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The Kähler-Ricci flow on Kähler surfaces

Jian Song

Abstract. The existence of Kähler-Einstein metrics on a compact Kähler manifold
of definite or vanishing first Chern class has been the subject of intense study over the
last few decades, following Yau’s solution to Calabi’s conjecture. The Kähler-Ricci
flow is a canonical deformation for Kähler metrics. In this expository note, we apply
some known results of the Kähler-Ricci flow and give a metric classification for Kähler
surfaces with semi-negative or positive first Chern class.

1. Introduction

The problem of finding Kähler-Einstein metrics on a compact Kähler manifold has
been the subject of intense study over the last few decades. In his solution to Calabi’s
conjecture, Yau [Ya1] proved the existence of a Kähler-Einstein metric on compact Kähler
manifolds with vanishing or negative first Chern class. A proof of Yau’s theorem is given
by Cao [Ca] using the Kähler-Ricci flow.

As is well-known, Hamilton’s Ricci flow has become one of the most powerful tools
in geometric analysis [Ha1]. The Ricci flow can be applied to give an independent proof
of the classical uniformization for Rieman surfaces (c.f. [Ha2, Ch, ChLuTi]). Recently
Perelman [Pe] has made a major breakthrough in studying the Ricci flow with remarkable
applications to the study of 3-manifolds. The convergence of the Kähler-Ricci flow on
Kähler-Einstein manifolds with positive first Chern class was claimed by Perelman and it
has been generalized to any Kähler manifolds admitting a Kähler-Ricci soliton by Tian
and Zhu with certain assumptions on the initial metrics [TiZhu]. Previously, it was
proved in [ChTi] that the Kähler-Ricci flow converges to a Kähler-Einstein metric if the
bisectional curvature of the initial Kähler metric is non-negative and positive at least at
one point.

Most algebraic varieties do not admit Kähler-Einstein metrics, for example, those with
indefinite first Chern class, so it is a natural question to ask if there exist any well-defined
canonical metrics on these varieties or on their canonical models. Tsuji [Ts] applied the
Kähler-Ricci flow to produce a canonical singular Kähler-Einstein metric on non-singular
minimal algebraic varieties of general type. In [SoTi], new canonical metrics on the
canonical models of projective varieties of positive Kodaira dimension were defined and
such metrics were constructed by the Kähler-Ricci flow on Kähler surfaces.
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In this expository note, we present a metric classification for Kähler surfaces with
non-negative Kodaira dimension or positive first Chern class by the Kähler-Ricci flow.

2. Preliminaries

Let X be an n-dimensional compact Kähler manifold. A Kähler metric can be given
by its Kähler form ω on X. In local coordinates (z1, ..., zn), ω can be written in the form

ω =
√
−1

n
∑

i,j=1

gij̄dzi ∧ dz̄j ,

where {gij̄} is a positive definite hermitian matrix function. The Kähler form ω is a closed
(1, 1)-form by the Kähler condition. In other words, for i, j, k = 1, ..., n,

∂gik̄

∂zj
=

∂gjk̄

∂zi
and

∂gkī

∂z̄j
=

∂gkj̄

∂z̄i
.

We also define the space of plurisubharmonic functions with respect to a Kähler form ω
by

P(X,ω) = {ϕ ∈ C∞(X) | ω +
√
−1∂∂ϕ > 0}.

The curvature tensor for g is locally given by

Rij̄kl̄ = − ∂2gij̄

∂zk∂z̄l
+

n
∑

p,q=1

gpq̄ ∂giq̄

∂zk

∂gpj̄

∂z̄l
, i, j, k = 1, 2, ..., n.

The bisectional curvature of ω is positive if

Rij̄kl̄v
iv̄jwkw̄l ≥ 0

for all non-zero vectors v and w in the holomorphic tangent bundle of X. The Ricci tensor
is given by

Rij̄ = −∂2 log det(gkl̄)

∂zi∂z̄j
, i, j = 1, 2, ..., n.

