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Abstract. In an earlier paper, [9], we showed that the moduli space of deformations
of a smooth, compact, orientable special Lagrangian submanifold L in a symplectic
manifold X with a non-integrable almost complex structure is a smooth manifold
of dimension H1(L), the space of harmonic 1-forms on L. We proved this first by

showing that the linearized operator for the deformation map is surjective and then
applying the Banach space implicit function theorem. In this paper, we obtain the
same surjectivity result by using a different method, the Fredholm Alternative, which

is a powerful tool for compact operators in linear functional analysis.

1. Introduction

In [8], McLean showed that the moduli space of nearby submanifolds of a smooth,
compact special Lagrangian submanifold L in a Calabi-Yau manifold X is a smooth
manifold and its dimension is equal to the dimension of H1(L), the space of harmonic
1-forms on L. Special Lagrangian submanifolds have attracted much attention after
Strominger, Yau and Zaslow proposed a mirror Calabi-Yau construction using special
Lagrangian fibration [11]. For more information about special Lagrangian submanifolds
and examples, see [3], [4], [6].

One can also define special Lagrangian submanifolds of symplectic manifolds equipped
with a nowhere vanishing complex valued (n, 0)-form, [9]. Such symplectic manifolds were
studied recently by Smith, Thomas and Yau in [10].

In [9], we showed that the moduli space of special Lagrangian deformations of L in
a symplectic manifold with non-integrable almost complex structure is also a smooth
manifold of dimension b1(L), the first Betti number of L. In order to prove this result we
first modified the definition of a special Lagrangian submanifold for symplectic manifolds,
extended the parameter space of deformations and showed that the linearization of the
deformation map is onto and finally applied the infinite dimensional Banach space implicit
function theorem.

In this paper, we obtain the same result by a different approach. In particular, we
show that the linearized operator for the deformation map is invertible by using Fredholm
Alternative, a technique from linear functional analysis.
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2. Deformations of special Lagrangian submanifolds

Let (M2n, ω, J, g,Ω) be a Calabi-Yau manifold with a Kähler 2-form ω, a complex
structure J , a compatible Riemannian metric g and a nowhere vanishing holomorphic
(n, 0)-form Ω which is normalized with respect to ω. Then one can define a special
Lagrangian submanifold of M .

Definition 2.1. An n-dimensional submanifold L ⊆ M is special Lagrangian if L is
Lagrangian (i.e. ω|L ≡ 0) and Im(Ω) restricts to zero on L. Equivalently, Re(Ω) restricts
to be the volume form on L with respect to the induced metric.

McLean studied the deformations of compact special Lagrangian submanifolds in Calabi-
Yau manifolds and proved the following theorem, [8].

Theorem 2.2. The moduli space of all deformations of a smooth, compact, orientable
special Lagrangian submanifold L in a Calabi-Yau manifold M within the class of special
Lagrangian submanifolds is a smooth manifold of dimension equal to dim(H1(L)).

One natural generalization of McLean’s result is for symplectic manifolds. Now let
(X,ω, J, g, ξ) denote a 2n-dimensional symplectic manifold X with symplectic 2-form ω,
an almost complex structure J which is tamed by ω, the compatible Riemannian metric
g and a nowhere vanishing complex valued (n, 0)-form ξ = µ+ iβ, where µ and β are real
valued n-forms. Here we also take ξ to be normalized with respect to ω.

Note that the holomorphic form Ω is a closed form on Calabi-Yau manifolds. However,
on a symplectic manifold which is equipped with a nowhere vanishing complex-valued
(n, 0) form ξ, it is not necessarily closed.

For more general special Lagrangian calibrations, one can introduce an additional term
eiθ, where for each fixed angle θ we have a corresponding form eiθξ and its associated
geometry. Here θ is the phase factor of the calibration and using this as the new parameter
one can define special Lagrangian submanifolds in a symplectic manifold and study their
deformations, [9].

Definition 2.3. An n-dimensional submanifold L ⊆ X is special Lagrangian if L is La-
grangian (i.e. ω|L ≡ 0) and Im(eiθξ) restricts to zero on L, for some θ ∈ R. Equivalently,
Re(eiθξ) restricts to be the volume form on L with respect to the induced metric.

Now we recall the basics of a technique for compact operators in linear functional
analysis, known as Fredholm Alternative. One can find more information about the
subject in [5] and [7].

Let X and Y be two real Banach spaces.

Definition 2.4. A bounded linear operator K : X → Y is called compact provided for
each bounded sequence {uk}

∞
k=1

is precompact in Y.

