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Lefschetz decomposition and the cd-index of fans

Kalle Karu

Dedicated to the memory of Raoul Bott.

Abstract. The goal of this article is to give a Lefschetz type decomposition for the
cd-index of a complete fan.

To a complete simplicial fan one can associate a toric variety X, the even Betti
numbers hi of X and the numbers gi = hi − hi−1. If the fan is projective, then
non-negativity of gi follows from the Lefschetz decomposition of the cohomology.

In the case of a nonsimplicial complete fan, one can analogously compute the

flag h-numbers hS and, by a change of variable formula, the cd-index. We give an
analogue of the Lefschetz operation for the cd-index. This gives another proof of the
non-negativity of the cd-index for complete fans.

1. Introduction

Let ∆ be a complete simplicial n-dimensional fan. Let fi be the number of
i-dimensional cones in ∆ and let hk be defined by the formula

∑

i

fn−i(t − 1)i =
∑

k

hn−ktk.

The numbers hk for k = 0, . . . , n are the even Betti numbers hk = dim H2k(X∆, C) of
a toric variety X∆ if the fan ∆ is rational. If ∆ is also projective, then there exists a
Lefschetz operation:

L : H2k(X∆, C) → H2k+2(X∆, C), Lk : Hn−k(X∆, C)
≃
→ Hn+k(X∆, C),

giving rise to the Lefschetz decomposition of the cohomology. The existence of a Lefschetz
operation implies that the numbers gk = hk − hk−1 are non-negative for 0 ≤ k ≤ n/2.

For a complete but not necessarily simplicial fan one can consider the barycentric sub-
division B∆ of ∆, construct cohomology spaces HS(B∆) of dimension hS for S ∈ Nn,
and from the numbers hS compute the cd-index Ψ∆(c, d) of ∆ (see below). Our goal is
to find linear maps on HS(∆), the analogs of the Lefschetz operation, that guarantee
non-negativity of the cd-index. Unlike the simplicial case, it is not clear how such maps
should be defined. We will give in Definition 1.1 a rather weak notion of a Lefschetz op-
eration which, nevertheless, is sufficient to imply non-negativity of the cd-index. We also
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conjecture a stronger version in which the maps are defined by conewise linear functions
on the fan, just as in the simplicial case. The rest of the introduction is spent on con-
structing the cd-index and motivating the definition of a Lefschetz operation.The precise
statements and proofs are given in Sections 2 and 3 below.

Let us start by recalling the construction of the cohomology H2∗(X∆, C) (which we
will denote simply H∗(∆)) in the case of a simplicial fan ∆ (the references [1, 3] contain
more details and generalization to the intersection cohomology). Let A(∆) be the vector
space of complex-valued conewise polynomial functions on the fan ∆. In other words, an
element of A(∆) is a continuous function on the support of the fan ∆ that restricts to a
polynomial on each cone σ ∈ ∆. We can multiply a conewise polynomial function with a
globally polynomial function. In fact, this makes the space A(∆) into a free module under
the action of the ring A = C[x1, . . . , xn] of global polynomial functions, graded by degree.
The graded vector space A(∆)/mA(∆), where m ⊂ A is the maximal homogeneous ideal,
is the cohomology space H∗(∆) with Poincaré polynomial

P∆(t) =
∑

k

hktk, hk = dimHk(∆).

The fan ∆ is projective if and only if there exists a strictly convex conewise linear function
L ∈ A(∆). Multiplication with L induces a Lefschetz operation in cohomology.

In case when the fan ∆ is complete, but not necessarily simplicial, we proceed as follows
(see [6] or Section 2 below for more details). Let B∆ be a first barycentric subdivision of
∆ and consider the space A(B∆) of conewise polynomial functions on this subdivision,
which again is a free A-module. It is possible to modify the A-module structure, so that
A(B∆) has a grading by Nn and the module structure is compatible with this grading
(where A = C[x1, . . . , xn] has the standard grading by Nn). To do this, note that the
generating rays of a maximal cone σ ∈ B∆ are labeled by 1, . . . , n: the i’th ray is the
barycenter of a cone of dimension i. Let’s map the cone σ linearly onto the positive
orthant of Rn so that the i’th ray goes to the i’th coordinate axis. These maps can be
chosen compatibly for all maximal cones, defining a piecewise linear map from B∆ to
Rn that “folds” the fan onto the positive orthant. The A-module structure on A(B∆)
is defined via pullback by this map. Since this map identifies polynomial functions on a
maximal cone with polynomials on the positive orthant, i.e., with A, we get a grading by
Nn on polynomials on each cone σ, hence on A(B∆).

With the module structure and grading on A(B∆) defined above, the quotient
H∗(B∆) := A(B∆)/mA(B∆) inherits a similar grading. Consider the corresponding
Poincaré polynomial

PB∆(t1, . . . , tn) =
∑

S∈Nn

hStS1

1 · · · tSn
n , hS = dim HS(B∆).