So its Ricci curvature form is

Ric(ω) =
√
−1

n
∑

i,j=1

Rij̄dzi ∧ dz̄j = −
√
−1∂∂ log det(gkl̄).

Definition 2.1. The Kähler metric ω is called a Kähler-Einstein metric on X if

Ric(ω) = λω,

for some constant λ ∈ R.

We can always scale the Kähler-Einstein metric ω so that λ = −1, 0 or 1. By the
Einstein equation, the first Chern class of X has to be definite or vanishing if there exists
a Kähler-Einstein metric on X.
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The Kähler-Ricci flow on Kähler surfaces

The Ricci flow introduced by Hamilton ([Ha1]) on a Riemannian manifold is defined
by

∂gij

∂t
= −2Rij . (2.1)

On a Kähler manifold X, the Kähler condition is preserved by the Ricci flow if the initial
metric is Kähler, so that the Ricci flow is called the Kähler-Ricci flow. We define the
following normalized Kähler-Ricci flow

∂gij̄

∂t
= −Rij̄ + λgij̄ , (2.2)

where λ = −1, 0, 1.
Let X be a compact complex manifold of complex dimension n and KX be the canonical

line bundle on X. The canonical ring of X is defined by

R(X) = ⊕∞
m=0H

0(X,Km
X )

with the pairing

H0(X,Km1

X ) ⊗ H0(X,Km2

X ) → H0(X,Km1+m2

X ).

Then we can define the Kodaira dimension kod(X) of X by

kod(X) =

{

−∞ if R(X) ∼= C

tr(R(X)) − 1 otherwise,

where tr(R(X)) is the transcendental degree of the canonical ring R(X).
We always have kod(X) ≤ dim(X). In fact, if kod(X) ≥ 0, we can define the following

meromorphic pluricanonical map for sufficiently large m

Φm : X → CPNm

by

Φm(z) = [S
(m)
0 (z), S

(m)
1 (z), ..., S

(m)
Nm

(z)],

where {S(m)
0 , S

(m)
1 , ..., S

(m)
Nm

} is a basis of H0(X,Km
X ). The Kodaira dimension of X is

exactly the complex dimension of the image of X by Φm for sufficiently large m.
The compact complex manifolds can be classified according to their Kodaira dimension

by kod(X) = −∞, 0, 1, ...,dim(X).
In the case of smooth compact complex surfaces, the Kodaira dimension must be −∞,

0, 1 or 2. We have the Enriques-Kodaira classification by Kodaira dimension dividing the
minimal surfaces into ten classes. Nonsingular rational curves with self-intersection −1 are
called exceptional curves of first kind or simply (−1)-curves. A smooth compact complex
surface is called a minimal surface, if it does not contain any (−1)-curve. Any smooth
compact complex surface is birationally equivalent to a minimal surface by contracting
the (−1)-curves.
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3. kod(X) = 2

A compact complex surface X of kod(X) = 2 is called a surface of general type. A
surface of general type X is minimal if and only if its canonical line bundle KX is semi-
positive, so that c1(X) ≤ 0.

If c1(X) < 0, KX is a positive line bundle so that X must be a minimal algebraic
surface. It is proved by Yau [Ya1] and Aubin [Au] independently that there always exists
a unique Kähler-Einstein metric on X. Cao [Ca] gave an alternative proof by applying
the following Kähler-Ricci flow

{

∂ω
∂t = −Ric(ω) − ω
ω |t=0 = ω0

(3.1)

where ω0 is a Kähler metric on X.

Theorem 3.1 (Cao). Let X be a minimal complex surface with c1(X) < 0. Then the
Kähler-Ricci flow converges for any initial Kähler metric to the unique Kähler-Einstein
metric ωKE with

Ric(ωKE) = −ωKE .

In general, a minimal surface of general type might contain a finite number of (−2)-
curves and c1(X) is not negative but semi-negative. Let C be the union of these curves
whose connected components are rational curves of A-D-E-type (see [BHPV]). The
canonical model Xcan of X is then obtained by blowing down C

f : X → Xcan.