Now let H denote a real Hilbert space, with inner product 〈·, ·〉.
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Theorem 2.5. Let K : H → H be a compact operator. Then

(i) ker(I −K) is finite dimensional,
(ii) Range(I −K) is closed,
(iii) Range(I −K) = ker(I −K∗)⊥,
(iv) ker(I −K) = {0} if and only if Range(I −K) = H
(v) dim ker(I −K) = dim ker(I −K∗).

Remark 2.6. Theorem 2.5 asserts in particular either
(a) for each f ∈ H, the equation u −Ku = f has a unique solution

or else
(b) the homogeneous equation u −Ku = 0 has solutions u 6= 0.
In addition, should (a) obtain the space of solutions of the homogeneous problem is

finite dimensional and the nonhomogeneous equation u − Ku = f has a solution if and
only if f ∈ ker(I −K∗)⊥.

Now we prove the following theorem, [9], using the Fredholm Alternative:

Theorem 2.7. Let L be a smooth, compact, orientable special Lagrangian submanifold
of a symplectic manifold X. Then the moduli space of all deformations of L in X within
the class of special Lagrangian submanifolds is a smooth manifold of dimension H1(L).

Proof. Given a domain Ω, let Ck,α(Ω) denote the Hölder norms defined as

Ck,α(Ω) = {f ∈ Ck(Ω)| [Dγf ]α,Ω < ∞, |γ| ≦ k}

where

[f ]α,Ω = Sup
x,y∈Ω, x 6=y

dist(f(x), f(y))

(dist(x, y))α
in Ω.

Then for a small vector field V and a scalar θ ∈ R, we define the deformation map as
follows,

F : C1,α(Γ(N(L))) × R → C0,α(Ω2(L)) ⊕ C0,α(Ωn(L))

F (V, θ) = ((expV )∗(−ω), (expV )∗(Im(eiθξ)).

Here N(L) denotes the normal bundle of L, Γ(N(L)) the space of sections of the normal
bundle, and Ω2(L), Ωn(L) denote the differential 2-forms and n-forms, respectively.

Since the symplectic form ω is closed on X and the restriction of Im(eiθξ) is a top
dimensional form on L the image of the deformation map F lies in the closed 2-forms and
closed n-forms. So by Hodge decomposition we get

F : C1,α(Γ(N(L))) × R → C0,α(dΩ1(L)) ⊕ C0,α(dΩn−1(L) ⊕Hn(L))

where dΩn−1(L) denotes the space of exact n-forms and Hn(L) denotes the space of
harmonic n-forms on L.

In [9], we computed the linearization of F at (0,0),
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dF (0, 0) : C1,α(Γ(N(L))) × R → C0,α(dΩ1(L)) ⊕ C0,α(dΩn−1(L) ⊕Hn(L))

where

dF (0, 0)(V, θ) =
∂

∂t
F (tV, sθ)|t=0,s=0 +

∂

∂s
F (tV, sθ)|t=0,s=0

= (−d(iV ω)|L, (iV dβ + d(iV β))|L + θ)

= (dv, ζ + d ∗ v + θ), where ζ = iV (dβ)|L.

Here iV is the interior derivative and v is the dual 1-form to the vector field V with
respect to the induced metric. For the details of local calculations see [8], [9].

Let x1, x2, ..., xn and x1, x2, ..., x2n be the local coordinates on L and X, respectively.
Then for any given normal vector field V = (V1

∂
∂xn+1

, ..., Vn
∂

∂x2n

) to L we can show that

ζ = iV (dβ)|L = −n(V1 · g1 + ... + Vn · gn)dvol

where gi (0 < i ≤ n) are combinations of coefficient functions in the connection-one forms.
One can decompose the n-form ζ = da + d∗b + h2 by using Hodge Theory and because

ζ is a top dimensional form on L, ζ is closed and the equation becomes

dF (0, 0)(V, θ) = (dv, da + d ∗ v + h2 + θ)

for some (n − 1)-form a and harmonic n-form h2. Also the harmonic projection for

ζ = −n(V1.g1 + ... + Vn.gn)dvol is given by (

∫
L

−n(V1.g1 + ... + Vn.gn)dvol)dvol and

therefore one can show that

da = −n(V1.g1 + ... + Vn.gn)dvol + (n

∫
L

(V1.g1 + ... + Vn.gn)dvol)dvol

and

h2 = (−n

∫
L

(V1.g1 + ... + Vn.gn)dvol)dvol.

One should note that the differential forms a and h2 both depend on V .
The Implicit Function Theorem says that F−1(0, 0) is a manifold and its tangent space

at (0, 0) can be identified with the kernel of dF .

(dv) ⊕ (ζ + d ∗ v + θ) = (0, 0)

which implies

dv = 0 and ζ + d ∗ v + θ = da + d ∗ v + h2 + θ = 0.

