calibrated geometry

Calibrated geometry was introduced in the seminal paper of Harvey and Lawson [12].
We introduce the basic ideas in §5.1–§5.2, and then discuss the G2 calibrations in more
detail in §5.3–§5.5, and the Spin(7) calibration in §5.6.

5.1. Calibrations and calibrated submanifolds

We begin by defining calibrations and calibrated submanifolds, following Harvey and
Lawson [12].

Definition 5.1. Let (M, g) be a Riemannian manifold. An oriented tangent k-plane V
on M is a vector subspace V of some tangent space TxM to M with dimV = k, equipped
with an orientation. If V is an oriented tangent k-plane on M then g|V is a Euclidean
metric on V , so combining g|V with the orientation on V gives a natural volume form
volV on V , which is a k-form on V .

Now let ϕ be a closed k-form on M . We say that ϕ is a calibration on M if for every
oriented k-plane V on M we have ϕ|V 6 volV . Here ϕ|V = α · volV for some α ∈ R, and
ϕ|V 6 volV if α 6 1. Let N be an oriented submanifold of M with dimension k. Then
each tangent space TxN for x ∈ N is an oriented tangent k-plane. We say that N is a
calibrated submanifold if ϕ|TxN = volTxN for all x ∈ N .

It is easy to show that calibrated submanifolds are automatically minimal subman-
ifolds [12, Th. II.4.2]. We prove this in the compact case, but noncompact calibrated
submanifolds are locally volume-minimizing as well.

Proposition 5.2. Let (M, g) be a Riemannian manifold, ϕ a calibration on M , and N
a compact ϕ-submanifold in M . Then N is volume-minimizing in its homology class.

Proof. Let dimN = k, and let [N ] ∈ Hk(M,R) and [ϕ] ∈ Hk(M,R) be the homology and
cohomology classes of N and ϕ. Then

[ϕ] · [N ] =

∫

x∈N

ϕ
∣

∣

TxN
=

∫

x∈N

volTxN = Vol(N),

since ϕ|TxN = volTxN for each x ∈ N , as N is a calibrated submanifold. If N ′ is any
other compact k-submanifold of M with [N ′] = [N ] in Hk(M,R), then

[ϕ] · [N ] = [ϕ] · [N ′] =

∫

x∈N ′

ϕ
∣

∣

TxN ′
6

∫

x∈N ′

volTxN ′ = Vol(N ′),

since ϕ|TxN ′ 6 volTxN ′ because ϕ is a calibration. The last two equations give Vol(N) 6

Vol(N ′). Thus N is volume-minimizing in its homology class. �

Now let (M, g) be a Riemannian manifold with a calibration ϕ, and let ι : N → M
be an immersed submanifold. Whether N is a ϕ-submanifold depends upon the tangent
spaces of N . That is, it depends on ι and its first derivative. So, to be calibrated with
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respect to ϕ is a first-order partial differential equation on ι. But if N is calibrated then
N is minimal, and to be minimal is a second-order partial differential equation on ι.

One moral is that the calibrated equations, being first-order, are often easier to solve
than the minimal submanifold equations, which are second-order. So calibrated geometry
is a fertile source of examples of minimal submanifolds.

5.2. Calibrated submanifolds and special holonomy

Next we explain the connection with Riemannian holonomy. Let G ⊂ O(n) be a
possible holonomy group of a Riemannian metric. In particular, we can take G to be one
of the holonomy groups U(m), SU(m), Sp(m), G2 or Spin(7) from Berger’s classification.
Then G acts on the k-forms Λk(Rn)∗ on R

n, so we can look for G-invariant k-forms on R
n.

Suppose ϕ0 is a nonzero, G-invariant k-form on R
n. By rescaling ϕ0 we can arrange

that for each oriented k-plane U ⊂ R
n we have ϕ0|U 6 volU , and that ϕ0|U = volU for at

least one such U . Then ϕ0|γ·U = volγ·U by G-invariance, so γ · U is a calibrated k-plane
for all γ ∈ G. Thus the family of ϕ0-calibrated k-planes in R

n is reasonably large, and it
is likely the calibrated submanifolds will have an interesting geometry.

Now let M be a manifold of dimension n, and g a metric on M with Levi-Civita
connection ∇ and holonomy group G. Then by Theorem 2.2 there is a k-form ϕ on M
with ∇ϕ = 0, corresponding to ϕ0. Hence dϕ = 0, and ϕ is closed. Also, the condition
ϕ0|U 6 volU for all oriented k-planes U in R

n implies that ϕ|V 6 volV for all oriented
tangent k-planes V in M . Thus ϕ is a calibration on M .

This gives us a general method for finding interesting calibrations on manifolds with
reduced holonomy. Here are the most significant examples of this.

• Let G = U(m) ⊂ O(2m). Then G preserves a 2-form ω0 on R
2m. If g is a metric

on M with holonomy U(m) then g is Kähler with complex structure J , and the
2-form ω on M associated to ω0 is the Kähler form of g.