The cohomology H∗(B∆) satisfies Poincaré duality hS = h(1,...,1)−S . In fact, this duality
is defined by a non-degenerate Poincaré pairing (see Section 2.4). This in particular
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implies that the nonzero coefficients in the Poincaré polynomial can be indexed by subsets
S ⊂ {1, . . . , n}. The numbers hS are called the flag h-numbers of the fan ∆.

Let Q〈c, d〉 be the polynomial ring in non-commuting variables c and d of degree 1 and
2, respectively. There is an embedding of vector spaces

φ : Q〈c, d〉 →֒ Q[t1, t2, . . .],

defined as follows. φ maps constants to constants and if f(c, d)c+g(c, d)d is a homogeneous
cd-polynomial of degree m > 0, define inductively

φ(f(c, d)c + g(c, d)d) = φ(f(c, d))(tm + 1) + φ(g(c, d))(tm−1 + tm).

For example, there are 3 cd-monomials of degree 3:

c3 = (t1 + 1)(t2 + 1)(t3 + 1),

cd = (t1 + 1)(t2 + t3),

dc = (t1 + t2)(t3 + 1).

It is shown in [2] that the Poincaré polynomial PB∆(t1, . . . , tn) of a complete fan ∆ can
be expressed as a homogeneous cd-polynomial of degree n, called the cd-index Ψ∆(c, d)
of ∆. The coefficients of the polynomial are integers [2] and non-negative [7, 6].

One approach to proving non-negativity of the coefficients of the cd-index is to decom-
pose the cohomology H∗(B∆) into summands corresponding to different cd-monomials,
so that the coefficients of Ψ∆(c, d) are the dimensions of the corresponding components.
If we know the non-negativity of the cd-index, then the existence of such a decomposition
follows trivially. Figure 1 shows the dimensions of the pieces corresponding to different
cd-monomials in the 3-dimensional case. The bold dots indicate the ti-monomial being a
summand of the cd-monomial.

In analogy with the Lefschetz decomposition in the singly-graded case, we expect the
decomposition to be defined by linear maps. More precisely, we look for endomorphisms
Li : H∗(B∆) → H∗(B∆) of degree ei = (0, . . . , 1, . . . , 0). If a cd-monomial m can be
written as m = . . . (ti + 1) . . ., then Li should map in the corresponding piece H∗

m of the
cohomology decomposition:

Li : H(∗,...,∗,0,∗,...,∗)
m

≃
−→ H(∗,...,∗,1,∗,...,∗)

m .

For example, L1 should define an isomorphism from the back face of the cube to the
front face in Figure 1 for the monomials c3 and cd; the component corresponding to the
monomial dc should lie in the kernel of L1.

1.1. The main construction

The definition of a Lefschetz operation is given inductively using a construction that
we call ”the main construction”. It essentially describes the action of L1 on the A-module
A(B∆) as described in the previous paragraph.
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Figure 1. cd-monomials in terms of ti-monomials.

Let Al,m be the polynomial ring C[xl, . . . , xm], graded by Nm−l, with xi having degree
ei. Let the dualizing module of Al,m be ωl,m, the principal ideal in Al,m generated by
xl · · ·xm.

Let M be a finitely generated free graded Al,m-module. A Poincaré pairing on M is
an Al,m-bilinear symmetric map

< ·, · >: M × M → ωl,m,

inducing a non-degenerate pairing on M = M/(xl, . . . , xm)M . We always assume that
M is graded in non-negative degrees. Then the existence of a Poincaré pairing implies
that M is graded by subsets of {l, . . . ,m}.

Let M be a free Al,m-module with a Poincaré pairing and let L : M → M be an
endomorphism of degree el which is self-adjoint with respect to the pairing:

< Lm1,m2 >=< m1, Lm2 > .

We can write

M/(xl)M = M0 + M1,

where M i consists of elements of degree (i, ∗, . . . , ∗). Then L induces a map M0 → M1.

Assume that the map L : M0 → M1 is injective and the quotient is annihilated by
xl+1:

0 → M0 L
→ M1 → Q → 0, xl+1Q = 0. (1)

It is elementary (see Lemma 3.1 in Section 3) that Q is a free Al+2,m = C[xl+2, . . . , xm]-
module and we get a long-exact Tor sequence:

0 → Q[el − el+1] → M0/(xl+1)M
0 L
→ M1/(xl+1)M

1 → Q → 0. (2)

Let C be the cokernel of the embedding Q[el − el+1] → M0/(xl+1)M
0:

0 → Q[el − el+1] → M0/(xl+1)M
0 → C → 0. (3)
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Then C is also a free Al+2,m-module (see Section 3 below). We will show that Q and C
both inherit Poincaré pairings from M . The construction of Q and C from M and L is
what we call the main construction.