Xcan is an orbifold surface with singularities of A-D-E-type. We can still apply the
normalized Kähler-Ricci flow (3.1) on a minimal surface of general type. Let Ka(X)
denote the Kähler cone of X, that is,

Ka(X) = {[ω] ∈ H1,1(X,R) | [ω] > 0}.
The Kähler class will change along the Kähler-Ricci flow by the following ordinary differ-
ential equation

{

∂[ω]

∂t
= −c1(X) − [ω]

[ω]|t=0 = [ω0].
(3.2)

It follows that

[ω(t, ·)] = −c1(X) + e−t([ω0] + c1(X)).

Let χ ∈ −c1(X) be a closed semi-positive (1, 1)−form and Ω be the smooth volume form
on X such that √

−1∂∂ log Ω = χ.

We choose the reference Kähler metric ωt by

ωt = χ + e−t(ω0 − χ)
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The Kähler-Ricci flow on Kähler surfaces

so that
ω = ωt +

√
−1∂∂ϕ.

Then the Kähler-Ricci flow can be reduced to a Monge-Ampère flow for the potential ϕ
given by

{

∂ϕ
∂t = log (ωt+

√
−1∂∂ϕ)2

Ω − ϕ
ϕ|t=0 = 0.

(3.3)

Tsuji [Ts] proved the following convergence result for the Kähler-Ricci flow.

Theorem 3.2 (Tsuji). Let X be a minimal complex surface of general type. Then the
Kähler-Ricci flow converges to a unique singular Kähler-Einstein metric ω∞ smooth out-
side the (−2)-curves with

Ric(ω∞) = −ω∞

for any initial Kähler metric ω0 satisfying [ω0] > −c1(X).

The key observation in Tsuji’s proof is that the canonical bundle KX on a minimal
surface of general type is big and nef, so that for any sufficiently small ǫ > 0

[KX ] − ǫ[C] > 0.

The initial class condition is removed by Tian and Zhang [TiZha] and a stronger uniform
C0−estimate is obtained.

Theorem 3.3 (Tian-Zhang). Let X be a minimal complex surface of general type and
f : X → Xcan be the holomorphic map from X to its canonical model contracting the
(−2)-curves. Then the Kähler-Ricci flow converges to the unique singular Kähler-Einstein
metric ω∞ as in Theorem 3.2 for any initial Kähler-metric. Furthermore

ω∞ = f∗ωKE ,

where ωKE is the unique smooth Kähler-Einstein orbiford metric on Xcan. In particular,
ω∞ has local continuous potential, i.e.,

ω∞ = χ +
√
−1∂∂ϕ∞

for some ϕ∞ ∈ C0(X).

The critical equation for the Monge-Ampère flow on X is given by

(χ +
√
−1∂∂ϕ∞)2

Ω
= eϕ∞ .

The following is an immediate corollary from Theorem 3.3 by the fact that ω2
∞ = Ωeϕ∞

and ϕ∞ is continuous.

Corollary 3.1. The Kähler-Einstein volume form on X defined by ΩKE = ω2
∞ is a

continuous and nonvanishing volume form on X such that
√
−1∂∂ log ΩKE = ω∞.
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4. kod(X) = 1

An elliptic fibration of a surface X is a proper, connected holomorphic map f : X → Σ
from X to a curve Σ such that the general fibre is a non-singular elliptic curve. An elliptic
surface is a surface admitting an elliptic fibration. Any surface X of kod(X) = 1 must be
an elliptic surface. Such an elliptic surface is sometimes called a properly elliptic surface.
Since we assume that X is minimal, all fibres are free of (−1)-curves. A very simple
example is the product of two curves, one elliptic and the other of genus ≥ 2.