One can show that ω is a calibration on (M, g), and the calibrated subman-
ifolds are exactly the holomorphic curves in (M,J). More generally ωk/k! is a
calibration on M for 1 6 k 6 m, and the corresponding calibrated submanifolds
are the complex k-dimensional submanifolds of (M,J).

• Let G = SU(m) ⊂ O(2m). Then G preserves a complex volume form Ω0 =
dz1∧· · ·∧dzm on C

m. Thus a Calabi–Yau m-fold (M, g) with Hol(g) = SU(m) has
a holomorphic volume form Ω. The real part ReΩ is a calibration on M , and the
corresponding calibrated submanifolds are called special Lagrangian submanifolds.

• The group G2 ⊂ O(7) preserves a 3-form ϕ0 and a 4-form ∗ϕ0 on R
7. Thus a

Riemannian 7-manifold (M, g) with holonomy G2 comes with a 3-form ϕ and 4-
form ∗ϕ, which are both calibrations. The corresponding calibrated submanifolds
are called associative 3-folds and coassociative 4-folds.

• The group Spin(7) ⊂ O(8) preserves a 4-form Ω0 on R
8. Thus a Riemannian

8-manifold (M, g) with holonomy Spin(7) has a 4-form Ω, which is a calibration.
We call Ω-submanifolds Cayley 4-folds.
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It is an important general principle that to each calibration ϕ on an n-manifold (M, g)
with special holonomy we construct in this way, there corresponds a constant calibration
ϕ0 on R

n. Locally, ϕ-submanifolds in M will look very like ϕ0-submanifolds in R
n, and

have many of the same properties. Thus, to understand the calibrated submanifolds
in a manifold with special holonomy, it is often a good idea to start by studying the
corresponding calibrated submanifolds of R

n.
In particular, singularities of ϕ-submanifolds in M will be locally modelled on singular-

ities of ϕ0-submanifolds in R
n. (In the sense of Geometric Measure Theory, the tangent

cone at a singular point of a ϕ-submanifold in M is a conical ϕ0-submanifold in R
n.) So

by studying singular ϕ0-submanifolds in R
n, we may understand the singular behaviour

of ϕ-submanifolds in M .

5.3. Associative and coassociative submanifolds

We now discuss the calibrated submanifolds of G2-manifolds.

Definition 5.3. Let (M,ϕ, g) be a G2-manifold, as in §2.2. Then the 3-form ϕ is a
calibration on (M, g). We define an associative 3-fold in M to be a 3-submanifold of M
calibrated with respect to ϕ. Similarly, the Hodge star ∗ϕ of ϕ is a calibration 4-form on
(M, g). We define a coassociative 4-fold in M to be a 4-submanifold of M calibrated with
respect to ∗ϕ.

To understand these, it helps to begin with some calculations on R
7. Let the metric

g0, 3-form ϕ0 and 4-form ∗ϕ0 on R
7 be as in §2.2. Define an associative 3-plane to be an

oriented 3-dimensional vector subspace V of R
7 with ϕ0|V = volV , and a coassociative

4-plane to be an oriented 4-dimensional vector subspace V of R
7 with ∗ϕ0|V = volV .

¿From [12, Th. IV.1.8, Def. IV.1.15] we have:

Proposition 5.4. The family F3 of associative 3-planes in R
7 and the family F4 of

coassociative 4-planes in R
7 are both isomorphic to G2/SO(4), with dimension 8.

Examples of an associative 3-plane U and a coassociative 4-plane V are

U =
{

(x1, x2, x3, 0, 0, 0, 0) : xj ∈ R
}

and V =
{

(0, 0, 0, x4, x5, x6, x7) : xj ∈ R
}

. (17)

As G2 acts transitively on the set of associative 3-planes by Proposition 5.4, every asso-
ciative 3-plane is of the form γ ·U for γ ∈ G2. Similarly, every coassociative 4-plane is of
the form γ · V for γ ∈ G2.

Now ϕ0|V ≡ 0. As ϕ0 is G2-invariant, this gives ϕ0|γ·V ≡ 0 for all γ ∈ G2, so ϕ0

restricts to zero on all coassociative 4-planes. In fact the converse is true: if W is a
4-plane in R

7 with ϕ0|W ≡ 0, then W is coassociative with some orientation. From this
we deduce an alternative characterization of coassociative 4-folds:

Proposition 5.5. Let (M,ϕ, g) be a G2-manifold, and L a 4-dimensional submanifold
of M . Then L admits an orientation making it into a coassociative 4-fold if and only
if ϕ|L ≡ 0.
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Trivially, ϕ|L ≡ 0 implies that [ϕ|L] = 0 in H3(L,R). Regard L as an immersed 4-
submanifold, with immersion ι : L → M . Then [ϕ|L] ∈ H3(L,R) is unchanged under
continuous variations of the immersion ι. Thus, [ϕ|L] = 0 is a necessary condition not
just for L to be coassociative, but also for any isotopic 4-fold N in M to be coassociative.
This gives a topological restriction on coassociative 4-folds.

