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Moduli spaces of rational tropical curves

Grigory Mikhalkin

Abstract. This note is devoted to the definition of moduli spaces of rational tropical
curves with n marked points. We show that this space has a structure of a smooth
tropical variety of dimension n− 3. We define the Deligne-Mumford compactification
of this space and tropical ψ-class divisors.

This paper gives a detailed description of the moduli space of tropical rational curves
mentioned in [4]. The survey [4] was prepared under rather sharp time and volume
constraints. As a result the coordinate presentation of this moduli space from [4] contains
a mistake (it was over-simplified). In this paper we’ll correct the mistake and give a
detailed description on M0,5 as our main example.

1. Introduction: smooth tropical varieties

In this section we follow the definitions of [5] and [4].
The underlying algebra of tropical geometry is given by the semifield T = R ∪ {−∞}

of tropical numbers. The tropical arithmetic operations are “a + b” = max{a, b} and
“ab” = a + b. The quotation marks are used to distinguish between the tropical and
classical operations. With respect to addition T is a commutative semigroup with zero
“0T” = −∞. With respect to multiplication T

× = Tr{0T} ≈ R is an honest commutative
group with the unit “1T” = 0. Furthermore, the addition and multiplication satisfy the
distribution law “a(b+ c)” = “ab+ ac”, a, b, c ∈ T. These operations may be viewed as a
result of the so-called dequantization of the classical arithmetic operations that underlies
the patchworking construction, see [3] and [8].

These tropical operations allow one to define tropical Laurent polynomials. Namely, a
tropical Laurent polynomial is a function f : R

n → R,

f(x) = “
∑

j

ajx
j” = max

j
(aj + jx),

where jx denotes the scalar product, x ∈ (T×)n ≈ R
n, j ∈ Z

n and only finitely many
coefficients aj ∈ T are non-zero (i.e. not −∞).

Affine-linear functions with integer slopes (for brevity we call them simply affine func-
tions) form an important subcollection of all Laurent polynomials. Namely, these are
such functions f : R

n → R that both f and “1T

f
” = −f are tropical Laurent polynomials.

We equip T
n ≈ [−∞,∞)n with the Euclidean topology. Let U ⊂ T

n be an open set.
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Definition 1.1. A continuous function f : U → T is called regular if its restriction to
U ∩ R

n coincides with a restriction of some tropical Laurent polynomial to U ∩ R
n.

We denote the sheaf of regular functions on T
n with O (or sometimes OTn to avoid

confusion). Any subset X ⊂ T
n gets an induced regular sheaf OX by restriction. For our

purposes we restrict our attention only to the case when X is a polyhedral complex, i.e.
when X is the closure of a union of convex polyhedra (possibly unbounded) in R

n such
that the intersection of any number of such polyhedra is their common face. We say that
X is an k-dimensional polyhedral complex if it is obtained from a union of k-dimensional
polyhedra. These polyhedra are called the facets of X.

Let V ⊂ X be an open set and f ∈ OX(V ) be a regular function in V . A point x ∈ V

is called a “zero point” of f if the restriction of “1T

f
” = −f to W ⊂ V is not regular for

any open neighborhood W ∋ x. Note that it may happen that x is a “zero point” for
φ : U → T, but not for φ|X∩U . It is easy to see that if X is a k-dimensional polyhedral
complex then the “zero locus” Zf of f is a (k − 1)-dimensional polyhedral subcomplex.

To each facet of Zf we may associate a natural number, called its weight (or degree).
To do this we choose a “zero point” x inside such a facet. We say that x is a “simple
zero” for f if for any local decomposition into a sum (i.e. the tropical product) of regular
function f = “gh” = g+h on V near x we have either g or h affine (i.e. without a “zero”).
We say that the weight is l if f can be locally decomposed into a tropical product of l
functions with a simple zero at x.

A regular function f allows us to make the following modification on its domain
V ⊂ X ⊂ T

n. Consider the graph

Γf ⊂ V × T ⊂ T
n+1.

It is easy to see that the “zero locus”

Γ̄f ⊂ V × T

of the (regular) function “y + f(x)” (defined on V × T), where x is the coordinate on V

and y is the coordinate on T, coincides with the union of Γf and the undergraph

UΓf,Z = {(x, y) ∈ V × T | x ∈ Zf , y ≤ f(x)}.

