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Plane curves and contact geometry

Lenhard Ng

Dedicated to the memory of Raoul Bott, who taught me algebraic topology.

Abstract. We apply contact homology to obtain new results in the problem of dis-
tinguishing immersed plane curves without dangerous self-tangencies.

1. Introduction

The purpose of this manuscript is to show that contact geometry, and in particular
Legendrian knot theory and contact homology, can be used to give new information about
plane curves without dangerous self-tangencies. Throughout, the term “plane curve” will
refer to an immersion S1 → R

2 up to orientation-preserving reparametrization, i.e., an
oriented immersed plane curve in R

2.

Definition 1. A self-tangency of a plane curve is dangerous if the orientations on the
tangent directions to the curve agree at the tangency. Two plane curves without dangerous
self-tangencies are safely homotopic if they are homotopic through plane curves without
dangerous self-tangencies.

A generic homotopy of plane curves may contain three types of singularities, of which
one is the dangerous self-tangency; see Figure 1. Arnold [1, 2] initiated the study of plane
curves up to safe homotopy, in particular introducing a function J+ on plane curves
without dangerous self-tangencies. In the literature, any function of plane curves without
dangerous self-tangencies which does not change under safe homotopy is called a J+-type
invariant.

The key point of interest of plane curves without dangerous self-tangencies is their
close link to contact geometry, first noted by Arnold. There is a natural way to associate
to any such plane curve a Legendrian knot in J 1(S1), the 1-jet space of S1, which is a
contact manifold. We call this the conormal knot of the plane curve. For details, see
Section 2.1.

The conormal knot is a special case of a construction which associates a Legendrian
submanifold to any embedded submanifold of any manifold, or to any immersed subman-
ifold without dangerous self-tangencies. This construction has recently been applied to
construct new invariants of knots in S3, and potentially yields interesting isotopy invari-
ants of arbitrary submanifolds; see [5] or [12] for an introduction.
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(a)

(b)

(c)

Figure 1. Singularities (“perestroikas”) encountered in homotopies of
plane curves: (a) triple point; (b) safe self-tangency; (c) dangerous self-
tangency.

There are several well-known J+-type invariants of plane curves, all arising from the
conormal knot construction. The simplest is the Whitney index, or the degree of the
Gauss map of the plane curve. This is invariant under safe homotopy since it is invariant
more generally under regular homotopy; it also counts the number of times the conormal
knot winds around the base of the solid torus J 1(S1).

A more nontrivial J+-type invariant, as observed by Arnold, is simply the knot type
of the conormal knot in the solid torus. More interesting still, since the conormal is
Legendrian, the contact planes along the conormal knot give it a framing, and so the
framed knot type of the conormal knot is invariant under safe homotopy. The framing is
measured by a number which is Arnold’s original J+ invariant.

To the author’s knowledge, all previous work on J+-type invariants is based on studying
the framed knot type of the conormal knot. For instance, Goryunov [9] examined the space
of finite type invariants of plane curves without dangerous self-tangencies, and Chmutov,
Goryunov, and Murakami [4] introduced a J+-type invariant in the form of a HOMFLY
polynomial for the framed conormal knot.

On the other hand, two safely homotopic plane curves have conormal knots which
are isotopic not just as framed knots, but as Legendrian knots. We will see that the
Legendrian type of the conormal knot gives a finer classification of plane curves than
the framed knot type. The fact (essentially) that Legendrian isotopy is a subtler notion
than framed isotopy was famously demonstrated by Chekanov [3] for knots in R

3, using
a combinatorial form of Legendrian contact homology [6]. In this paper, we show that
contact homology gives a similar result in our case.

Theorem 1 (see Propositions 3 and 4). There are (arbitrarily many) plane curves with
the same framed conormal knot type which are not safely homotopic.
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(i)

(ii)

(iii)

(iv)

Figure 2. Pairs of plane curves, along with their conormal knots, that
are distinguished by increasingly subtle invariants: (i) Whitney index;
(ii) conormal knot type; (iii) framed conormal knot type (Arnold’s J+

invariant); (iv) Legendrian conormal knot type.