Corollary 5.6. Let (ϕ, g) be a torsion-free G2-structure on a 7-manifold M , and L a real
4-submanifold in M . Then a necessary condition for L to be isotopic to a coassociative
4-fold N in M is that [ϕ|L] = 0 in H3(L,R).

5.4. Examples of associative 3-submanifolds

Here are some sources of examples of associative 3-folds in R
7:

• Write R
7 = R⊕C

3. Then R×Σ is an associative 3-fold in R
7 for any holomorphic

curve Σ in C
3. Also, if L is any special Lagrangian 3-fold in C

3 and x ∈ R then
{x}×L is associative 3-fold in R

7. For examples of special Lagrangian 3-folds see
[11, §9], and references therein.

• Bryant [5, §4] studies compact Riemann surfaces Σ in S6 which are (pseudo)-
holomorphic with respect to the almost complex structure J on S6 induced by
its inclusion in Im O ∼= R

7. Then the cone on Σ is an associative cone on R
7. He

shows that any Σ has a torsion τ , a holomorphic analogue of the Serret–Frenet
torsion of real curves in R

3.
The torsion τ is a section of a holomorphic line bundle on Σ, and τ = 0 if

Σ ∼= CP
1. If τ = 0 then Σ is the projection to S6 = G2/SU(3) of a holomorphic

curve Σ̃ in the projective complex manifold G2/U(2). This reduces the problem of
understanding null torsion associative cones in R

7 to that of finding holomorphic
curves Σ̃ in G2/ U (2) satisfing a horizontality condition, which is a problem in
complex algebraic geometry. In integrable systems language, null torsion curves
are called superminimal.

Bryant also shows that every Riemann surface Σ may be embedded in S6

with null torsion in infinitely many ways, of arbitrarily high degree. This shows
that there are many associative cones in R

7, on oriented surfaces of every genus.
These provide many local models for singularities of associative 3-folds.

Perhaps the simplest nontrivial example of a pseudoholomorphic curve Σ in
S6 with null torsion is the Bor̊uvka sphere [4], which is an S2 orbit of an SO(3)
subgroup of G2 acting irreducibly on R

7. Other examples are given by Ejiri
[10, §5–§6], who classifies pseudoholomorphic S2’s in S6 invariant under a U(1)
subgroup of G2, and Sekigawa [30].

• Bryant’s paper is one of the first steps in the study of associative cones in R
7

using the theory of integrable systems. Bolton et al. [2], [3, §6] use integrable
systems methods to prove important results on pseudoholomorphic curves Σ in
S6. When Σ is a torus T 2, they show it is of finite type [3, Cor. 6.4], and so
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can be classified in terms of algebro-geometric spectral data, and perhaps even in
principle be written down explicitly.

• Curvature properties of pseudoholomorphic curves in S6 are studied by Hashimoto
[13] and Sekigawa [30].

• Lotay [25] studies constructions for associative 3-folds N in R
7. These generally

involve writing N as the total space of a 1-parameter family of surfaces Pt in R
7

of a prescribed form, and reducing the condition for N to be associative to an
o.d.e. in t, which can be (partially) solved fairly explicitly.

Lotay also considers ruled associative 3-folds [25, §6], which are associative
3-folds N in R

7 fibred by a 2-parameter family of affine straight lines R. He
shows that any associative cone N0 on a Riemann surface Σ in S6 is the limit
of a 6-dimensional family of Asymptotically Conical ruled associative 3-folds if
Σ ∼= CP

1, and of a 2-dimensional family if Σ ∼= T 2.
Combined with the results of Bryant [5, §4] above, this yields many exam-

ples of generically nonsingular Asymptotically Conical associative 3-folds in R
7,

diffeomorphic to S2 × R or T 2 × R.

Examples of associative 3-folds in other explicit G2-manifolds, such as those of Bryant
and Salamon [8], may also be constructed using similar techniques. For finding associative
3-folds in nonexplicit G2-manifolds, such as the compact examples of §3 which are known
only through existence theorems, there is one method [18, §12.6], which we now explain.

Suppose γ ∈ G2 with γ2 = 1 but γ 6= 1. Then γ is conjugate in G2 to

(x1, . . . , x7) 7−→ (x1, x2, x3,−x4,−x5,−x6,−x7).

The fixed point set of this involution is the associative 3-plane U of (17). It follows that
any γ ∈ G2 with γ2 = 1 but γ 6= 1 has fixed point set an associative 3-plane. Thus we
deduce [18, Prop. 10.8.1]:

Proposition 5.7. Let (M,ϕ, g) be a G2-manifold, and σ : M → M be a nontrivial
isometric involution with σ∗(ϕ) = ϕ. Then N =

{

p ∈ M : σ(p) = p
}

is an associative
3-fold in M .

Here a nontrivial isometric involution of (M, g) is a diffeomorphism σ : M → M such
that σ∗(g) = g, and σ 6= id but σ2 = id, where id is the identity on M . Following
[18, Ex. 12.6.1], we can use the proposition to construct examples of compact associative
3-folds in the compact 7-manifolds with holonomy G2 constructed in §3.