Furthermore, the weight of a facet F ⊂ Γ̄f is 1 if F ∈ Γf (recall that as V is an unweighted
polyhedral complex all the weights of its facets are equal to one) and is the weight of the
corresponding facet of Zf if F ∈ UΓf,Z . We view Γ̄f as a “tropical closure” of the set-

theoretical graph Γf . Note that we have a map Γ̄f → V . We set Ṽ = Γ̄f to be the result

of the tropical modification µf : Ṽ → V along the regular function f . The locus Zf is
called the center of tropical modification.

The weights of the facets of Ṽ supplies us with some inconvenience as they should be
incorporated in the definition of the regular sheaf OṼ on Ṽ . Namely, the affine functions
defined by OṼ on a facet of weight w should contain the group of functions that come as
restrictions to this facet of the affine functions on T

n+1 as a subgroup of index w.
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Sometimes one can get rid of the weights of Ṽ by a reparameterization with the help
of a map V̄ → Ṽ that is given by locally linear maps in the corresponding charts. Indeed,
the restriction of µg : V̄ → Ṽ to a facet is locally given by a linear function between two
k-dimensional affine-linear spaces defined over Z. If its determinant equals to w then the
push-forward of OV̄ supplies an extension of OṼ required by the weights. Note however
that if w > 1 then the converse map is not defined over Z and thus is not given by
elements of OṼ .

Tropical modifications give the basic equivalence relation in Tropical Geometry. It can
be shown that if we start from T

k and do a number of tropical modifications on it then
the result is a k-dimensional polyhedral complex Y ⊂ T

n that satisfies to the following
balancing property (cf. Property 3.3 in [4] where balancing is restated in an equivalent
way).

Property 1.2. Let E ⊂ Y ∩R
N be a (k−1)-dimensional face and F1, . . . , Fl be the facets

of Y adjacent to F whose weights are w1, . . . , wl. Let L ⊂ R
N be a (N − k)-dimensional

affine-linear space with an integer slope and such that it intersects E. For a generic (real)
vector v ∈ R

N the intersection Fj∩(L+v) is either empty or a single point. Let ΛFj
⊂ Z

N

be the integer vectors parallel to Fj and ΛL ⊂ Z
N be the integer vectors parallel to L.

Set λj to be the product of wj and the index of the subgroup ΛFj
+ ΛL ⊂ Z

N . We say
that Y ⊂ T

n is balanced if for any choice of E, L and a small generic v the sum

ιL =
∑

j | Fj∩(L+v) 6=∅

λj

is independent of v. We say that Y is simply balanced if in addition for every j we can
find L and v so that Fj ∩ (L+ v) 6= ∅, ιL = 1 and for every small v there exists an affine
hyperplane Hv ⊂ L such that the intersection Y ∩ (L + v) sits entirely on one side of
Hv + v in L+ v while the intersection Y ∩ (Hv + v) is a point.

Definition 1.3 (cf. [5],[4]). A topological space X enhanced with a sheaf of tropical
functions OX is called a (smooth) tropical variety of dimension k if for every x ∈ X there
exist an open set U ∋ x and an open set V in a simply balanced polyhedral complex
Y ⊂ T

N such that the restrictions OX |U and OY |V are isomorphic.

Tropical varieties are considered up to the equivalence generated by tropical modifi-
cations. It can be shown that a smooth tropical variety of dimension k can be locally
obtained from T

k by a sequence of tropical modifications centered at smooth tropical
varieties of dimension (k − 1). This follows from the following proposition.

Proposition 1.4. Any k-dimensional simply balanced polyhedral complex X ⊂ R
n can

be obtained from T
k by a sequence of consecutive tropical modifications whose centers are

simply balanced (k − 1)-dimensional polyhedral complexes.

Proof. We prove this proposition inductively by n. Without the loss of genericity we may
assume that X is a fan, i.e. each convex polyhedron of X is a cone centered at the origin.
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The base of the induction, when n = k, is trivial. When n > k let us take an
(n − k)-dimensional affine-linear subspace L ⊂ R

n given by Property 1.2. Choose a
linear projection

λ : R
n → R

n−1

defined over Z and such that ker(λ) is a line contained in L.
The image λ(X) ⊂ R

n−1 is a k-dimensional polyhedral complex since L is transversal
to some facets of X. We claim that

λ|X : X → λ(X)

is a tropical modification once we identify R
n and R

n−1 × R. The center of this modifi-
cation is the locus

Zf = {x ∈ R
n−1 | dim(λ−1(x) ∩X) > 0}.