Let us explain how the construction of C and Q corresponds to the cd-variables c
and d, respectively. First, since Q lies in degrees (1, 0, ∗, . . . , ∗), let us replace it with
the shifted module Q′ = Q[el], which is a free Al+2,m-module in degrees (0, 0, ∗, . . . , ∗).
Also, since c and d have degrees 1 and 2, respectively, we replace C with the free Al+1,m-
module C ′ = C ⊗Al+2,m

Al+1,m. Now let PM (t1, . . . , tn) (respectively PQ′(tl+2, . . . , tm),

PC′(tl+1, . . . , tm)) be the Hilbert polynomial of M (respectively Q′, C ′). From the exact
sequences (2) and (3), we get

PM = (1 + tl)PC′ + (tl + tl+1)PQ′ = cPC′ + dPQ′ . (4)

Thus, if PC′ and PQ′ are both cd-polynomials with non-negative coefficients, then the
same is true for PM . (Here we changed slightly the map φ on Q〈c, d〉 by letting its image
be in Q[tl, . . .] for PM , Q[tl+1, . . .] for PC′ , and similarly for PQ′ .) From this formula,
we see that the main construction of C ′ and Q′ from M corresponds to contracting the
polynomial PM from the left with c and d, respectively.

Definition 1.1. Let M be a finitely generated free Al,m-module with a Poincaré pairing.
We say that M has a Lefschetz operation if there exists an endomorphism L : M → M of
degree el, satisfying the assumptions of the main construction, such that the modules C ′

and Q′ also have Lefschetz operations. More precisely:

• L is self-adjoint with respect to the pairing on M .
• L : M0 → M1 is injective with cokernel annihilated by xl+1.
• Inductively, the Al+1,m-module C ′ = C ⊗Al+2,m

Al+1,m and the Al+2,m-module
Q′ = Q[el] have Lefschetz operations.

To start the induction, if l = m + 1 and M is a finite dimensional vector space, then it
trivially has a Lefschetz operation.

From the computation (4) above, it is clear that if M has a Lefschetz operation, then
the Hilbert function of M can be written as a homogeneous cd-polynomial of degree m− l
with non-negative integer coefficients.

The main result of this article is:

Theorem 1.2. Let ∆ be a complete fan of dimension n. Then the A1,n-module A(B∆)
has a Lefschetz operation. In particular, the cd-index of ∆ has non-negative integer

coefficients.

Recall that A(B∆) is a ring. If Li ∈ A(B∆) is an element of degree ei, then multipli-
cation with Li defines an endomorphism of A(B∆) of degree ei, self-adjoint with respect
to the natural Poincaré pairing. Thus, L1 is a good candidate for the Lefschetz operation
on A(B∆), and inductively, Li for i > 1 could be used to define the endomorphisms of Q
and C.

63



K. Karu

Conjecture 1.3. Let Li ∈ A(B∆) be a general element of degree ei for i = 1, . . . , n.

Then Li define a Lefschetz operation on A(B∆).

We remark that a Lefschetz operation on M does not define a canonical decomposition
of M into components corresponding to the cd-monomials. To decompose M , we need to
choose a splitting of the sequence (3), so that

M ≃ C
′
⊕ C

′
[−el] ⊕ Q

′
[−el] ⊕ Q

′
[−el+1],

corresponding to the formula (4). Inductive decomposition of C
′

and Q
′

then give a
complete decomposition of M .

To prove Theorem 1.2, we express A(B∆) as the space of global sections of a sheaf L
on ∆. The main construction can be sheafified, i.e., performed on the stalks of the sheaf
L simultaneously. We show that a Lefschetz operation on the space of global sections
comes from a sheaf homomorphism.

We also consider Conjecture 1.3 in the context of sheaves and reduce it to a Kleiman-
Bertini type problem of torus actions on a vector space. Let an algebraic torus T act on
a finite dimensional vector space V with possibly infinitely many orbits. When does the
general translate of a subspace K ⊂ V intersect another subspace transversely? Conjec-
ture 3.13 claims sufficient conditions for this, implying Conjecture 1.3.

Theorem 1.2 gives another proof of non-negativity of the cd-index for a complete fan.
In [6] non-negativity was proved more generally for Gorenstein* posets. The current proof
does not extend to that more general situation. The two proofs are based on the same
idea. However, the proof we give here is simpler because we work with modules only,
avoiding derived categories.

2. Sheaves on fans

All our vector spaces are over the field of complex numbers C. Let Al,m =
C[xl, xl+1, . . . , xm], graded so that xi has degree ei. For a graded Al,m-module M we

denote the shift in grading by M [·]. We also write M = M/(xl, . . . , xm)M .

For a graded set, the superscript refers to degree. If ∆ is a fan, then ∆≥m consists of
all cones of dimension at least m. Similarly, ∆[l,m] is the subset of cones of dimension
d ∈ [l,m].