Example 5.8. Let T 7 = R
7/Z7 and Γ be as in Example 3.1. Define σ : T 7 → T 7 by

σ : (x1, . . . , x7) 7→ (x1, x2, x3,
1
2 − x4,−x5,−x6,−x7).

Then σ preserves (ϕ0, g0) and commutes with Γ, and so its action pushes down to T 7/Γ.
The fixed points of σ on T 7 are 16 copies of T 3, and σδ has no fixed points in T 7 for all
δ 6= 1 in Γ. Thus the fixed points of σ in T 7/Γ are the image of the 16 T 3 fixed by σ
in T 7.
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Calculation shows that these 16 T 3 do not intersect the fixed points of α, β or γ, and
that Γ acts freely on the set of 16 T 3 fixed by σ. So the image of the 16 T 3 in T 7 is 2
T 3 in T 7/Γ, which do not intersect the singular set of T 7/Γ, and which are associative
3-folds in T 7/Γ by Proposition 5.7.

Now the resolution of T 7/Γ to get a compact G2-manifold (M, ϕ̃, g̃) with Hol(g̃) = G2

described in §3 may be done in a σ-equivariant way, so that σ lifts to σ : M → M with
σ∗(ϕ̃) = ϕ̃. The fixed points of σ in M are again 2 copies of T 3, which are associative
3-folds by Proposition 5.7.

5.5. Examples of coassociative 4-submanifolds

Here are some sources of examples of coassociative 4-folds in R
7:

• Write R
7 = R ⊕ C

3. Then {x} × S is a coassociative 4-fold in R
7 for any holo-

morphic surface S in C
3 and x ∈ R. Also, R × L is a coassociative 4-fold in R

7

for any special Lagrangian 3-fold L in C
3 with phase i. For examples of special

Lagrangian 3-folds see [11, §9], and references therein.
• Harvey and Lawson [12, §IV.3] give examples of coassociative 4-folds in R

7 invari-
ant under SU(2), acting on R

7 ∼= R
3 ⊕C

2 as SO(3) = SU(2)/{±1} on the R
3 and

SU(2) on the C
2 factor. Such 4-folds correspond to solutions of an o.d.e., which

Harvey and Lawson solve.
• Mashimo [27] classifies coassociative cones N in R

7 with N ∩ S6 homogeneous
under a 3-dimensional simple subgroup H of G2.

• Lotay [26] studies 2-ruled coassociative 4-folds in R
7, that is, coassociative 4-folds

N which are fibred by a 2-dimensional family of affine 2-planes R
2 in R

7, with
base space a Riemann surface Σ. He shows that such 4-folds arise locally from
data φ1, φ2 : Σ → S6 and ψ : Σ → R

7 satisfying nonlinear p.d.e.s similar to the
Cauchy–Riemann equations.

For φ1, φ2 fixed, the remaining equations on ψ are linear. This means that
the family of 2-ruled associative 4-folds N in R

7 asymptotic to a fixed 2-ruled
coassociative cone N0 has the structure of a vector space. It can be used to
generate families of examples of coassociative 4-folds in R

7.

We can also use the fixed-point set technique of §5.4 to find examples of coassociative
4-folds in other G2-manifolds. If α : R

7 → R
7 is linear with α2 = 1 and α∗(ϕ0) = −ϕ0,

then either α = −1, or α is conjugate under an element of G2 to the map

(x1, . . . , x7) 7−→ (−x1,−x2,−x3, x4, x5, x6, x7).

The fixed set of this map is the coassociative 4-plane V of (17). Thus, the fixed point set
of α is either {0}, or a coassociative 4-plane in R

7. So we find [18, Prop. 10.8.5]:

Proposition 5.9. Let (M,ϕ, g) be a G2-manifold, and σ : M → M an isometric
involution with σ∗(ϕ) = −ϕ. Then each connected component of the fixed point set
{

p ∈M : σ(p) = p
}

of σ is either a coassociative 4-fold or a single point.
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Bryant [7] uses this idea to construct many local examples of compact coassociative
4-folds in G2-manifolds.

Theorem 5.10 (Bryant [7]). Let (N, g) be a compact, real analytic, oriented Riemann-
ian 4-manifold whose bundle of self-dual 2-forms is trivial. Then N may be embedded
isometrically as a coassociative 4-fold in a G2-manifold (M,ϕ, g), as the fixed point set of
an involution σ.

Note here that M need not be compact, nor (M, g) complete. Roughly speaking,
Bryant’s proof constructs (ϕ, g) as the sum of a power series on Λ2

+T
∗N converging near

the zero section N ⊂ Λ2T ∗N , using the theory of exterior differential systems. The
involution σ acts as −1 on Λ2

+T
∗N , fixing the zero section. One moral of Theorem 5.10

is that to be coassociative places no significant local restrictions on a 4-manifold, other
than orientability.

Examples of compact coassociative 4-folds in compact G2-manifolds with holonomy G2

are constructed in [18, §12.6], using Proposition 5.9. Here [18, Ex. 12.6.4] are examples
in the G2-manifolds of §3.

