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On the Khovanov and knot Floer homologies of

quasi-alternating links

Ciprian Manolescu and Peter Ozsváth

Abstract. Quasi-alternating links are a natural generalization of alternating links.
In this paper, we show that quasi-alternating links are “homologically thin” for both

Khovanov homology and knot Floer homology. In particular, their bigraded homology
groups are determined by the signature of the link, together with the Euler charac-
teristic of the respective homology (i.e. the Jones or the Alexander polynomial). The

proofs use the exact triangles relating the homology of a link with the homologies of
its two resolutions at a crossing.

1. Introduction

In recent years, two homological invariants for oriented links L ⊂ S3 have been stud-
ied extensively: Khovanov homology and knot Floer homology. Our purpose here is to
calculate these invariants for the class of quasi-alternating links introduced in [19], which
generalize alternating links.

The first link invariant we will consider in this paper is Khovanov’s reduced homology
([5],[6]). This invariant takes the form of a bigraded vector space over Z/2Z, denoted

K̃h
i,j

(L), whose Euler characteristic is the Jones polynomial in the following sense:
∑

i∈Z,j∈Z+ l−1
2

(−1)iqjrank K̃h
i,j

(L) = VL(q),

where l is the number of components of L. The indices i and j are called the homological
and the Jones grading, respectively. (In our convention j is actually half the integral
grading j from [5].) The indices appear as superscripts because Khovanov’s theory is
conventionally defined to be a cohomology theory. It is also useful to consider a third
grading δ, described by the relation δ = j − i.

Khovanov’s original definition gives a theory whose Euler characteristic is the Jones
polynomial multiplied by the factor q1/2 + q−1/2; for the reduced theory, the Euler char-
acteristic is the usual Jones polynomial, i.e. normalized so that it takes the value 1 on the

unknot, cf. [6]. Note that K̃h can be also be defined with integer coefficients, but then
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it depends on the choice of a component of the link. Nevertheless, K̃h is a link invariant
over Z/2Z; see [19, Section 5] or [29, Section 3].

The other homological link invariant that we consider in this paper is knot Floer homol-
ogy. This theory was independently introduced by Szabó and the second author in [15],

and by Rasmussen [27]. In its simplest form, it is a bigraded Abelian group ĤFKi(L, j)
whose Euler characteristic is (up to a factor) the Alexander-Conway polynomial ∆L(q):

∑

j∈Z,i∈Z+ l−1
2

(−1)i+ l−1
2 qjrank ĤFKi(L, j) = (q−1/2 − q1/2)l−1 · ∆L(q).

Knot Floer homology was originally defined using pseudo-holomorphic curves, but there
are now also several combinatorial formulations available, cf. [10], [11], [30], [24]. The
two gradings i and j are called the Maslov and Alexander gradings respectively; we also
set δ = j − i as above. Knot Floer homology detects the genus of a knot [17], as well
as whether a knot is fibered [25]. There exists also an improvement, called link Floer
homology ([22], [23]), which detects the Thurston norm of the link complement, but that

theory will not be discussed in this paper. Also, even though ĤFK can be defined with
integer coefficients, in this paper we will only consider it with coefficients in the field
F = Z/2Z.

For many classes of links (including most knots with small crossing number), the
Khovanov and knot Floer homologies over R = Z or F take a particularly simple form:
they are free R-modules supported in only one δ-grading. We call such links Khovanov
homologically thin (over R), or Floer homologically thin (over R), depending on which
theory we refer to. Various versions of these definitions appeared in [2], [27], [6], [28].
Further, it turns out that typically the δ-grading in which the homology groups are
supported equals −σ/2, where σ is the signature of the link. When this is the case, we
say that the link is (Khovanov or Floer) homologically σ-thin. (Floer homologically σ-thin
knots were called perfect in [26].)

If a link L is homologically σ-thin over R = Z or F for a bigraded theory H (where H

could denote either K̃h or ĤFK), then H(L) is completely determined by the signature
σ of L and the Euler characteristic P (q) of H (the latter being either the Jones or a
multiple of the Alexander polynomial). Indeed, if P (q) =

∑
ajq

j , we must have:

Hi,j(L) ≃

{
R|aj | if i = j + σ

2

0 otherwise.