Let f : X → Σ be an elliptic surface. The differential df can be viewed as an injection
of sheaves f∗(KΣ) → Ω1

X . Its cokernel ΩX/Σ is called the sheaf of relative differentials.
In general, ΩX/Σ is far from being locally free. If some fibre has a multiple compo-
nent, then df vanishes along this component and ΩX/Σ contains a torsion subsheaf with
one-dimensional support. Away from the singularities of f we have the following exact
sequence

0 → f∗(KΣ) → Ω1
X → ΩX/Σ → 0

including an isomorphism between ΩX/Σ and KX ⊗ f∗(K∨
Σ). We also call the line bundle

ΩX/Σ the dualizing sheaf of f on X. The following theorem is well-known (c.f. [BHPV]).

Theorem 4.1 (Kodaira). Let f : X → Σ be a minimal elliptic surface such that its
multiple fibres are Xs1

= m1F1, .., Xsk
= mkFk. Then

KX = f∗(KΣ ⊗ (f∗1OX)∨) ⊗OX(
∑

(mi − 1)Fi), (4.1)

or

KX = f∗(L ⊗OX(
∑

(mi − 1)Fi),

where L is a line bundle of degree χ(OX) − 2χ(OΣ) on Σ.

Note that deg(f∗1OX)∨ = deg(f∗ΩX/Σ) ≥ 0 and the equality holds if and only if f is
locally trivial. The following invariant

δ(f) = χ(OX) +

(

2g(Σ) − 2 +

k
∑

i=1

(1 − 1

mi
)

)

determines the Kodaira dimension of X.

Proposition 4.1. (cf. [BHPV]) Let f : X → Σ be a relatively minimal elliptic fibration
and X be compact. Then kod(X) = 1 if and only if δ(f) > 0.

Kodaira classified all possible singular fibres for f . A fibre Xs is stable if

(1) Xs is reduced,
(2) Xs contains no (−1)-curves,
(3) Xs has only node singularities.

The only stable singular fibres are of type Ib for b > 0, therefore such singular fibres
are particularly interesting. Let S1 = {z ∈ C | Imz > 0} be the upper half plane and
Γ1 = SL(2,Z)/{±1} be the modular group acting by z → az+b

cz+d . Then S1/Γ1
∼= C is the
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period domain or the moduli space of elliptic curves. The j-function gives an isomorphism
S1/Γ1 → C with

(1) j(z) = 0 if z = e
π
3

√
−1 modular Γ1,

(2) j(z) = 1 if z =
√
−1 modular Γ1.

Let Σreg = {s ∈ Σ | Xs is a nonsingular fibre} Then any elliptic surface f : X → Σ gives
a period map p : Σreg → S1/Γ1. Set J : Σreg 7→ C by J(s) = j(p(s)). For a stable fibre
Xs of type Ib, the functional invariant J has a pole of order b at s and the monodromy

is given by

(

1 b
0 1

)

.

Again we apply the normalized Kähler-Ricci flow (3.1) on such elliptic surfaces of
Kodaira dimension one. We choose a semi-positive (1, 1)−form χ ∈ −c1(X) to be the
pullback of a Kähler form on the base Σ and χ might vanish somewhere due to the presence
of singular fibres. Let Ω be the smooth volume form on X such that

√
−1∂∂ log Ω = χ.

The Kähler class of ω deformed by the Kähler-Ricci flow is given by

[ω] = (1 − e−t)[χ] + e−t[ω0],

with the initial Kähler metric ω0. So we let ωt = (1 − e−t)χ + e−tω0 be the reference
metric and ω = ωt +

√
−1∂∂ϕ.

As we discussed in the previous section, one can reduce the Kähler-Ricci flow (2.2) to
the following Monge-Ampère flow on Kähler potentials.

{

∂ϕ
∂t = log e−t(ωt+

√
−1∂∂ϕ)2

Ω − ϕ
ϕ|t=0 = 0.