Example 5.11. Let T 7 = R
7/Z7 and Γ be as in Example 3.1. Define σ : T 7 → T 7 by

σ : (x1, . . . , x7) 7→ ( 1
2 − x1, x2, x3, x4, x5,

1
2 − x6,

1
2 − x7).

Then σ commutes with Γ, preserves g0 and takes ϕ0 to −ϕ0. The fixed points of σ in T 7

are 8 copies of T 4, and the fixed points of σαβ in T 7 are 128 points. If δ ∈ Γ then σδ has
no fixed points unless δ = 1, αβ. Thus the fixed points of σ in T 7/Γ are the image of the
fixed points of σ and σαβ in T 7.

Now Γ acts freely on the sets of 8 σ T 4 and 128 σαβ points. So the fixed point set of σ
in T 7/Γ is the union of T 4 and 16 isolated points, none of which intersect the singular set
of T 7/Γ. When we resolve T 7/Γ to get (M, ϕ̃, g̃) with Hol(g̃) = G2 in a σ-equivariant way,
the action of σ on M has σ∗(ϕ̃) = −ϕ̃, and again fixes T 4 and 16 points. By Proposition
5.9, this T 4 is coassociative.

More examples of associative and coassociative submanifolds with different topologies
are given in [18, §12.6].

5.6. Cayley 4-folds

The calibrated geometry of Spin(7) is similar to the G2 case above, so we shall be brief.

Definition 5.12. Let (M,Ω, g) be a Spin(7)-manifold, as in §2.3. Then the 4-form Ω
is a calibration on (M, g). We define a Cayley 4-fold in M to be a 4-submanifold of M
calibrated with respect to Ω.

Let the metric g0, and 4-form Ω0 on R
8 be as in §2.3. Define a Cayley 4-plane to be

an oriented 4-dimensional vector subspace V of R
8 with Ω0|V = volV . Then we have an

analogue of Proposition 5.4:
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Proposition 5.13. The family F of Cayley 4-planes in R
8 is isomorphic to Spin(7)/K,

where K ∼=
(

SU(2)× SU(2)× SU(2)
)

/Z2 is a Lie subgroup of Spin(7), and dimF = 12.

Here are some sources of examples of Cayley 4-folds in R
8:

• Write R
8 = C

4. Then any holomorphic surface S in C
4 is Cayley in R

8, and any
special Lagrangian 4-fold N in C

4 is Cayley in R
8.

Write R
8 = R × R

7. Then R × L is Cayley for any associative 3-fold L in R
7.

• Lotay [26] studies 2-ruled Cayley 4-folds in R
8, that is, Cayley 4-folds N fibred by

a 2-dimensional family Σ of affine 2-planes R
2 in R

8, as for the coassociative case
in §5.5. He constructs explicit families of 2-ruled Cayley 4-folds in R

8, including
some depending on an arbitrary holomorphic function w : C → C, [26, Th. 5.1].

By the method of Propositions 5.7 and 5.9 one can prove [18, Prop. 10.8.6]:

Proposition 5.14. Let (M,Ω, g) be a Spin(7)-manifold, and σ : M → M a nontrivial
isometric involution with σ∗(Ω) = Ω. Then each connected component of the fixed point
set

{

p ∈M : σ(p) = p
}

is either a Cayley 4-fold or a single point.

Using this, [18, §14.3] constructs examples of compact Cayley 4-folds in compact 8-
manifolds with holonomy Spin(7).

6. Deformation theory of calibrated submanifolds

Finally we discuss deformations of associative, coassociative and Cayley submanifolds.
In §6.1 we consider the local equations for such submanifolds in R

7 and R
8, following

Harvey and Lawson [12, §IV.2]. Then §6.2 explains the deformation theory of compact
coassociative 4-folds, following McLean [28, §4]. This has a particularly simple structure,
as coassociative 4-folds are defined by the vanishing of ϕ. The deformation theory of
compact associative 3-folds and Cayley 4-folds is more complex, and is sketched in §6.3.

6.1. Parameter counting and the local equations

We now study the local equations for 3- or 4-folds to be (co)associative or Cayley.

Associative 3-folds. The set of all 3-planes in R
7 has dimension 12, and the set of associa-

tive 3-planes in R
7 has dimension 8 by Proposition 5.4. Thus the associative 3-planes are

of codimension 4 in the set of all 3-planes. Therefore the condition for a 3-fold L in R
7 to

be associative is 4 equations on each tangent space. The freedom to vary L is the sections
of its normal bundle in R

7, which is 4 real functions. Thus, the deformation problem for
associative 3-folds involves 4 equations on 4 functions, so it is a determined problem.

To illustrate this, let f : R
3 → H be a smooth function, written

f(x1, x2, x3) = f0(x1, x2, x3) + f1(x1, x2, x3)i+ f2(x1, x2, x3)j + f3(x1, x2, x3)k.