In the world of Khovanov homology, the fact that the vast majority (238) of the 250
prime knots with up to 10 crossings are homologically σ-thin was first observed by Bar-
Natan, based on his calculations in [2]. Lee [7] showed that alternating links are Khovanov
homologically σ-thin. Since 197 of the prime knots with up to 10 crossings are alternating,
this provides a partial explanation for Bar-Natan’s observation.
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At roughly the same time, a similar story unfolded for knot Floer homology. Ras-
mussen [26] showed that 2-bridge knots are Floer homologically σ-thin; and this result
was generalized in [16] to all alternating knots.

In this paper we generalize these results to a larger class of links, the quasi-alternating
links of [19]. Precisely, Q is the smallest set of links satisfying the following properties:

• The unknot is in Q;
• If L is a link which admits a projection with a crossing such that

(1) both resolutions L0 and L1 at that crossing (as in Figure 1) are in Q,
(2) det(L) = det(L0) + det(L1),

then L is in Q.

L L0 L1

Figure 1. The links in the unoriented skein relation.

The elements of Q are called quasi-alternating links. It it is easy to see (cf. [19, Lemma
3.2]) that alternating links are quasi-alternating.

In this paper we prove the following:

Theorem 1.1. Quasi-alternating links are Khovanov homologically σ-thin (over Z).

Theorem 1.2. Quasi-alternating links are Floer homologically σ-thin (over Z/2Z).

For knots with up to nine crossings, Theorem 1.1 and Theorem 1.2 provide an almost
complete explanation for the prevalence of homological σ-thinness (over the respective
coefficient ring). Indeed, among the 85 prime knots with up to nine crossings, only two
(819 and 942) are not Khovanov homologically σ-thin, and these are also the only ones
which are not Floer homologically σ-thin. By the results of [19], [9] and [1], 82 of the
83 remaining knots are quasi-alternating. (Among them, 74 are alternating.) This leaves
only the knot 946, which the authors do not know if it is quasi-alternating.

In general it is difficult to decide whether a larger, homologically σ-thin knot is quasi-
alternating. It remains a challenge to find homologically σ-thin knots that are not quasi-
alternating; 946 could be the first potential example.

A few words are in order about the strategy of proof and the organization of the
paper. Both Theorem 1.1 and Theorem 1.2 are consequences of the unoriented skein
exact triangles satisfied by the respective theories. For Khovanov homology, this exact
triangle (which relates the homology of L to that of its resolutions L0 and L1, cf. Figure 1),
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is immediate from the definition of the homology groups. The only new ingredient used in
the proof of Theorem 1.1 is an observation about relating the gradings to the signature.
We explain this in Section 2 of the paper. In fact, the proof of Theorem 1.1 is an
adaptation of the proof of the corresponding fact for alternating links due to Lee [7].

For knot Floer homology, an unoriented skein exact triangle was described by the first
author in [9]. In that paper, the maps in the triangle were ungraded. In Section 3, we
show that they actually respect the δ-grading, up to a well-determined shift. This will
imply Theorem 1.2. It is interesting to note that this strategy is quite different from the
earlier proofs for two-bridge and alternating links, [27], [16].

We remark that Theorem 1.2 has a number of formal consequences. The full version
of knot Floer homology is a graded, filtered chain complex over the polynomial algebra
F[U ]. It was shown in [16, Theorem 1.4 and the remark immediately after] that for Floer
homologically σ-thin knots, their full complex (up to equivalence) is determined by their
Alexander polynomial and signature. Theorem 1.2 implies then that this is true for
quasi-alternating knots. Furthermore, according to [20] and [21], the full knot Floer
complex has enough information to determine the Heegaard Floer homology of any Dehn
surgery on that knot. Thus, the Floer homologies (over F) of Dehn surgeries on quasi-
alternating knots are determined by the Alexander polynomial, the signature, and the
surgery coefficient; we refer to [16], [20], [21] for the precise statements.