Here we use the dimension in the usual topological sense. Note that the (k−1)-dimensional
complex Zf ⊂ R

n−1 is simply balanced, existence of the needed (n−k)-dimensional affine-
linear spaces follows from the fact that X ⊂ R

n is simply balanced.
To justify our claim we note that near any point x ∈ Zf the subcomplex Y ⊂ X

obtained as the (Euclidean topology) closure of X r λ−1(Zf ) is a (set-theoretical) graph
of a convex function. This, once again, follows from the fact that X ⊂ R

n is simply
balanced, this time applied to the points in the facets on X r Y . Thus it gives a regular
tropical function f and it remains only to show that the the weight of any facet of E ⊂ Zf

is 1. But this follows, in turn, from the balancing condition at λ−1(E) ∩ Y . �

2. Tropical curves and their moduli spaces

The definition of tropical variety is especially easy in dimension 1. Tropical modifica-
tions take a graph into a graph (with arbitrary valence of its vertices) and the tropical
structure carried by the sheaf OX amounts to a complete metric on the complement of
the set of 1-valent vertices of the graph X (cf. [5], [6], [1]). Thus, each 1-valent vertex of
a tropical curve X is adjacent to an edge of infinite length.

A tropical modification allows one to contract such an edge or to attach it at any point
of X other than a 1-valent vertex. If we have a finite collection of marked points on X

then by passing to an equivalent model if needed we may assume that the set of marked
points coincides with the set of 1-valent vertices. (Of course, if X is a tree then we have
to have at least two marked points to make such assumption.)

The genus of a tropical curve X is dimH1(X). Let Mg,n be the set of all tropical
curves X of genus g with n distinct marked points. Fixing a combinatorial type of a
graph Γ with n marked leaves defines a subset UΓ ⊂ Mg,n consisting of marked tropical
curves with this combinatorics. A length of any non-leaf edge of Γ defines a real-valued
function on UΓ. Such functions are called edge-length functions. To avoid difficulties
caused by self-automorphisms of X from now on we restrict our attention to the case
g = 0.

42



Moduli spaces of rational tropical curves

Definition 2.1. The combinatorial type of a tropical curve X is its equivalence class up
to homeomorphisms respecting the markings.

Combinatorial types partition the set M0,n into disjoint subsets. The edge-length
functions define the structure of the polyhedral cone R

M
≥0 in each of those subsets (as the

lengths have to be positive). The number M here is the number of the bounded (non-leaf)
edges in X. By the Euler characteristic reasoning it is equal to n − 3 if X is (1- and)
3-valent, it is smaller if X has vertices of higher valence.

Furthermore, any face of the polyhedral cone R
M
≥0 coincides with the cone correspond-

ing to another combinatorial type, the one where we contract some of the edges of X to
points. This gives the adjacency (fan-like) structure on M0,n, so M0,n is a (non-compact)
polyhedral complex. In particular, it is a topological space.

Theorem 1. The set M0,n for n ≥ 3 admits the structure of an (n − 3)-dimensional
tropical variety such that the edge-length functions are regular within each combinatorial
type. Furthermore, the space M0,n can be tropically embedded in R

N for some N (i.e.
M0,n can be presented as a simply balanced complex).

Proof. This theorem is trivial for n = 3 as M0,3 is a point. Otherwise, any two disjoint
ordered pairs of marked points can be used to define a global regular function on M0,n

with values in R = T
×. Namely, each such ordered pair defines the oriented path on

the tropical curve X connecting the corresponding marked points. These paths can be
embedded.

Since the two pairs of marked points are disjoint, the intersection of the two corre-
sponding paths has to have finite length. We take this length with the positive sign if
the orientations agree and with the negative sign otherwise. This defines a function on
M0,n. We call such functions the double ratio functions.

Take all possible disjoint pairs of marked points and use them as coordinates for our
embedding

ι : M0,n → R
N ,

where N is the number of all possible decompositions of n into two disjoint pairs. The
theorem now follows from the following two lemmas. �

Note that, strictly speaking, each coordinate in R
N depends not only on the choice of

two disjoint pairs of marked points but also on the order of points in each pair. However,
changing the order in one of the pairs only reverses the sign of the double ratio. Taking an
extra coordinate for such a change of order would be redundant. Indeed, for any balanced
complex Y ⊂ R

N and any affine-linear function λ : R
N → R with an integer slope the

graph of λ is a balanced complex in R
N+1 isomorphic to the initial complex Y .

Lemma 2.2. The map ι is a topological embedding.