The space of harmonic n-forms Hn(L), and the space of exact n-forms dΩn−1(L), on L
are orthogonal vector spaces by Hodge Theory. Therefore, dv = 0 and da+d∗v+h2+θ = 0
is equivalent to dv = 0 and d ∗ v + da = 0 and h2 + θ = 0.
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One can see that the special Lagrangian deformations (the kernel of dF ) can be iden-
tified with the 1-forms on L which satisfy the following equations:

(i) dv = 0

(ii) d ∗ (v + κ(v)) = 0

(iii) h2 + θ = 0.

Here, κ(v) is a linear functional that depends on v and h2 is the harmonic part of ζ
which also depends on v. These equations can be formulated in a slightly different way
in terms of decompositions of v and ∗a.

If v = dp + d∗q + h1 and ∗a = dm + d∗n + h3 then we have

(i) dd∗q = 0

(ii) ∆(p ± m) = 0

(iii) h2 + θ = 0.

This formulation of the solutions will provide the proof of the surjectivity of the lin-
earized operator without using κ(v).

Now we show that the linearized operator is surjective at (0, 0). Recall that the defor-
mation map is given as

F : C1,α(Γ(N(L))) × R → C0,α(dΩ1(L)) ⊕ C0,α(dΩn−1(L) ⊕Hn(L)).

Therefore, for any given exact 2-form x and closed n-form y = u + z in the image of
the deformation map (here u is the exact part and z is the harmonic part of y), we need
to show that there exists a 1-form v and a constant θ that satisfy the equations,

(i) dv = x

(ii) d ∗ (v + κ(v)) = u

(iii) h2 + θ = z.

Alternatively, we can solve the following equations for p, q and θ.

(i) dd∗q = x

(ii) ∆(p ± m) = ∗u

(iii) h2 + θ = z,

where the star operator ∗ in (ii) is defined on L.
For (i), since x is an exact 2-form we can write x = d(dr + d∗s+harmonic form) by

Hodge Theory. Then one can solve (i) for q by setting q = s.
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For (ii), since ∆m = d∗dm = d∗ ∗ a = ∗d ∗ ∗a = ± ∗ da,

∆(p ± m) = ∆p ± ∗da,

where a depends on p and we obtain

∆p ± (−n(V1.g1 + ... + Vn.gn) + (n

∫
L

(V1.g1 + ... + Vn.gn)dvol)) = ∗u (1)

We can show the solvability as follows: Since V = (V1, ..., Vn) is the dual vector field
of the one form v = dp + d∗q + h1 we can write the equation (1) as

∆p ± (−n(v · g) + (n

∫
L

(v · g)dvol)) = ∗u (2)

∆p ± (−n(dp + d∗q + h1) · g + (n

∫
L

(dp + d∗q + h1) · g dvol)) = ∗u, (3)

where v · g represents the action of the one form v on the vector field g = (g1, .., gn) and

n

∫
L

(dp + d∗q + h1 · g)dvol is the harmonic projection of −n(dp + d∗q + h1) · g.

Then we get

∆p ± n(−(dp · g) +

∫
L

dp · g dvol) = ∗u ∓ n[−(d∗q + h1) · g +

∫
L

(d∗q + h1) · g dvol].

For simplicity we put

∗u ∓ n[−(d∗q + h1) · g +

∫
L

(d∗q + h1) · g dvol] = h.

Since

∫
L

∗ u = 0 and

∫
L

(d∗q + h1) · g dvol is equal to the harmonic projection of

(d∗q + h1) · g, we get

∫
L

h = 0.

Since L is a compact manifold without boundary, by Stoke’s Theorem,∫
L

dp · g dvol = −

∫
L

p · divg dvol

and the equation becomes

∆p ± n(−(dp · g) −

∫
L

p · divg dvol) = h.

Then by adding and subtracting p from the equation

(∆ − Id)p = [±n(−(dp · g) −

∫
L

p · divg dvol) − p + h]

and

p = (∆ − Id)−1[.....]p + h = K(p) + h
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where h = (∆ − Id)−1h.
Since

||(∆ − Id)−1

∫
L

p · divg||L2
1
≤ C|

∫
L

p · divg| ≤ C||p||L2

K(p) is a compact operator which takes bounded sets in L2 to bounded sets in L2
1. Also

note that we assumed here 1 /∈ spec(∆), and if this is not the case then we can modify
the above argument by adding and subtracting λp, λ /∈ spec(∆) from the equation.

Next we show that the set of solutions of the equation

∆p ± n(−(dp · g) −

∫
L

p · divg dvol) = 0 (4)

is constant functions and therefore of dimension 1. Note that this set of solutions also
satisfy the equation (Id −K)(p) = 0.