2.1. Fan spaces

Let us recall the notion of sheaves on fans. The main reference for the general theory
is [1, 3] and for the specific sheaves used here [6].

We fix a complete n-dimensional fan ∆ (see [5] for terminology). Consider ∆ as a finite
partially ordered set of cones, graded in degrees 0, . . . , n. It is sometimes convenient to
add a maximal element 1̂ of degree n + 1 to ∆.
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The fan ∆ is given the topology in which open sets are the (closed) subfans of ∆. Then
a sheaf F of vector spaces on ∆ consists of the data:

• A vector space Fσ for each σ ∈ ∆.
• Linear maps resσ

τ : Fσ → Fτ for σ > τ , satisfying the compatibility condition
resτ

ρ ◦ resσ
τ = resσ

ρ for σ > τ > ρ.

On sheaves we can perform the usual sheaf operations. For example, a global section
f ∈ Γ(F,∆) consists of the data fσ ∈ Fσ for each σ ∈ ∆, such that resσ

τ fσ = fτ .
Equivalently, we only need to give fσ ∈ Fσ for maximal cones σ, such that their restrictions
to smaller dimensional cones agree.

Define a sheaf of rings A on ∆ as follows:

• Aσ = A1,d = C[x1, . . . , xd] if dimσ = d.
• resσ

τ : C[x1, . . . , xd] → C[x1, . . . , xl] is the standard projection xi 7→ xi for
1 ≤ i ≤ l and xi 7→ 0 for i > l.

Given the sheaf of rings A on ∆, we consider sheaves of A-modules F . This means
that the stalks Fσ are Aσ-modules and the restriction maps are module homomorphisms.
Note that the sheaf A is graded by Nn. We assume that all sheaves of A-modules are
similarly graded.

There exists an indecomposable sheaf L of A-modules satisfying the following condi-
tions:

• Locally free: Lσ is a graded free Aσ-module.
• Minimally flabby: for σ = 0, L0 = C in degree 0; for σ > 0, the restriction maps

induce an isomorphism

Lσ → Γ(L, ∂σ),

where ∂σ is the boundary fan of σ.

These two conditions define L up to an isomorphism. In fact, Γ(L, ∂σ) is a free A1,d−1-
module if dimσ = d, and we can inductively define

Lσ = Γ(L, ∂σ) ⊗A1,d−1
A1,d.

2.2. Barycentric subdivisions

Let B∆ be a barycentric subdivision of ∆. As a poset, it consists of chains x = (0 <
σ1 < . . . < σm) in ∆. Define a sheaf of rings B on B∆ as follows:

• Bx = C[xi]i∈S , where x = (0 < σ1 < . . . < σm), S = {dim σ1, . . . ,dim σm}.
• resx

y is the standard projection.

One can construct as above a sheaf L with respect to B, but this sheaf is isomorphic
to B.
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Lemma 2.1 ([6]). We have

π∗B ≃ L,

where π : B∆ → ∆ is the subdivision map sending x = (0 < σ1 < . . . < σm) to σm. �

It is often more convenient to work with the sheaf B because it is a sheaf of rings. The
space of global sections Γ(B, B∆) (which is isomorphic to Γ(L,∆) by the previous lemma)
is what we called A(B∆) in the introduction. Since B and L are sheaves of A1,n-modules,
so are the spaces of global sections.

2.3. The cellular complex

Let us fix an orientation for each cone σ ∈ ∆ and for σ > τ , dim σ = dim τ + 1, let

orσ
τ = ±1

depending on whether the orientations of σ and τ agree or not.

The cellular complex of a sheaf F on ∆ is

C•
n(F,∆) = 0 → C0 → C1 → . . . → Cn → 0,

where

Ci =
⊕

dim σ=n−i

Fσ,

and the differentials are defined as sums of orσ
τ resσ

τ : Fσ → Fτ .

For a complete fan ∆, the cellular complex C•
n(F,∆) computes the cohomology of F .

Applying this to the flabby sheaf L, we get

Hi(C•
n(L,∆)) =

{

Γ(L,∆) if i = 0

0 otherwise.

Moreover, Γ(L,∆) is a graded free A1,n-module.

If σ ∈ ∆, dimσ = d, then ∂σ is combinatorially equivalent to a complete fan of
dimension d−1, hence we may use C•

d−1(L, ∂σ) to compute Γ(L, ∂σ). This gives an exact
sequence

0 → Lσ/xdLσ →
⊕

τ<σ,dim τ=d−1

Lτ →
⊕

ρ<σ,dim ρ=d−2

Lρ → . . . → L0 → 0. (5)

2.4. Poincaré pairing

Define the dualizing module ω1,n = (x1 · · ·xn)A1,n. I.e., ω1,n is the principal ideal
generated by x1 · · ·xn. There exists an A1,n-bilinear non-degenerate pairing

Γ(L,∆) × Γ(L,∆) → ω1,n.
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The pairing is best constructed using the isomorphism Γ(L,∆) ≃ Γ(B, B∆). On
Γ(B, B∆) the pairing is defined by multiplication (B is a sheaf of rings), followed by an
evaluation map into ω1,n.