Proof. First, let us prove that ι is an embedding. The combinatorial type of X is deter-
mined by the set of the coordinates that do not vanish on X. Indeed, any non-leaf edge E
of the tree X separates the leaves (i.e. the set of markings) into two classes corresponding
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to the components of X r E. Let us take a coordinate in R
n that corresponds to four

marking points (union of the two disjoint pairs) such that two of these points belong to
one class and two to the other class. We call such a coordinate an E-compatible coor-
dinate. Note that an E-compatible coordinate vanishes on X if and only if the pairs of
markings defined by the coordinate agree with the pairs defined by the classes.

This observation suffices to reconstruct the combinatorial type of X. Furthermore, the
length of E equals to the minimal non-zero absolute value of the E-compatible coordi-
nates. This implies that ι is an embedding. �

Lemma 2.3. The image ι(M0,n) is a simply balanced complex in R
N .

Proof. This is a condition on codimension 1 faces of M0,n. First we shall check it for
the case n = 4. There are three ways to split the four marking points into two disjoint
pairs. Accordingly, there are three combinatorial types of 3-valent trees with three marked
leaves. Thus our space M0,4 is homeomorphic to the tripod, or the “interior” of the letter
Y , see Figure 1. Each ray of this tripod correspond to a combinatorial type of a 3-valent
tree with 4 leaves while the vertex correspond to the 4-valent tree.

2

1

2

3

4

1

3

2

4

1

4

3

Figure 1. The tropical moduli space M0,4 and its points on the cor-
responding edges.
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Up to the sign we have the total of three double ratios for n = 4. Let us e.g. take those
defined by the following ordered pairs: {(12), (34)}, {(13), (24)} and {(14), (23)} Each is
vanishing on the corresponding ray of the tripod. Let us parameterize each ray of the
tripod by its only edge-length t ≥ 0 and compute the corresponding map to R

3.
We have the following embeddings on the three rays

t 7→ (0, t, t), t 7→ (t, 0,−t), t 7→ (−t,−t, 0).

The sum of the primitive integer vectors parallel to the resulting directions is 0 and thus
ι(M0,4) is balanced.

In the case n > 4 the codimension 1 faces of M0,n correspond to the combinatorial
types of X with a single 4-valent vertex. Near a point inside of such face F the space M0,n

looks like the product of M0,4 and R
n−4. The factor R

n−4 comes from the edge-lengths
on F (its combinatorial type has n− 4 bounded edges) while the factor M0,4 comes from
perturbations of the 4-valent vertex (which result in a new bounded edge in one of the
three possible combinatorial types of the result).

We have a well-defined map from the union U of the F -adjacent facets to F by con-
tracting the new edge to a point. Note that the edge-length functions exhibit F as the
positive quadrant in R

n−4. Furthermore, in the combinatorial type of F we may choose 4
leaves such that contracting all other leaves will take place outside of the 4-valent vertex
(see Figure 2). This contraction defines a map U → M0,4.

Figure 2. One of the possible contractions of a tree with a 4-valent
vertex to the tree corresponding to the origin O ∈ M0,4.

The lemma now follows from the observation that the resulting decomposition into
M0,4 × R

n−4 agrees with the double ratio functions. Indeed, note that the complement
of the 4-valent vertex for a curve in the combinatorial type F is composed of four compo-
nents. If the double ratio is such that its four markings are in one-to-one correspondence
with these components then at U it coincides with sum of the pull-back of the correspond-
ing double ratio in F with the pull-back of the corresponding double ratio in M0,4. If one
of the four components is lacking a marking from the double ratio ρ then ρ|U coincides
with the corresponding pull-back from F . �

Remark 2.4. The functions Zxi,xj
from [4] do not define regular functions on M0,n, con-

trary to what is written in [4]. These functions were a result of an erroneous simplification
of the double ratio functions. But these functions cannot be regular as they are always
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positive and Proposition 5.12 of [4] is not correct. Even the projectivization of the em-
bedding is not a balanced complex already for M0,5. One should use the (non-simplified)
double ratios instead.

Clearly, the space M0,n is non compact. However it is easy to compactify it by al-

lowing the lengths of bounded edges to assume infinite values. Let M0,n be the space
of connected trees with n (marked) leaves such that each edge of this tree is assigned a
length 0 < l ≤ +∞ so that each leaf has length necessarily equal to +∞.

Corollary 2.5. The space M0,n is a smooth compact tropical variety.