(4.2)

The simple example is the Kähler-Ricci flow on X = E × C, where E is an elliptic
curve and C is a curve of genus greater than one. Let π1 : X → E and π2 : X → C be
the projection maps. Let ωE be a flat metric on E, ωC be the hyperbolic metric on C
with ωC ∈ −c1(C) and

ω0 = π∗
1ωE + π∗

2ωC

be the initial Kähler metric on X for the Kähler-Ricci flow. Then

ωt = π∗
2ωC + e−tπ∗

1ωE

solves the Kähler-Ricci flow by

∂ωt

∂t
= −e−tπ∗

1ωE = −Ric(ωt) − ωt.

And

lim
t→∞

ωt = π∗
2ωC .

The following general result is proved in [SoTi]

Theorem 4.2 (Song-Tian). Let f : X → Σ be a minimal elliptic surface of kod(X) = 1.
Let Σreg = Σ \ {s1, ... , sk}. Then the Kähler-Ricci flow has a global solution ω(t, ·) for
any initial Kähler metric satisfying:
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(1) ω(t, ·) converges to f∗ω∞ ∈ −c1(X) as currents for a positive current ω∞ on Σ,
(2) ω∞ is smooth on Σreg and satisfies as currents on Σ

Ric(ω∞) = −ω∞ + ωWP +
k
∑

i=1

mi − 1

mi
[si],

(3) for any compact subset K ∈ f−1 (Σreg), there is a constant CK such that

||ω||L∞(K) + sup
s∈f(K)

||etω|f−1(s)||L∞(f−1(s)) + ||S||L∞(K) ≤ CK ,

where S is the scalar curvature of ω(t, ·).

The Kähler-Ricci flow collapses exponentially fast along the vertical direction and the
limit metric satisfies a generalized Kähler-Einstein equation (2) with the correction term
as the curvature of the fibration. The generalized Kähler-Einstein equation can also be
considered as a local version of Kodaira’s adjunction formula (4.1).

Corollary 4.1. Let f : X → Σ be an elliptic fibre bundle over a curve Σ of genus greater
than one. Then the Kähler-Ricci flow (2.2) has a global solution with any initial Kähler
metric. Furthermore, ω(t, ·) converges with uniformly bounded scalar curvature to the
pullback of the Kähler-Einstein metric on Σ.

If f : X → Σ has only singular fibres of type mI0, all the smooth fibres of f are
isomorphic so that the period map p is trivial with its image as a point in M. The
Kähler-Ricci flow will then converge to a cone hyperbolic metric on Σ and the cone
singularities appear from where the multiple fibres sit.

5. kod(X) = 0

If X is a minimal Kähler surface of kod(X) = 0, the canonical line bundle KX is nu-
merically trivial so that c1(X) = 0. Yau’s solution to Calabi’s conjecture shows that there
always exists a Ricci-flat Kähler metric in any given Kähler class on X. An alternative
proof is given by Cao [Ca] by applying the following Kähler-Ricci flow,

{

∂ω
∂t = −Ric(ω)
ω |t=0 = ω0

(5.1)

where ω0 is a Kähler metric on X.

Theorem 5.1 (Cao). Let X be a minimal complex surface with c1(X) = 0. Then the
Kähler-Ricci flow (5.1) converges for any initial Kähler metric ω0 to the unique Ricci-flat
metric ωKE ∈ [ω0] with

Ric(ωKE) = 0.
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6. Fano surfaces

A compact complex surface X with c1(X) > 0 is called a Fano surface. The anti-
canonical bundle K−1

X is thus positive. By the Enriques-Kodaira classification, CP1×CP1

and CP2#nCP2 for 0 ≤ n ≤ 8 are the only compact differential four-manifolds on which
there is a complex structure with positive first Chern class. Tian [Ti2] proves the following
theorem for the existence of a Kähler-Einstein metric on Fano surfaces.

Theorem 6.1 (Tian). Any compact complex surface X with c1(X) > 0 admits a Kähler-
Einstein metric if the Lie algebra of the automorphism group on X is reductive.

So there always exists a Kähler-Einstein metric on CP2, CP1×CP1 and CP2#nCP2

for 3 ≤ n ≤ 8.