Define a 3-submanifold L in R
7 by

L =
{(

x1, x2, x3, f0(x1, x2, x3), . . . , f3(x1, x2, x3)
)

: xj ∈ R
}

.
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Then Harvey and Lawson [12, §IV.2.A] calculate the conditions on f for L to be associa-
tive. With the conventions of §2.1, the equation is

i
∂f

∂x1
+ j

∂f

∂x2
− k

∂f

∂x3
= C

( ∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)

, (18)

where C : H × H × H → H is a trilinear cross product.
Here (18) is 4 equations on 4 functions, as we claimed, and is a first order nonlinear

elliptic p.d.e. When f, ∂f are small, so that L approximates the associative 3-plane U of
(17), equation (18) reduces approximately to the linear equation i ∂f

∂x1

+ j ∂f
∂x2

− k ∂f
∂x3

= 0,

which is equivalent to the Dirac equation on R
3. More generally, first order deformations

of an associative 3-fold L in a G2-manifold (M,ϕ, g) correspond to solutions of a twisted
Dirac equation on L.

Coassociative 4-folds. The set of all 4-planes in R
7 has dimension 12, and the set of

coassociative 4-planes in R
7 has dimension 8 by Proposition 5.4. Thus the coassociative

4-planes are of codimension 4 in the set of all 4-planes. Therefore the condition for a
4-fold N in R

7 to be coassociative is 4 equations on each tangent space. The freedom to
vary N is the sections of its normal bundle in R

7, which is 3 real functions. Thus, the
deformation problem for coassociative 4-folds involves 4 equations on 3 functions, so it is
an overdetermined problem.

To illustrate this, let f : H → R
3 be a smooth function, written

f(x0 + x1i+ x2j + x3k) = (f1, f2, f3)(x0 + x1i+ x2j + x3k).

Define a 4-submanifold N in R
7 by

N =
{(

f1(x0, . . . , x3), f2(x0, . . . , x3), f3(x0, . . . , x3), x0, . . . , x3

)

: xj ∈ R
}

.

Then Harvey and Lawson [12, §IV.2.B] calculate the conditions on f for N to be coasso-
ciative. With the conventions of §2.1, the equation is

i∂f1 + j∂f2 − k∂f3 = C(∂f1, ∂f2, ∂f3), (19)

where the derivatives ∂fj = ∂fj(x0 +x1i+x2j+x3k) are interpreted as functions H → H,
and C is as in (18). Here (19) is 4 equations on 3 functions, as we claimed, and is a first
order nonlinear overdetermined elliptic p.d.e.

Cayley 4-folds. The set of all 4-planes in R
8 has dimension 16, and the set of Cayley

4-planes in R
8 has dimension 12 by Proposition 5.13, so the Cayley 4-planes are of codi-

mension 4 in the set of all 4-planes. Therefore the condition for a 4-fold K in R
8 to be

Cayley is 4 equations on each tangent space. The freedom to vary K is the sections of
its normal bundle in R

8, which is 4 real functions. Thus, the deformation problem for
Cayley 4-folds involves 4 equations on 4 functions, so it is a determined problem.
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Let f = f0 + f1i+ f2j + f3k = f(x0 + x1i+ x2j + x3k) : H → H be smooth. Choosing
signs for compatibility with (2), define a 4-submanifold K in R

8 by

K =
{(

−x0, x1,x2, x3, f0(x0 + x1i+ x2j + x3k),−f1(x0 + x1i+ x2j + x3k),

−f2(x0 + x1i+ x2j + x3k), f3(x0 + x1i+ x2j + x3k)
)

: xj ∈ R
}

.

Following [12, §IV.2.C], the equation for K to be Cayley is

∂f

∂x0
+ i

∂f

∂x1
+ j

∂f

∂x2
+ k

∂f

∂x3
= C(∂f), (20)

for C : H⊗R H → H a homogeneous cubic polynomial. This is 4 equations on 4 functions,
as we claimed, and is a first-order nonlinear elliptic p.d.e. on f . The linearization at f = 0
is equivalent to the positive Dirac equation on R

4. More generally, first order deformations
of a Cayley 4-fold K in a Spin(7)-manifold (M,Ω, g) correspond to solutions of a twisted
positive Dirac equation on K.

6.2. Deformation theory of coassociative 4-folds

Here is the main result in the deformation theory of coassociative 4-folds, proved by
McLean [28, Th. 4.5]. As our sign conventions for ϕ0, ∗ϕ0 in (1) are different to McLean’s,
we use self-dual 2-forms in place of McLean’s anti-self-dual 2-forms.

Theorem 6.1. Let (M,ϕ, g) be a G2-manifold, and N a compact coassociative 4-fold in
M . Then the moduli space MN of coassociative 4-folds isotopic to N in M is a smooth
manifold of dimension b2+(N).