To verify that M0,n is smooth near a point x at the boundary

∂M0,n = M0,n r M0,n

we need to examine those double ratios that are equal to ±∞ at x. There we use only
those signs that result in −∞ do that the map takes values in T

N .

Remark 2.6. Note that the compactification M0,n ⊃ M0,n corresponds to the Deligne-
Mumford compactification in the complex case as under the 1-parametric family collapse
of a Riemannian surface to a tropical curve the tropical length of an edge corresponds to
the rate of growth of the complex modulus of the holomorphic annulus collapsing to that
edge.

Furthermore, similarly to the complex story the infinite edges decompose a tropical
curve into components (where the non-leaf edges are finite). Any tropical map from an
infinite edge which is bounded would have to be constant and thus the image would have
to split as a union of several tropical curves in the target. Such decompositions were used
by Gathmann and Markwig in their deduction of the tropical WDVV equation in R

2, see
[1].

3. Tropical ψ-classes

Note that we do have the forgetting maps

ftj : M0,n+1 → M0,n

for j = 1, . . . , n + 1 by contracting the leaf with the j-marking. This map is sometimes
called the universal curve. Each marking k 6= j defines a section σk of ftj . The conormal
bundle to σk defines the ψk-class in complex geometry (to avoid ambiguity we take j =
n+ 1). This notion can be adapted to our tropical setup.

Recall that so far our choice of tropical models in their equivalence class was such that
the leaves of the tropical curves were in 1-1 correspondence with the markings. For this
choice we have the images σk(M0,n) contained in the boundary part of M0,n+1. This
presentation is compatible with the point of view when we think about line bundles in
tropical geometry to be given by H1(X,O×). Here X is the base of the bundle and O×

is the sheaf of “non-vanishing” tropical regular functions. Such functions are given in the
charts to R

N by affine-linear functions with integer slopes, see [6]. (Recall that T
× = R

is an honest group with respect to tropical multiplication, i.e. the classical addition.)
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However, the following alternative construction allows one to obtain the ψ-classes more
geometrically (as we’ll illustrate in an example in the next section). This approach is based
on contracting the leaves marked by number k.

The canonical class of a tropical curve is supported at its vertices, namely we take
each vertex with the multiplicity equal to its valence minus 2, cf. [6]. Furthermore,
the cotangent bundle near a 3-valent vertex point can be viewed as a neighborhood of
the origin for the line given by the tropical polynomial “x + y + 1T” in R

2, so the +1
self-intersection of the line gives the required multiplicity for the canonical class at any
3-valent vertex. Thus we can use the intersections with the corresponding codimension
1 faces in M0,n to define the ψ-classes there. In other words, tropical ψ-classes will be
supported on the (n− 4)-dimensional faces in M0,n.

Namely, for a ψk-class we have to collect those codimension 1 faces in M0,n whose
only 4-valent vertex is adjacent to the leaf marked by k. After a contraction of this leaf
we get a 3-valent vertex, thus the multiplicity of every face in a ψ-divisor is 1. We arrive
at the following definition.

Definition 3.1. The tropical ψk-divisor Ψk ⊂ M0,n is the union of those (n − 4)-
dimensional faces that correspond to tropical curves with a 4-valent vertex adjacent to
the leaf marked by k, k = 1, . . . , n. Each such face is taken with the multiplicity 1.

Proposition 3.2. The subcomplex Ψk is a divisor, i.e. satisfies the balancing condition.

Proof. Recall that the balancing condition is a condition at (n− 5)-dimensional faces. In
M0,n there are two types of such faces, one corresponding to tropical curves with two
4-valent vertices and one corresponding to a tropical curve with a 5-valent vertex.

Near the faces of the first type the moduli space M0,n is locally a product of two copies
of M0,4 and R

n−5. The Ψ-divisor is a product of R
n−5, one copy of M0,4 and the central

(3-valent) point in the other copy of M0,4 (this is the point corresponding to the 4-valent
vertex adjacent to the leaf marked by k). Thus the balancing condition holds trivially in
this case.