However, there does not exist any Kähler-Einstein metric neither on CP2#1CP2 nor

on CP2#2CP2 since the Lie algebra of the automorphism group on these toric Fano
surfaces is not reductive. One can also disprove the existence of any Kähler-Einstein
metric by showing the Futaki invariant on these two surfaces is non-zero.

Definition 6.1. Let X be a complex surface with c1(X) > 0. A Kähler metric ω is called
a Kähler-Ricci soliton if it satisfies

Ric(ω) = ω + LV ω, (6.1)

where V is a holomorphic vector field on X and LV denotes the Lie derivative along V .

A Kähler-Einstein metric is also a special Kähler-Ricci soliton by taking V = 0. In

[Koi], Koiso constructed a Kähler-Ricci soliton on CP2#1CP2. A general result on the
existence of Kähler-Einstein metrics and Kähler-Ricci soliton on toric manifolds is proved
in [WaZh].

Theorem 6.2 (Wang-Zhu). There exists a Kähler-Ricci soliton on a toric Kähler man-
ifold with positive first Chern class.

Therefore there always exists a Kähler-Einstein metric or a Kähler-Ricci soliton on a
complex surface of positive first Chern class.

We apply the the following normalized Kähler-Ricci flow
{

∂ω
∂t = −Ric(ω) + ω
ω |t=0 = ω0

(6.2)

with the initial Kähler metric ω0 ∈ c1(X) so that the Kähler class [ω] will not change.
Perelman proves a gradient estimate on the Kähler-Ricci flow ( 6.2), which implies

the scalar curvature will stay uniformly bounded (see [SeTi]). He has also claimed that
the Kähler-Ricci flow converges (6.2) on a Kähler-Einstein manifold X with positive first
Chern class to a Kähler-Einstein metric. This is proved by Tian and Zhu [TiZhu] and
generalized to the Kähler-Ricci solitons. Suppose X admits a Kähler-Ricci soliton with
respect to the holomorphic vector field V . Then the imaginary part of V induces a
one-parameter subgroup GV in the automorphism group of X.
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Theorem 6.3 (Tian-Zhu). Let X be a compact complex surface of c1(X) > 0. Then the
Kähler-Ricci flow will converge to a Kähler-Einstein metric or a Kähler-Ricci soliton if
the initial Kähler metric is GV −invariant.

7. Generalizations

The generalized Kähler-Einstein metric on the canonical model of an elliptic surface
with Kodaira dimension one can be generalized and defined on a family of surfaces with
a fibration structure.

Mirror symmetry and the SYZ conjecture make predictions for Calabi-Yau manifolds
with ”large complex structure limit point” (cf. [StYaZa]). It is believed that in the large
complex structure limit, the Ricci-flat metrics should converge in the Gromov-Hausdorff
sense to a half-dimensional sphere by collapsing a special Lagrangian torus fibration over
this sphere. This holds trivially for elliptic curves and is proved by Gross and Wilson
(cf. [GrWi]) in the case of K3 surfaces. The method of the proof is to find a good
approximation for the Ricci-flat metrics near the large complex structure limit. The
approximation metric is obtained by gluing together the Oogrui-Vafa metrics near the
singular fibres and a semi-flat metric on the regular part of the fibration. Such a limit
metric of K3 surfaces is McLean’s metric.

We will apply a deformation for a family of Calabi-Yau metrics and derive McLean’s
metric [Mc] without writing down an accurate approximation metric. Such a deformation
can be also done in higher dimensions. It will be interesting to have a flow which achieves
this limit. The large complex structure limit of a K3 surface X̂ can be identified as the
mirror to the large Kähler limit of X as shown in [GrWi], so we can fix the complex
structure on X and deform the Kähler class to infinity. Let f : X → CP1 be an elliptic
K3 surface. Let χ ≥ 0 be the pullback of a Kähler form on CP1 and ω0 be a Kähler form
on X. We construct a reference Kähler metric ωt = χ + e−tω0 and [ωt] tends to [χ] as
t → ∞. We can always scale ω0 so that the volume of each fibre of f with respect to ωt

is e−t. Suppose Ω is a Ricci-flat volume form on X with ∂∂ log Ω = 0. Then Yau’s proof
[Ya1] of Calabi’s conjecture yields a unique solution ϕt to the following Monge-Ampère
equation for t ∈ [0,∞)