One can give a simple description of the evaluation map as in [4], depending on the
orientations orσ

τ . For x = (0 < σ1 < . . . < σn) a maximal element of B∆ of dimension n,
define

εx = or1̂
σn

orσn
σn−1

· · · orσ1

0 = ±1.

Now if f ∈ Γ(B, B∆), then it can be shown that
∑

dim x=n

εxfx

is an element of A1,n that is divisible by x1x2 · · ·xn, hence lies in ω1,n. This defines the
A1,n-linear evaluation map Γ(B, B∆) → ω1,n and the Poincaré pairing on Γ(B, B∆).

If σ ∈ ∆ is a d-dimensional cone, then ∂σ is combinatorially equivalent to a complete
fan of dimension d−1. By the same construction as above we get a pairing on Γ(L, ∂σ) ≃
Lσ/xdLσ.

In summary, for each cone σ ∈ ∆, dimσ = d, we have a non-degenerate symmetric
bilinear pairing

< ·, · >σ: Lσ/xdLσ × Lσ/xdLσ → ω1,d−1.

These pairings are related as follows. For f, g ∈ Lσ/xdLσ,

< f, g >σ=
∑

dim τ=d−1

orσ
τ < fτ , gτ >τ ,

where fτ and gτ are the restrictions of f and g to τ and the pairing on the right hand
side is the A1,d−1-bilinear extension of the A1,d−2-bilinear pairing < ·, · >τ .

3. The main construction on sheaves

Let us return to the situation of Section 1.1 and prove the claims made there.

We have a finitely generated free Al,m-module M with Poincaré pairing

< ·, · >M : M × M → ωl,m.

Write

M/xlM = M0 ⊕ M1,

where M i consists of elements of degree (i, ∗, . . . , ∗). Assume that L : M0 → M1 is a
Al+1,m-module homomorphism of degree el, self-adjoint with respect to the pairing, and
such that L is injective with quotient Q annihilated by xl+1:

0 → M0 L
→ M1 → Q → 0, xl+1Q = 0.

Lemma 3.1. Q is a free Al+2,m-module.
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Proof. Since M0 and M1 are free Al+1,m-modules, we get from the exact sequence
above that

Tor
Al+1,m

i (Q, C) = 0, i ≥ 2.

Because Q is a Al+2,m-module, annihilated by xl+1, this implies that

Tor
Al+2,m

1 (Q, C) = 0,

hence Q is free. �

Now assuming that Q is free, we get an exact sequence

0 → Q[el − el+1] → M0/(xl+1)M
0 L
→ M1/(xl+1)M

1 → Q → 0,

where all terms are free Al+2,m-modules. Define C by the exact sequence

0 → Q[el − el+1] → M0/(xl+1)M
0 → C → 0.

Then Tor
Al+2,m

1 (C, C) = 0 and C is also a free Al+2,m-module.

Let us construct bilinear pairings on C and Q. On C the pairing is

< x, y >C=< x,Ly >M .

This is well-defined and gives an Al+2,m-linear map of degree el

C ⊗Al+2,m
C → ωl,m ⊗Al,m

Al+2,m.

Dividing by xl we get a degree 0 map into ωl+1,m ⊗Al+1,m
Al+2,m. Finally, replacing C

by C ′ = C ⊗Al+2,m
Al+1,m and extending the pairing linearly, we have a Al+1,m-bilinear

map

< ·, · >C′ : C ′ × C ′ → ωl+1,m.

To define the pairing on Q, let α be the composition

α : Q
≃
→ Q[el − el+1] →֒ M0/xl+1M

0.

On the elements [q] ∈ Q this map is given by

α([q]) = L−1(xl+1q).

Now define the pairing

< x, y >Q=< α(x), y >M .

One can check that this pairing is well-defined. Taking into account that α has degree
el+1 − el, we get a degree 0 Al+2,m-bilinear map on Q′ = Q[el]

< ·, · >Q′ : Q′ × Q′ → ωl+2,m.

It is easy to see that the bilinear maps on C ′ and Q′ are symmetric.

Lemma 3.2. The pairings < ·, · >Q′ and < ·, · >C′ are non-degenerate.
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Proof. One checks the non-degeneracy of the pairing on C using the definition and
self-adjointness of L. Then it follows that the pairing between Q and Q[el − el+1] is
non-degenerate. �

We next want to sheafify the main construction. Recall that L is a sheaf on ∆ with
stalks Lσ free Aσ-modules with Poincaré pairings. To perform the main construction
simultaneously on all stalks of L, the first step is to split

L/x1L = L0 ⊕ L1,

and then find a map of sheaves of degree e1

L : L0 → L1.