In the language of Legendrian knot theory, we can rephrase this result: there are arbi-
trarily many plane curves whose conormal knots all have the same classical invariants but
are not Legendrian isotopic.

An example of a pair of plane curves satisfying the conditions in Theorem 1 is given
by the bottom line of Figure 2. Note that this “pair” is actually the same plane curve but
with different orientations. Proposition 3 uses contact homology to distinguish between
these curves.

We review definitions in Section 2.1, and present an algorithm for drawing conormal
knots in Section 2.2. Section 2.3 gives the proof of our main result, Theorem 1. In
Section 2.4, we show that contact homology gives new information about loops of plane
curves as well.
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2. Results and Proofs

2.1. The conormal knot

Let C be a plane curve. At each point x ∈ C, the orientation on C determines two
unit vectors, vx in the direction of C and wx given by rotating vx 90◦ counterclockwise.

Definition 2. The conormal knot of C is the subset of the unit cotangent bundle ST ∗
R

2

given by

{ξ ∈ ST ∗
R

2 | ξ lies over some x ∈ C and 〈ξ, vx〉 = 0, 〈ξ, wx〉 = 1}.

The conormal knot inherits an orientation from the orientation on C, since each point on
C yields one point in the conormal knot.

Here the metric on the fibers of T ∗
R

2 used to define ST ∗
R

2 is dual to the standard
metric on R

2. If C has no dangerous self-tangencies, then its conormal knot is embedded
in ST ∗

R
2, and so it makes sense to use the term “knot.” We remark that the conormal

knot is actually one half of the usual unit conormal bundle over the plane curve; the
orientation of the plane curve, along with the orientation of R

2, induces a coorientation
on the curve, which picks out half of the conormal bundle.

The space ST ∗
R

2 has a natural contact structure given by the kernel of the 1-form
α = p1 dq1 + p2 dq2, where q1, q2 are coordinates on R

2 and p1, p2 are dual coordinates in
the cotangent fibers. It is easy to check that the conormal knot K of any plane curve is
Legendrian with respect to this contact structure, i.e., that α|K = 0.

Topologically, ST ∗
R

2 ∼= S1 × R
2 is a solid torus, and it will be more useful for us to

view it as the 1-jet space J 1(S1) ∼= T ∗S1 × R. If we set coordinates θ, y, z on J 1(S1) ∼=
(R/2πZ)×R×R, then J 1(S1) has a natural contact form α = dz−y dθ. We can identify
ST ∗

R
2 and J 1(S1) by setting θ = arg(p1 + ip2) (the argument of the vector (p1, p2)),

z = q1 cos θ + q2 sin θ, y = −q1 sin θ + q2 cos θ; this map identifies the contact structures
as well.

It is convenient to picture a Legendrian knot in J 1(S1) in terms of its front, or pro-
jection to (R/2πZ)×R given by the θz coordinates. In the subject, “front” is sometimes
used in a different sense, namely as a cooriented plane curve with cusps; for clarity, we will
avoid this connotation. A generic Legendrian knot has a front whose only singularities
are double points and cusps. We can recover a Legendrian knot from its front by setting
y = dz/dθ; in particular, there is no need to specify over- and undercrossing information
for a front. We depict (R/2πZ)× R by letting θ be the horizontal axis and z the vertical
axis, and drawing dashed vertical lines to represent the identified lines θ = 0 and θ = 2π.
See Figure 2 for examples of fronts in J 1(S1).

Any front in J 1(S1) has three “classical” invariants under Legendrian isotopy. The
first is the knot type of the front in J 1(S1), obtained by smoothing cusps and resolving
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crossings in the usual way. The other two are the Thurston–Bennequin number tb and
rotation number r:

tb = # + # − # − # − #

r =
1

2

(

# + # − # − #

)

.

We note that the Thurston–Bennequin number in J 1(S1) was first introduced by Tabach-
nikov [14].