Sketch of proof. Suppose for simplicity that N is an embedded submanifold. There is a
natural orthogonal decomposition TM |N = TN ⊕ ν, where ν → N is the normal bundle
of N in M . There is a natural isomorphism ν ∼= Λ2

+T
∗N , constructed as follows. Let

x ∈ N and V ∈ νx. Then V ∈ TxM , so V ·ϕ|x ∈ Λ2T ∗

xM , and (V ·ϕ|x)|TxN ∈ Λ2T ∗

xN . It
turns out that (V · ϕ|x)|TxN actually lies in Λ2

+T
∗

xN , the bundle of self-dual 2-forms on
N , and that the map V 7→ (V · ϕ|x)|TxN defines an isomorphism ν

∼=
−→Λ2

+T
∗N .

Let T be a small tubular neighbourhood of N in M . Then we can identify T with a
neighbourhood of the zero section in ν, using the exponential map. The isomorphism
ν ∼= Λ2

+T
∗N then identifies T with a neighbourhood U of the zero section in Λ2

+T
∗N .

Let π : T → N be the obvious projection.
Under this identification, submanifolds N ′ in T ⊂ M which are C1 close to N are

identified with the graphs Γ(α) of small smooth sections α of Λ2
+T

∗N lying in U . Write
C∞(U) for the subset of the vector space of smooth self-dual 2-forms C∞(Λ2

+T
∗N) on

N lying in U ⊂ Λ2
+T

∗N . Then for each α ∈ C∞(U) the graph Γ(α) is a 4-submanifold
of U , and so is identified with a 4-submanifold of T . We need to know: which 2-forms α
correspond to coassociative 4-folds Γ(α) in T?

Well, N ′ is coassociative if ϕ|N ′ ≡ 0. Now π|N ′ : N ′ → N is a diffeomorphism, so we
can push ϕ|N ′ down to N , and regard it as a function of α. That is, we define

P : C∞(U) −→ C∞(Λ3T ∗N) by P (α) = π∗(ϕ|Γ(α)). (21)
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Then the moduli space MN is locally isomorphic near N to the set of small self-dual
2-forms α on N with ϕ|Γ(α) ≡ 0, that is, to a neighbourhood of 0 in P−1(0).

To understand the equation P (α) = 0, note that at x ∈ N , P (α)|x depends on the
tangent space to Γ(α) at α|x, and so on α|x and ∇α|x. Thus the functional form of P is

P (α)|x = F
(

x, α|x,∇α|x
)

for x ∈ N ,

where F is a smooth function of its arguments. Hence P (α) = 0 is a nonlinear first order
p.d.e. in α. The linearization dP (0) of P at α = 0 turns out to be

dP (0)(β) = lim
ǫ→0

(

ǫ−1P (ǫβ)
)

= dβ.

Therefore Ker(dP (0)) is the vector space H 2
+ of closed self-dual 2-forms β on N ,

which by Hodge theory is a finite-dimensional vector space isomorphic to H2
+(N,R),

with dimension b2+(N). This is the Zariski tangent space of MN at N , the infinitesimal
deformation space of N as a coassociative 4-fold.

To complete the proof we must show that MN is locally isomorphic to its Zariski
tangent space H 2

+ , and so is a smooth manifold of dimension b2+(N). To do this rigorously
requires some technical analytic machinery, which is passed over in a few lines in [28,
p. 731]. Here is one way to do it.

Because C∞(Λ2
+T

∗N), C∞(Λ3T ∗N) are not Banach spaces, we extend P in (21) to act

on Hölder spaces Ck+1,γ(Λ2
+T

∗N), Ck,γ(Λ3T ∗N) for k > 1 and γ ∈ (0, 1), giving

Pk,γ : Ck+1,γ(U) −→ Ck,γ(Λ3T ∗N) defined by Pk,γ(α) = π∗(ϕ|Γ(α)).

Then Pk,γ is a smooth map of Banach manifolds. Let Vk,γ ⊂ Ck,γ(Λ3T ∗N) be the Banach
subspace of exact Ck,γ 3-forms on N .

As ϕ is closed, ϕ|N ≡ 0, and Γ(α) is isotopic to N , we see that ϕ|Γ(α) is an exact
3-form on Γ(α), so that Pk,γ maps into Vk,γ . The linearization

dPk,γ(0) : Ck+1,γ(Λ2
+T

∗N) −→ Vk,γ , dPk,γ(0) : β 7−→ dβ

is then surjective as a map of Banach spaces. (To prove this requires a discursion, using
elliptic regularity results for d + d∗.)

Thus, Pk,γ : Ck+1,γ(U) → Vk,γ is a smooth map of Banach manifolds, with dPk,γ(0)

surjective. The Implicit Function Theorem for Banach spaces now implies that P−1
k,γ(0)

is near 0 a smooth submanifold of Ck+1,γ(U), locally isomorphic to Ker(dPk,γ(0)). But
Pk,γ(α) = 0 is an overdetermined elliptic equation for small α, and so elliptic regularity

implies that solutions α are smooth. Therefore P−1
k,γ(0) = P−1(0) near 0, and similarly

Ker(dPk,γ(0)) = Ker(dP (0)) = H 2
+ . This completes the proof. �

Here are some remarks on Theorem 6.1.