If one looks at the stalks, it becomes clear that Li should be considered as sheaves on
∆≥2 (i.e., on the poset of cones of dimension at least 2), and the cokernel Q of the map
L should be a sheaf on ∆≥3. Therefore we will consider sheaves on ∆≥m for m ≥ 1.

3.1. Sheaves on ∆≥m

We let ∆≥m have the the topology induced from ∆. To give a sheaf on ∆≥m is
equivalent to giving a sheaf on ∆ with all stalks zero on cones of dimension less than m.

Define the structure sheaf A on ∆≥m as follows. For σ ∈ ∆, dimσ = d ≥ m, let

Aσ = Am,d = C[xm, . . . , xd],

with restriction maps resσ
τ the standard projections.

Definition 3.3. Let F be a locally free sheaf of A-modules on ∆≥m. We say that F
is minimally flabby if all the restriction maps resα

β are surjective and for every σ ∈ ∆,

dimσ = d ≥ m, we have an exact sequence, the ”augmented cellular complex” (compare
with (5))

0 → Fσ/xdFσ →
⊕

τ<σ,dim τ=d−1

Fτ → . . . →
⊕

ρ<σ,dim ρ=m

Fρ → Gσ → 0, (6)

where

• The augmentation Gσ is a vector space (i.e., an A1,n-module annihilated by
x1, . . . , xn).

• All differentials, except the maps to Gσ, are defined by orα
β resα

β as in the usual
cellular complex.

Remark 3.4. (1) It should be noted that a minimally flabby sheaf is not flabby in the
topology of ∆≥m.

(2) We do not need the surjectivity of the restriction maps resα
β for the proof of

Theorem 1.2. These conditions are only necessary to state Conjectures 1.3 and
3.13. However, surjectivity of the restriction maps follows easily for all sheaves
we consider.
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Example 3.5. (1) Let L be the indecomposable sheaf on ∆. Then L|∆≥1 is a mini-
mally flabby sheaf on ∆≥1. In this case we have Gσ = L0 = C for all σ.

(2) In general, the vector spaces Gσ depend on the cone σ. Let π1, π2 ∈ ∆ be two
cones of dimension m − 1, and let Lπi be the indecomposable sheaf constructed
on the poset Star πi. Then F = Lπ1 ⊕ Lπ2 |∆≥m is a minimally flabby sheaf and
we have

Gσ =











C ⊕ C if π1, π2 < σ

C if π1 < σ or π2 < σ, but not both

0 otherwise.

Note that a minimally flabby sheaf on ∆≥m is determined by its restriction to ∆[m,m+1].
Indeed, the exact sequence (6) can be used to recover Fσ for dim σ > m + 1. Similarly,
given two minimally flabby shaves F and E , a morphism defined between the restrictions
of these sheaves to ∆[m,m+1] can be lifted to a morphism on ∆≥m.

Lemma 3.6. Let E and F be minimally flabby sheaves on ∆≥m, and L : E → F a

homomorphism of A-modules.

(1) If L is injective on cones σ ∈ ∆, dimσ = m, then L is injective on all cones.

(2) If L is an isomorphism on cones σ ∈ ∆, dimσ = m, then the cokernel Q of L:

0 → E → F → Q → 0

is a minimally flabby sheaf on ∆≥m+1.

Proof. The first statement follows by induction on dimσ from the exact sequence (6).

To prove the second statement, first note that the surjectivity of the restriction maps
resα

β for Q is clear. The morphism L defines a map between the augmented cellular
complexes of E and F which is injective except possibly in the Gσ terms. The quotient
gives the cellular complex for Q. By induction on dimσ it follows that Qσ is annihilated
by xm, hence is a free Am+1,d-module by Lemma 3.1. We get the augmentation for Q
by removing tha augmentations of E and F and considering the long-exact cohomology
sequence of the short-exact sequence of complexes. �

Definition 3.7. Let F be a minimally flabby sheaf on ∆≥m. We say that F is a Poincaré
sheaf if for every σ ∈ ∆, dimσ = d ≥ m, we have an Am,d−1-bilinear non-degenerate
symmetric pairing

< ·, · >σ: Fσ/xdFσ × Fσ/xdFσ → ωm,d−1,

satisfying the compatibility condition:

< f, g >σ=
∑

τ<σ

orσ
τ < resσ

τ f, resσ
τ g >τ , f, g ∈ Fσ/xdFσ. (7)

Here on the right hand side < ·, · >τ denotes the Am,d−1-bilinear extension of the Am,d−2-
bilinear pairing < ·, · >τ .
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Example 3.8. The sheaf L|∆≥1 is a Poincaré sheaf on ∆≥1.

Let F be a Poincaré sheaf on ∆≥m. Then Fσ for dimσ = d ≥ m is a vector space
graded by subsets of {m, . . . , d − 1}. Write F/xmF for the sheaf with stalks

(F/xmF)σ = Fσ/xmFσ.