We now examine the front K of the conormal knot of a plane curve C. There is a
simple description for K: any point (q1, q2) on C, with unit tangent vector (cos ϕ, sin ϕ),
gives the point (θ, z) = (ϕ+π/2,−q1 sinϕ+q2 cos ϕ) in K, and K is obtained by allowing
(q1, q2) to range over C. Points of inflection of C correspond to cusps of K, and it is easy
to check that any right cusp of K is traversed upwards and any left cusp downwards; just
draw a neighborhood of an inflection point of C.

As for the classical Legendrian invariants of K, since K has equal numbers of left and
right cusps, it follows that r(K) = 0. The Thurston–Bennequin number of K measures
framing and is essentially Arnold’s J+ invariant: tb(K) = J+(K)+n(K)2−1, where n(K)
is the winding number of K around S1. Hence the framed knot type of K determines all
classical information about K.

2.2. Drawing the conormal knot front

We have already discussed how to define the conormal knot front of a plane curve, but
the definition is not very useful computationally. Here we present an algorithm for easily
obtaining a front isotopic to the conormal knot front.

Call a plane curve rectilinear if it is completely composed of line segments parallel to
either coordinate axis, along with arbitrarily small smoothing 90◦ corners, and no two line
segments lie on the same (horizontal or vertical) line. Clearly any plane curve is isotopic
to a rectilinear curve, and so it suffices to describe the conormal front for any rectilinear
curve.

For ease of notation, label the coordinate axes x and y rather than q1 and q2. To each
line segment L in a rectilinear plane curve, we associate the following point in (R/2πZ)×R:

• (π/2, y) if L is in the +x direction and y is the y coordinate of L;
• (π,−x) if L is in the +y direction and x is the x coordinate of L;
• (3π/2,−y) if L is in the −x direction and y is the y coordinate of L;
• (0, x) if L is in the −y direction and x is the x coordinate of L.

Next, “connect the dots” by joining the points corresponding to line segments which
share an endpoint. Finally, smooth the result, rounding corners and placing cusps where
necessary. See Figure 3.

Proposition 2. The resulting front in J 1(S1) is Legendrian isotopic to the front of the
rectilinear plane curve.
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Figure 3. Algorithm for obtaining the conormal knot from a plane curve.

Proof. It is clear that the conormal front for the rectilinear curve passes through the points
given in the algorithm above, since they comprise the conormal for the line segments
of the rectilinear curve. The conormals of the smoothing corners interpolate between
these points. The conormal front for a smoothing corner at the point (x, y) is given by
{(θ, x cos θ+y sin θ)} for some range of θ in an interval of length π/2. Hence the conormal
fronts for any two smoothing corners intersect either once or not at all. It follows that,
up to Legendrian isotopy, the conormals for the smoothing corners can be approximated
by the line segments joining points in the algorithm above. �

2.3. Nonhomotopic plane curves

We can use the algorithm from the previous section to show that there are plane curves
whose conormal knots have the same framed knot type but which are not Legendrian
isotopic.

Proposition 3. The plane curves in the bottom line of Figure 2 have the same framed
conormal knot type but are not safely homotopic.

Proof. The two plane curves give conormal knots which are topologically Whitehead links;
see Figure 4. Both conormal knots have tb = −3 (equivalently, J+ = −2).

We claim that the two conormal knots are not Legendrian isotopic. Indeed, applying
the Legendrian satellite construction (see the appendix of [13]) to the conormal fronts
and the stabilized unknot in R

3 yields two familiar Legendrian knots in R
3: these are
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Figure 4. Nonhomotopic plane curves, their rectilinear approxima-
tions, conormals, and smoothed conormal fronts.

Figure 5. The Legendrian satellites of the conormal knots from Fig-
ure 4 to the stabilized unknot produce nonisotopic Legendrian knots.

called “Eliashberg knots” in [7] and labeled E(2, 3) and E(1, 4). See Figure 5. The two
knots can be distinguished by their contact homology differential graded algebras [3]; in
particular, E(2, 3) has Poincaré polynomial 2t+ t−1 and E(1, 4) has Poincaré polynomial
t3 +t+t−3. It follows that the two conormal knots in J 1(S1) are not Legendrian isotopic,
as desired. �

We can use the plane curves from Proposition 3 to produce an arbitrarily large family
of plane curves whose conormal knots have the same classical invariants but are not
Legendrian isotopic. For r, s ≥ 0, let Cr,s be the plane curve shown in Figure 6, which
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Figure 6. The “connected sum” plane curve Cr,s.