It is natural to expect Theorem 1.2 to hold also over Z. Note that Theorem 1.2,
combined with the universal coefficients theorem, implies that quasi-alternating links are
Floer homologically σ-thin over Q.

2. The exact triangle for Khovanov homology

2.1. The Gordon-Litherland formula

Let us review the definition of the Goeritz matrix, as well as the Gordon-Litherland
formula for the signature, following [3].

Consider an oriented link L in S3 with a regular, planar projection, and let D be the
corresponding planar diagram. The complement of the projection in R2 has a number
of connected components, which we call regions. We color them in black and white in
checkerboard fashion. Let R0, R1, . . . , Rn be the white regions. Assume that each crossing
is incident to two distinct white regions. To each crossing c we assign an incidence number
µ(c), as well as a type (I or II), as in Figure 2. Note that the sign of the crossing is
determined by its incidence number and type.

Set

µ(D) =
∑

c of type II

µ(c).

The Goeritz matrix G = G(D) of the diagram D is defined as follows. For any i, j ∈
{0, 1, . . . , n} with i 6= j, let

gij = −
∑

c∈R̄i∩R̄j

µ(c).
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Type I Type IIµ = +1 µ = −1

Figure 2. Incidence numbers and types of crossings.

Set also
gii = −

∑

i6=j

gij .

Then G is the n× n symmetric matrix with entries gij , for i, j ∈ {1, . . . , n}.
Gordon and Litherland showed that the signature of L is given by the formula

σ(L) = signature(G) − µ(D). (1)

(We use the convention that the signature of the right-handed trefoil is −2.) Also, the
determinant det(L) of a link L can be defined as the non-negative integer

det(L) = |det(G)|.

2.2. The signature of resolutions.

Let L ⊂ S3 be an oriented link with a fixed planar projection as before. Fix now
a crossing c0 in the corresponding planar diagram. If the crossing is positive (resp.
negative), we set L+ = L (resp. L− = L) and let L− (resp. L+) be the link obtained
form L by changing the sign of the crossing. Further, we denote by Lv and Lh the oriented
and unoriented resolutions of L at that crossing, cf. Figure 3. (We choose an arbitrary
orientation for Lh.) To make the connection with Figure 1, note that if L = L+, then
L0 = Lv and L1 = Lh, while if L = L−, then L0 = Lh and L1 = Lv.

LhLvL
−

L+

Figure 3. Two possible crossings and their resolutions.

Denote by D+,Dv,Dh the planar diagrams of L+, Lv, Lh, respectively, differing from
each other only at the chosen crossing c0.
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The first equality in the lemma below (without the sign) is due to Murasugi [12]; the
second is also inspired by a result of Murasugi from [13].

Lemma 2.1. Suppose that det(Lv),det(Lh) > 0 and det(L+) = det(Lv)+det(Lh). Then:

σ(Lv) − σ(L+) = 1

and

σ(Lh) − σ(L+) = e,

where e denotes the difference between the number of negative crossings in Dh and the
number of such crossings in D+.

Proof. Construct the Goeritz matrices G+ = G(D+), Gv = G(Dv) and Gh = G(Dh) in
such a way that c0 is of Type I (and incidence number −1) in D+, and the white region
R0 (the one not appearing in the Goeritz matrix) is as in Figure 4.

R0

R1

R0 R0

R1

Figure 4. Coloring convention at the chosen crossing.

Observe now that G+ and Gh are bordered matrices of Gv. More precisely, if Gv is an
n× n symmetric matrix, then there exists a ∈ R and v = (v1, . . . , vn) ∈ Rn such that

G+ =

(
a v
vT Gv

)
; Gh =

(
a+ 1 v
vT Gv

)
.

Without loss of generality (after an orthonormal change of basis), we can assume that
Gv is diagonal, with diagonal entries α1, . . . , αn. Note that these are nonzero because
det(Lv) = |det(Gv)| 6= 0.