This is a locally free sheaf on ∆≥m+1, and we can split it as

F/xmF = F0 ⊕F1,

where F i
σ consists of elements of degree (i, ∗, . . . , ∗).

Lemma 3.9. Let F be a Poincaré sheaf on ∆≥m. Then F0 and F1 are minimally flabby

sheaves on ∆≥m+1.

Proof. Let us cut the sequence (6) into two exact sequences

0 → Fσ/xdFσ →
⊕

τ<σ,dim τ=d−1

Fτ → . . . → S → 0,

0 → S →
⊕

ρ<σ,dim ρ=m

Fρ → Gσ → 0.

From the second sequence we get that S is a free C[xm]-module, hence the first sequence
remains exact after taking quotient by the ideal (xm) and splitting into two according to
degree. The two sequences are the augmented cellular complexes for F0 and F1. �

Now we are ready to define the sheafified version of the main construction. Let F be
a Poincaré sheaf on ∆≥m and L : F → F an endomorphism of A-modules of degree em,
such that Lσ : Fσ → Fσ is self-adjoint with respect to the pairing for each σ. (More
precisely, Lσ : Fσ → Fσ has to be self-adjoint with respect to the Am,d-linear extension
of the pairing < ·, · >σ.) Assume that the induced morphism L : F0 → F1 is injective
on cones σ ∈ ∆, dimσ = m + 1; then it is an isomorphism on these cones by Poincaré
duality. Lemma 3.6 gives an exact sequence

0 → F0 → F1 → Q → 0,

where Q is a minimally flabby sheaf on ∆≥m+2. In order to have Q in correct degrees,
we have to replace it with Q′ = Q[em].

We also construct the sheaf C as follows. First, we have an exact sequence of minimally
flabby sheaves on ∆≥m+2:

0 → Q[em − em+1] → F0/xm+1F
0 → F1/xm+1F

1 → Q → 0.

Define C by the exact sequence

0 → Q[em − em+1] → F0/xm+1F
0 → C → 0.

Then one easily sees that C is also minimally flabby on ∆≥m+2 (to get the augmented
cellular complex for C, it is more convenient to consider the short exact sequence

0 → C
L
→ F1/xm+1F

1 → Q → 0).
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We should again replace C with an almost flabby sheaf C′ on ∆≥m+1, such that C =
C′/xm+1C

′. We will not do this because inductively, the next step to construct a Lefschetz
operation is to go from C′ to C and split it according to degree. The fact that we don’t
have C′ that induces C will cause us some trouble later when we look for an endomorphism
of C.

Summarizing, we have defined the sheafified version of the main construction. Starting
with a Poincaré sheaf F on ∆≥m and a morphism L, we constructed minimally flabby
sheaves Q and C on ∆≥m+2. The construction on stalks agrees with the main construction
on modules. The stalks of the shaves Q and C inherit Poincaré pairings from the pairing
on F , which is clearly compatible with the restriction morphisms. Hence the two new
sheaves are also Poincaré sheaves.

It remains to see when can we find an appropriate endomorphism L of F .

Lemma 3.10. Let F be a Poincaré sheaf on ∆≥m and L : F → F a homomorphism of

degree em. Then L is self-adjoint with respect to the pairings on σ ∈ ∆≥m if and only if

it is self-adjoint on cones ρ of dimension m.

Proof. This follows by induction on the dimension of a cone from the formula (7). �

Lemma 3.11. Let F be a Poincaré sheaf on ∆≥m. Then there exists a homomorphism

L : F → F of degree em that is self-adjoint with respect to the pairings on the stalks Fσ

and such that the induced homomorphism L : F0 → F1 is injective.

Proof. For dim ρ = m, let Lρ : Fρ → Fρ be a self-adjoint homomorphism of degree
em. (Note that Fρ ≃ C[xm]⊕aρ for some aρ ≥ 0.) We claim that a suitable collection of
Lρ induces the required L. For this we need to check that Lρ can be extended to cones
τ of dimension m + 1 (hence can be extended to all cones), and that on such τ it defines
an injection F0

τ → F1
τ .

Let dim τ = m + 1 and consider the augmented cellular complex of τ :

0 → Fτ/xm+1Fτ →
⊕

ρ<τ

Fρ → Gτ → 0.

Here Gτ ≃ Ca for some a ≥ 0,
⊕

ρ<τ Fρ ≃ C[xm]⊕2a and Fτ/xm+1Fτ ≃ C[xm]⊕a ⊕

C[xm][−em]⊕a.

The maps Lρ are compatible with the zero map Gτ → Gτ of the augmentation. It
follows that Lρ induce a map Lτ : Fτ → Fτ , compatible with restriction maps, hence
there is an extension to a morphism L : F → F .