{

(ωt+
√
−1∂∂ϕt)

2

Ω = Ct
∫

X
ϕtΩ = 0,

(7.1)

where Ct = [ωt]
2. Therefore we obtain a family of Ricci-flat metrics ω(t, ·) = ωt +√

−1∂∂ϕt. The following theorem is proved in [SoTi].

Theorem 7.1. Let f : X → CP1 be an elliptically fibred K3 surface with 24 singular
fibres of type I1. Then the Ricci-flat metrics ω(t, ·) converges to the pullback of a Kähler
metric ω∞ on CP1 in any compact set of Xreg in C1,1 as t → ∞. The Kähler metric

ω∞ on CP1 satisfies the equation

Ric(ω∞) = ωWP . (7.2)
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This limit metric ω∞ coincides with McLean’s metric as obtained by Gross and Wilson
[GrWi]. Their construction is certainly much more delicate and gives an accurate approx-
imation near the singular fibres by the Ooguri-Vafa metrics. Also McLean’s metric is an
example of the generalized Kähler-Einstein metric defined as

Ric(ω) = −λω + ωWP

when λ = 0.
In fact, these canonical metrics belong to a class of Kähler metrics defined in [SoTi],

which generalize Calabi’s extremal metrics. Let Y be a Kähler manifold of complex
dimension n together with a fixed closed (1,1)-form θ. Fix a Kähler class [ω], denote by
K[ω] the space of Kähler metrics within the same Kähler class, that is, all Kähler metrics

of the form ωϕ = ω +
√
−1∂∂̄ϕ. One may consider the following equation

∂̄Vϕ = 0, (7.3)

where Vϕ is defined by
ωϕ(Vϕ, ·) = ∂̄(S(ωϕ) − trωϕ

(θ)). (7.4)

Clearly, when θ = 0, (7.3) is exactly the equation for Calabi’s extremal metrics. For this
reason, we call a solution of (7.3) a generalized extremal metric. If Y does not admit any
nontrivial holomorphic vector fields, then any generalized extremal metric ωϕ satisfies

S(ωϕ) − trωϕ
(θ) = µ, (7.5)

where µ is the constant given by

µ =
n(c1(Y ) − [θ]) · [ω]n−1

[ω]n
.

Moreover, if c1(Y ) − [θ] = λ[ω], then any such a metric satisfies

Ric(ωϕ) = λωϕ + θ,

that is, ωϕ is a generalized Kähler-Einstein metric.
Another example of such extremal metrics is constructed by Fine [Fi]. Let f : X → Σ

be a Kähler surface admitting a non-singular holomorphic fibration over Σ, with fibres of
genus at least 2. We also assume c1(Σ) ≤ 0. Let V be the vertical tangent bundle of X
and [ωt] = −f∗c1(Σ) − e−tc1(V ).

Let χ be a Kähler form in −c1(Σ) and ω̄ ∈ −c1(V ). Then ω̄ = ωH ⊕ θχ, where ωH is
the hyperbolic Kähler form on each fiber and θ is a smooth function on X. We then set

ωt = χ + e−tω̄.

The following theorem is proved by Fine in [Fi].

Theorem 7.2. For sufficiently large t ≥ 0, there exists a constant scalar curvature Kähler
metric in [ωt]. Furthermore, such a family of metrics converge to a Kähler metric ω∞ on
Σ defined by

S(ω∞) = trω∞
(ωWP ) + const, (7.6)
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where ωWP is the pullback of the Weil-Petersson metric from the moduli spaces of the
fibre curves with a certain polarization.
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