Also note that

∫
L

p · divg dvol is a constant which depends on p. We denote this as

C(p). At maximum values of p, ∆p will be negative which imply that C(p) ≤ 0 and at
minimum values of p, ∆p will be positive which imply that C(p) ≥ 0 so C(p) should be
zero. Then the maximum principle holds for the equation ∆p±n(−(dp ·g)) = 0 and since
L is a compact manifold without boundary the solutions of this equation are constant
functions. Hence the dimension of the kernel of (Id −K) is one.

Next we find the kernel of (Id −K∗).

∫
L

(∆p ± n(−(dp · g) −

∫
L

p · divg))q(y)dy (5)

=

∫
L

p∆q(y) ± n

∫
L

− (dp · g)q(y)dy − n

∫
L

(

∫
L

p · divg)q(y)dy.

=

∫
L

p(y)∆q ± n

∫
L

+ (pdiv(g · q)(y)dy − n

∫
L

p(x) · divg(x)

∫
L

q(y)dydx

=

∫
L

p(y)∆q ± n

∫
L

+ (pdiv(g · q)(y)dy − n

∫
L

p(y) · divg(y)

∫
L

q(x)dxdy

=

∫
L

p(y)(∆q ± n(+div(g · q) − divg

∫
L

q(x)dx)dy.

Since we assumed that 1 /∈ spec(∆), dim ker(Id−K∗)(∆−Id) =dim ker(Id−K∗) and
the kernel of (Id−K∗) is equivalent to the solution space of the equation

∆q ± n(+div(g · q) − divg

∫
L

q(x)dx) = 0. (6)

By Fredholm Alternative, the dimension of this kernel is 1 and one can check that a
constant function q = 1 satisfies this equation, therefore the kernel consists of constant

functions. Moreover these functions satisfy the compatibility condition

∫
h.q = 0.
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Then by Fredholm Alternative, Theorem 2.5, we can conclude the existence of solutions
of the equation

∆p ± (−n(V1.g1 + ... + Vn.gn) + (n

∫
L

(V1.g1 + ... + Vn.gn) dvol)) = ∗u.

(iii) is straightforward.
It follows from [9] that the image of the deformation map F1 lies in dΩ1(L) and the

image of F2 lies in dΩn−1(L) ⊕ Hn(L). So we conclude that dF is surjective at (0, 0).
Also since both the index of d + ∗d∗(v) and d + ∗d∗(v + κ(v)) are equal to b1(L) the
dimension of tangent space of special Lagrangian deformations in a symplectic manifold
is also b1(L), the first Betti number of L. By infinite dimensional version of the implicit
function theorem and elliptic regularity, the moduli space of all deformations of L within
the class of special Lagrangian submanifolds is a smooth manifold and has dimension
b1(L).

�

Remark 2.8. One can study the deformations of special Lagrangian submanifolds in
much more general settings. In a forthcoming paper we plan to study these deformations
using the techniques which we developed recently for associative submanifolds of G2

manifolds, [1], [2].

Acknowledgements. The author is grateful to Peng Lu for many useful conversations and
valuable comments.

References

[1] Akbulut, S. and Salur, S., Calibrated Manifolds and Gauge Theory, math.GT/0402368, 2004.

[2] Akbulut, S. and Salur, S., Associative Submanifolds of G2 Manifolds, math.GT/0412032, 2004.
[3] Bryant, R.L. Some examples of special Lagrangian Tori, Adv. Theor. Math. Phys. 3, no. 1, (1999)

83–90.
[4] Bryant, R.L. Calibrated embeddings in the special Lagrangian and coassociative cases, Special issue

in memory of Alfred Gray (1939–1998). Ann. Global Anal. Geom. 18, no. 3-4, (2000) 405–435.
[5] Evans, L.C. Partial Differential Equations, AMS, Graduate Studies in Mathematics, Vol.19,

(1998).
[6] Harvey, F.R. and Lawson, H.B. Calibrated Geometries, Acta. Math. 148 (1982), 47-157.

[7] Lax, P.D. Functional Analysis, Pure and Applied Mathematics, Wiley-Interscience Series of Texts,
Monographs, and Tracts, 2001.

[8] McLean, R.C. Deformations of calibrated submanifolds, Comm. Anal. Geom. 6, (1998), 705-747.

[9] Salur, S. Deformations of Special Lagrangian Submanifolds, Communications in Contemporary
Mathematics Vol.2, No.3 (2000), 365-372.

[10] Smith, I., Thomas, R.P., and Yau, S.T. Symplectic conifold transitions J. Differential Geom. 62,
no.2, (2002), 209–242.

[11] Strominger, A., Yau, S.T. and Zaslow, E., Mirror Symmetry is T-Duality, Nucl. Phys. B479

(1996), 243-259.

Department of Mathematics, Northwestern University, IL, 60208

E-mail address: salur@math.northwestern.edu

164


	1. Introduction
	2. Deformations of special Lagrangian submanifolds
	References