• This proof relies heavily on Proposition 5.5, that a 4-fold N in M is coassociative
if and only if ϕ|N ≡ 0, for ϕ a closed 3-form on M . The consequence of this is that
the deformation theory of compact coassociative 4-folds is unobstructed, and the

136



The exceptional holonomy groups and calibrated geometry

moduli space is always a smooth manifold with dimension given by a topological
formula.

Special Lagrangian m-folds of Calabi-Yau m-folds can also be defined in terms
of the vanishing of closed forms, and their deformation theory is also unobstructed,
as in [28, §3] and [11, §10.2]. However, associative 3-folds and Cayley 4-folds
cannot be defined by the vanishing of closed forms, and we will see in §6.3 that
this gives their deformation theory a different flavour.

• We showed in §6.1 that the condition for a 4-fold N in M to be coassociative is
locally 4 equations on 3 functions, and so is overdetermined. However, Theorem
6.1 shows that coassociative 4-folds have unobstructed deformation theory, and
often form positive-dimensional moduli spaces. This seems very surprising for an
overdetermined equation.

The explanation is that the condition dϕ = 0 acts as an integrability condition
for the existence of coassociative 4-folds. That is, since closed 3-forms on N
essentially depend locally only on 3 real parameters, not 4, as ϕ is closed the
equation ϕ|N ≡ 0 is in effect only 3 equations on N rather than 4, so we can think
of the deformation theory as really controlled by a determined elliptic equation.

Therefore dϕ = 0 is essential for Theorem 6.1 to work. In ‘almostG2-manifolds’
(M,ϕ, g) with dϕ 6= 0, the deformation problem for coassociative 4-folds is overde-
termined and obstructed, and generically there would be no coassociative 4-folds.

• In Example 5.11 we constructed an example of a compact coassociative 4-fold N
diffeomorphic to T 4 in a compact G2-manifold (M,ϕ, g). By Theorem 6.1, N lies
in a smooth 3-dimensional family of coassociative T 4’s in M . Locally, these may
form a coassociative fibration of M .

Now suppose
{

(M,ϕt, gt) : t ∈ (−ǫ, ǫ)
}

is a smooth 1-parameter family ofG2-manifolds,
andN0 a compact coassociative 4-fold in (M,ϕ0, g0). When can we extend N0 to a smooth
family of coassociative 4-folds Nt in (M,ϕt, gt) for small t? By Corollary 5.6, a necessary
condition is that [ϕt|N0

] = 0 for all t. Our next result shows that locally, this is also a
sufficient condition. It can be proved using similar techniques to Theorem 6.1, though
McLean did not prove it.

Theorem 6.2. Let
{

(M,ϕt, gt) : t ∈ (−ǫ, ǫ)
}

be a smooth 1-parameter family of G2-
manifolds, and N0 a compact coassociative 4-fold in (M,ϕ0, g0). Suppose that [ϕt|N0

] = 0
in H3(N0,R) for all t ∈ (−ǫ, ǫ). Then N0 extends to a smooth 1-parameter family
{

Nt : t ∈ (−δ, δ)
}

, where 0 < δ 6 ǫ and Nt is a compact coassociative 4-fold in (M,ϕt, gt).

6.3. Deformation theory of associative 3-folds and Cayley 4-folds

Associative 3-folds and Cayley 4-folds cannot be defined in terms of the vanishing of
closed forms, and this gives their deformation theory a different character to the coasso-
ciative case. Here is how the theories work, drawn mostly from McLean [28, §5–§6].

Let N be a compact associative 3-fold or Cayley 4-fold in a 7- or 8-manifold M . Then
there are vector bundles E,F → N with E ∼= ν, the normal bundle of N in M , and a
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first-order elliptic operator DN : C∞(E) → C∞(F ) on N . The kernel KerDN is the set
of infinitesimal deformations of N as an associative 3-fold or Cayley 4-fold. The cokernel
CokerDN is the obstruction space for these deformations.

Both are finite-dimensional vector spaces, and

dim KerDN − dim CokerDN = ind(DN ),

the index of DN . It is a topological invariant, given in terms of characteristic classes by
the Atiyah–Singer Index Theorem. In the associative case we have E ∼= F , and DN is
anti-self-adjoint, so that Ker(DN ) ∼= Coker(DN ) and ind(DN ) = 0 automatically. In the
Cayley case we have

ind(DN ) = τ(N) − 1
2χ(N) − 1

2 [N ] · [N ],

where τ is the signature, χ the Euler characteristic and [N ] · [N ] the self-intersection of N .
In a generic situation we expect CokerDN = 0, and then deformations of N will

be unobstructed, so that the moduli space MN of associative or Cayley deformations
of N will locally be a smooth manifold of dimension ind(DN ). However, in nongeneric
situations the obstruction space may be nonzero, and then the moduli space may not be
smooth, or may have a larger than expected dimension.

This general structure is found in the deformation theory of other important mathe-
matical objects — for instance, pseudo-holomorphic curves in almost complex manifolds,
and instantons and Seiberg–Witten solutions on 4-manifolds. In each case, the mod-
uli space is only smooth with a topologically determined dimension under a genericity
assumption which forces the obstructions to vanish.
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