The bilinear form associated to G+ can be written as

aX2 + 2
n∑

i=1

viXXi +
n∑

i=1

αiX
2
i ,

or
(
a−

n∑

i=1

v2
i

αi

)
X2 +

n∑

i=1

αi

(
Xi +

vi

αi
X

)2

.

A similar formula holds for the form of Gh, but with a replaced by a+ 1.
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If we set

β = a−
n∑

i=1

v2
i

αi
,

then
det(G+) = β · det(Gv), det(Gh) = (β + 1) · det(Gv).

By the condition on the determinants in the hypothesis, |β| = |β + 1| + 1, so we must
have β < −1. Therefore, when we diagonalize the bilinear forms, for G+ (resp. Gh) we
get one additional negative coefficient (β, resp. β + 1) as compared to Gv. Thus,

signature(G+) = signature(Gh) = signature(Gv) − 1. (2)

Since c0 is of Type I, we also have µ(D+) = µ(Dv). Together with the Gordon-
Litherland formula (1), these identities imply

σ(L+) = σ(Lv) − 1.

Next, observe that when we change the direction of an arc at a crossing, both the sign
and the type of the crossing are reversed, but the incidence number remains the same.
If we denote by k(µ, t) the number of crossings of incidence number µ ∈ {±1} and type
t ∈ {I, II} in D+ (excluding c0) which change type (and sign) in Dh, then

µ(Dh) − µ(D+) = k(+1, I) − k(−1, I) − k(+1, II) + k(−1, II).

This equals
−

(
k(−1, I) + k(+1, II)

)
+

(
k(+1, I) + k(−1, II)

)
= −e.

Using (1) and (2) again, we get

σ(L+) = σ(Lh) + e,

as desired. �

2.3. An unoriented skein exact triangle.

The following proposition is a simple consequence of the definition of Khovanov coho-
mology. It is implicit in [5], and also appeared in Viro’s work [31]. The statement below,
with the precise gradings, is taken from Rasmussen’s review [28, Proposition 4.2]. It is
written there in terms of Khovanov’s unreduced homology, but it works just as well for

the reduced version K̃h, which we use in this paper. We work over Z, so to define the
reduced homology we need to mark a component for each link appearing in the triangle;
we do this by marking the same point on their diagrams, away from the crossing where
the links differ.

Proposition 2.2. (Khovanov, Viro, Rasmussen) There are long exact sequences

· · · → K̃h
i−e−1,j− 3e

2 −1
(Lh) → K̃h

i,j
(L+) → K̃h

i,j− 1
2
(Lv) → K̃h

i−e,j− 3e
2 −1

(Lh) → · · ·

and

· · · → K̃h
i,j+ 1

2
(Lv) → K̃h

i,j
(L−) → K̃h

i−e+1,j− 3e
2 +1

(Lh) → K̃h
i+1,j+ 1

2
(Lv) → · · ·
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where e is as in the statement of Lemma 2.1.

If we forget about i and j and just keep the grading δ = j− i, the two triangles become

· · · → K̃h
∗− e

2
(Lh) → K̃h

∗
(L+) → K̃h

∗− 1
2
(Lv) → K̃h

∗− e
2−1

(Lh) → · · · (3)

and

· · · → K̃h
∗+ 1

2
(Lv) → K̃h

∗
(L−) → K̃h

∗− e
2
(Lh) → K̃h

∗− 1
2
(Lv) → · · · (4)

Proposition 2.3. Let L be a link and L0, L1 its two resolutions at a crossing as in
Figure 1. Assume that det(L0),det(L1) > 0 and det(L) = det(L0) + det(L1). Then there
is an exact triangle:

· · · → K̃h
∗−

σ(L1)
2

(L1) → K̃h
∗−

σ(L)
2

(L) → K̃h
∗−

σ(L0)
2

(L0) → K̃h
∗−

σ(L1)
2 −1

(L1) → · · ·

Proof. When the given crossing in L is positive, this is a re-writing of the triangle (3),
taking into account the result of Lemma 2.1. Note that when following three consecutive
maps in the triangle the grading decreases by one; thus, the grading change for the map
between the homologies of the two resolutions is determined by the grading change for
the other two maps.