Near the faces of the second type the moduli space M0,n is locally a product of M0,5

and R
n−5. As in the proof of Theorem 1 each double ratio decomposes to the sum

of the corresponding double ration in M0,5 (perhaps trivial if two of the markings for
the double ratio correspond to the same edge adjacent to the 5-valent vertex) and an
affine-linear function in R

n−5. Thus it suffices to check only the balancing condition for
the Ψ-divisors in M0,5. This example is considered in details in the next section. The
balancing condition there follows from Proposition 4.1. �

Conjecturally, the tropical Ψ-divisors are limits of some natural representatives of the
divisors for the complex ψ-classes under the collapse of the complex moduli space onto
the corresponding tropical moduli space M0,n. Note that our choice for the tropical

Ψ-divisor is not contained in the boundary ∂M0,n ⊂ M0,n (cf. the calculus of the
complex boundary classes in [2]), but comes as a closure of a divisor in M0,n.
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4. The space M0,5

We have already described the moduli space M0,4 as the tripod of Figure 1. It has
only one 0-dimensional face O ∈ M0,4. This point (considered as a divisor) coincides with
the divisors Ψ1 = Ψ2 = Ψ3 = Ψ4. The description of M0,5 is somewhat more interesting.

There are 15 combinatorial types of 3-valent trees with 5 marked leaves. If we forget
about the markings there is only one homeomorphism class for such a curve (see Figure
3). To get the number of non-isomorphic markings we take the number all possible
reordering of vertices (equal to 5! = 120) and divide by 23 = 8 as there is an 8-fold
symmetry of reordering. Indeed there is one symmetry interchanging the left two leaves,
one interchanging the right two leaves and the central symmetry around the central leave
of the 3-valent tree on top of Figure 3.

3

3

51

42

2

3

4

1 15 5

2 4

Figure 3. Adjunction of combinatorial types corresponding to the
quadrant connecting the rays (45) and (12).

Thus the space M0,5 is a union of 15 quadrants R
2
≥0. These quadrants are attached

along the rays which correspond to the combinatorial types of curves with one 4-valent
vertex. Such curves also have one 3-valent vertex which is adjacent to two leaves and the
only bounded edge of the curve, see the bottom of Figure 3. Such combinatorial types are
determined by the markings of the two leaves emanating from the 3-valent vertex. Thus

we have a total of

(

5
2

)

= 10 of such rays.
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(24)

(45)

(35)

(25) (13)

(14)

(15) (23)

(12)

(34)

Figure 4. The link of the origin in M0,5.

The two boundary edges of the quadrant correspond to contractions of the bounded
edges of the combinatorial type as shown on Figure 3. The global picture of adjacency of
quadrants and rays is shown on Figure 4 where the reader may recognize the well-known
Petersen graph, cf. the related tropical Grassmannian picture in [7]. Vertices of this
graph correspond to the rays of M0,5 while the edges correspond to the quadrants. Thus
the whole picture may be interpreted as the link of the only vertex O ∈ M0,5 (the point
O corresponds to the tree with a 5-valent vertex adjacent to all the leaves).

To locate the Ψk-divisor we recall that the kth leaf has to be adjacent to a 4-valent
vertex if it appears in Ψk. This means that Ψk consists of 6 rays that are marked by pairs
not containing k.

Proposition 4.1. The subcomplex Ψk ⊂ M0,5 is a divisor.

Proof. Since the whole M0,5 is S5-symmetric it suffices to check the balancing condition
only for Ψ1. The embedding M0,5 ⊂ R

N is given by the double ratios, so it suffices to
check that for each double ratio function the sum of its gradients on the six rays of Ψ1

vanishes.
If the double ratio is determined by two pairs disjoint from the marking 1, e.g. by

{(23), (45)} then its restriction onto the six rays of Ψ1 is the same as its restriction to
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the three rays M0,4 taken twice and thus balanced. Namely its gradient is 1 on the rays
(24) and (35); −1 on the rays (25) and (34); and 0 on the rays (23) and (45).

If the four markings of the double ratio contain the marking 1 then thanks to the
symmetry we may assume that the double ratio is given by {(12), (34)}. It vanishes on
the rays (34), (35), (45) and (25); it has gradient +1 on the ray (24) and the gradient −1
on the ray (23). Once again, the balancing condition holds. �

As our final example of the paper we would like to describe explicitly the universal
curve

ft5 : M0,5 → M0,4.

This is presented on Figure 5. Once again, we interpret the Peterson graph as the link L

Figure 5. The three fibers and four sections of the universal curve
ft5 : M0,5 → M0,4.

of the vertex O ∈ M0,5. Similarly, the link of the origin in M0,4 consists of three points.
Thus L is the union of the fibers of ft5 (away from a neighborhood of infinity) over these
three points and four copies of a neighborhood of the origin in M0,4 corresponding to the
four sections σ1, σ2, σ3 and σ4 of the universal curve. Figure 5 depicts the fibers in L

with solid lines and the sections with dashed lines.
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