T+:

T−:

Figure 7. The conormal knot for C2,0. To obtain the conormal knots
for C1,1 and C0,2, replace one or both of the boxed tangles T+ by T−.

can be viewed as a connected sum of the plane curves from Proposition 3. (Note however
that the connected sum operation on plane curves is not well-defined.)

Proposition 4. For fixed n ≥ 1, the n plane curves Cr,s, r + s = n, have the same
framed conormal knot type but are not safely homotopic.

Sketch of proof. The details of the proof require some working familiarity with computa-
tions in contact homology for Legendrian knots in standard contact R

3, along the lines
of [8, 11]; we provide an outline here and leave the particulars to the reader.

We can use the algorithm from Section 2.1 to find the conormal fronts for Cr,s. When
r + s = n is fixed, the conormal fronts for Cr,s are identical except for n tangles. Of these
tangles, r are given by the tangle T+ defined in Figure 7, and s by T−. The situation for
n = 2 is shown in Figure 7; the picture for n > 2 is very similar. Note that the conormal
fronts for Cr,s are all isotopic as framed knots.
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Figure 8. A nontrivial loop γ of plane curves, and the corresponding
loop γ̃ of conormal knots.

Now consider the Legendrian satellite Kr,s of the conormal front for Cr,s to the sta-
bilized unknot, as in the proof of Proposition 3. We distinguish between the knots Kr,s

using Poincaré polynomials for contact homology.
It is easy to show that the Chekanov–Eliashberg differential graded algebra for Kr,s

has a graded augmentation, for instance because it has a ruling [8]. An examination
of Maslov indices shows that all crossings in Kr,s have degrees 0,±1,±2, except for the
crossings in the tangles T±; the two crossings in any T+ have degree 1 and −1, while the
two crossings in any T− have degree 3 and −3. Since the (linearized) differential of the
degree 3 crossing in any T− is 0, we conclude that any Poincaré polynomial for Kr,s has
t3 coefficient equal to s. It follows that the Legendrian knots Kr,s, r + s = n, are not
Legendrian isotopic, and thus that the plane curves Cr,s are not safely homotopic. �

2.4. Loops of plane curves

Here we consider loops in the space of plane curves. Let C denote the space of plane
curves, and let D ⊂ C be the discriminant of plane curves with dangerous self-tangencies.
We will present a loop which is contractible in C but noncontractible in C \ D.

Consider the loop γ in C \D pictured in Figure 8. This induces a loop γ̃ of Legendrian
knots in J 1(S1), also shown in Figure 8. As a loop of (framed) knots in J 1(S1), γ̃ is
contractible; this follows from the contractibility of the corresponding loop of trefoils in
S3, which itself follows from work of Hatcher (see [10]). On the other hand, by using
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the contact condition and work of Kálmán [10], we can show that γ̃ is nontrivial when
considered as a loop of Legendrian knots.

Proposition 5. The loop γ is contractible in C, but has order at least 5 in π1(C \ D).

Proof. It is straightforward to check that γ is contractible in C. Note that by the
h-principle, C is weakly homotopy equivalent to the space of free loops in S1×R

2, which is
not simply connected. However, γ can be represented by a loop of based loops in S1×R

2,
and the space of based loops is simply connected since π2(S

1 × R
2) = 0.

Now consider γ as a loop in C \ D. The loop γ̃ of Legendrian knots in J 1(S1) lifts
to an identical looking loop γ̃′ of Legendrian knots in the universal cover R

3 with the
standard contact structure. (Just ignore the dashed lines in Figure 8.) A special case of
Theorem 1.2 in [10] states that γ̃′ has order at least 5 in the Legendrian category; hence
γ̃ does as well. �
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