Let V =
⊕

ρ<τ Fρ ≃ C2a and let K ≃ Ca be the kernel of V → Gτ . Then K = F0
τ .

The map Lρ comes from a linear map Lρ = 1
x
Lρ : Fρ → Fρ. The maps Lρ together

define a linear map LV : V → V . Now the condition that L is injective is equivalent to
Lτ : F0

τ → F1
τ being injective, which is equivalent to the condition that the intersection

of K and LV (K) is zero.
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Let us also bring the Poincaré pairing into the picture. We have a non-degenerate
symmetric pairing on each Fρ, combined to a pairing on V . The pairing on Fτ induces
a non-degenerate pairing between F0

τ and F1
τ , which restricts to the zero pairing on F0

τ ,
hence the compatibility condition implies that the pairing on V restricted to K is zero.
In other words, K = K⊥. The proof that a suitable set of Lρ gives a required L is given
in the lemma below.

Finally, let us consider the case when L is defined by a multiplication with an element
in L ∈ Γ(A,∆) of degree em. In this case the linear maps Lρ are given my multiplication
with a constant cρ (where L|ρ = cρxm). Note also that since the restriction maps resτ

ρ

are surjective, the projection V → Fρ maps K onto Fρ. Thus, if the conjecture below is
true then L defines an injective morphism. �

Lemma 3.12. Let V = ⊕Vi be a finite dimensional vector space. Suppose that each Vi

has a non-degenerate symmetric bilinear pairing, giving a pairing on V . Let K ⊂ V be

a subspace such that K ⊂ K⊥. Then there exist self-adjoint linear maps Li : Vi → Vi,

combined to L : V → V , satisfying K⊥ ∩ L(K) = 0.

Proof. Let v1, . . . , v2a be an orthogonal basis of V consisting of elements from Vi and
let y1, . . . , y2a be the dual basis giving coordinates on V . Let T be the algebraic torus of
dimension dim V acting on V by:

(t1, . . . , t2a) · (y1, . . . , y2a) = (t1y1, . . . , t2ay2a).

An element t ∈ T defines a linear map V → V of the required type. We claim that for a
general t we have K⊥ ∩ t(K) = 0.

Now V has finitely many T -orbits. By Kleiman-Bertini theorem, for a general t, the
restrictions of K⊥ and K to any orbit O intersect transversely. Thus, it suffices to show
that the expected dimension of this intersection is zero.

Let W ⊂ V be a subspace spanned by a subset of the vj . Then the pairing on V
restricts to a non-degenerate pairing on W . Since K ⊂ K⊥, it follows that

dim(K⊥ ∩ W ) + dim(K ∩ W ) ≤ dim(W ). �

Conjecture 3.13. Let the notation be as in the previous lemma. Additionally assume

that the projections V → Vi map K onto Vi for each i.Then the statement of the lemma

remains true if we let Li be multiplication by some constant ci.

Remark 3.14. Starting with a Poincaré sheaf F on ∆≥m, we apply the previous lemmas to
perform the main construction on F and produce new sheaves Q and C. Then inductively
we apply the same construction on C and Q. As explained above, we should consider C
as coming from a sheaf C′ on ∆≥m+1, so that the main construction should be applied
to C′ rather than C. Let us show that we don’t need C′ for the existence of the required
L : C → C.

Recall that C was defined by the exact sequence of minimally flabby sheaves on ∆≥m+2:

0 → Q[em − em+1] → F0/xm+1F
0 → C → 0.
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On the sheaf F0 we can define a bilinear pairing by the same formula as on C. This pairing
is degenerate, but it induces the pairing on C. Now as in Lemma 3.11 we construct a
homomorphism L : F0 → F0 of degree em+1. We claim that this homomorphism induces
the injective homomorphism C0 → C1. Indeed, we are reduced to the same Lemma 3.12.
The difference now is that we may have a strict inclusion K ⊂ K⊥, while the two spaces
were equal in the proof of Lemma 3.11.

Let us now put everything together and finish the proof of Theorem 1.2. We start
with the Poincaré sheaf L|∆≥1 and apply the main construction to produce new Poincaré
sheaves C and Q. Then inductively we apply the main construction to C and Q. These
constructions give a Lefschetz operation on each stalk Lσ/xdLσ, dimσ = d. Considering

L1̂/xn+1L1̂ ≃ Γ(L,∆),

we get a Lefschetz operation on Γ(L,∆) as stated in the theorem.
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Fans, Tôhoku Math. J. 54 (2002) 1-41.
[2] M.M. Bayer and A. Klapper, A new index for polytopes, Discrete Comput. Geom. 6 (1991), 33-47.
[3] P. Bressler and V. A. Lunts, Intersection cohomology on nonrational polytopes, Compositio Math.

135 (2003), no. 3, 245-278.
[4] M. Brion, The Structure of the Polytope Algebra, Tôhoku Math. J. 49, 1997, 1-32.
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