The case when the crossing is negative is similar. �

Proof of Theorem 1.1. Note that any quasi-alternating link has nonzero determinant; this
follows easily from the definition. The desired result is then a consequence of Proposi-
tion 2.3: the unknot is homologically σ-thin and, because of the exact triangle, if L0 and
L1 are homologically σ-thin, then so is L. �

3. The exact triangle for knot Floer homology

In this section we assume that the reader is familiar with the basics of knot Floer homol-
ogy (including the version with several basepoints), cf. [15], [27], [22], [10]. Throughout
this section we will work with coefficients in the field F = Z/2Z.

3.1. Heegaard diagrams and periodic domains

We start with a few generalities about periodic domains in Heegaard diagrams. Our
discussion is very similar to the ones in [18, Section 2.4] and [22, Section 3.4], except that
here we do not ask for the periodic domains to avoid any basepoints.

Let Σ be a Riemann surface of genus g. A collection α = (α1, . . . , αn) of disjoint,
simple closed curves on Σ is called good if the span Sα of the classes [αi] in H1(Σ; Z)
is g-dimensional. If α is such a collection, we view (the closures of) the components of
Σ−(∪αi) as two-chains on Σ and denote by Πα their span. Note that Πα is a free Abelian
group of rank m = n− g + 1.

A Heegaard diagram (Σ,α,β) consists of a Riemann surface Σ together with two good
collections of curves α = (α1, . . . , αn) and β = (β1, . . . , βn). (A Heegaard diagram de-
scribes a 3-manifold Y ; see for example [22, Section 3.1].) We define a periodic domain
in the Heegaard diagram (Σ,α,β) to be a two-chain on Σ that is a linear combination of
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the components of Σ− (∪αi)− (∪βi), and with the property that its boundary is a linear
combination of the alpha and beta curves. (This is a slight modification of [18, Definition
2.14].) The group of periodic domains is denoted Πα,β . Let also Sα,β = Sα + Sβ be the
span of all the alpha and beta curves in H1(Σ; Z).

Lemma 3.1. The group Πα,β of periodic domains is free Abelian of rank equal to 2n +
1 − rank(Sα,β).

Proof. There is a map

ψα,β : Z2n → Sα,β

taking the first n standard generators of Z2n to the classes [αi], i = 1, . . . , n, and the
remaining n standard generators to the classes [βi], i = 1, . . . , n. There is a short exact
sequence

0 −→ Z −→ Πα,β −→ ker(ψα,β) −→ 0. (5)

Indeed, the map Πα,β → ker(ψα,β) takes a periodic domain D to the coefficients of the
alpha and beta curves appearing in ∂D. It is surjective, and its kernel is generated by the
Heegaard surface Σ itself.

The conclusion follows immediately from the short exact sequence. �

Note that we can view Πα and Πβ as subgroups of Πα,β . Their intersection is generated
by the two-chain Σ. Therefore,

rank(Πα + Πβ) = 2n− 1.

More precisely, if we denote by Sα ⊕Sβ
∼= Z2g the exterior direct sum, there is a short

exact sequence analogous to (5):

0 → Z −→ Πα + Πβ −→ ker(Z2n → Sα ⊕ Sβ) → 0. (6)

Corollary 3.2. If Sα,β = H1(Σ; Z), then Πα,β = Πα + Πβ .

Proof. The exact sequences (5) and (6) fit into a commutative diagram

0 −−−−→ Z −−−−→ Πα + Πβ −−−−→ ker(Z2n → Sα ⊕ Sβ) −−−−→ 0

∼=

y
y

y

0 −−−−→ Z −−−−→ Πα,β −−−−→ ker(Z2n → Sα,β) −−−−→ 0

To show that the middle vertical arrow is an isomorphism it suffices to show that the
right vertical arrow is. The map ψα,β : Z2n → Sα,β factors through Sα ⊕ Sβ . Consider
the sequence of maps

Z2g ∼= Sα ⊕ Sβ −→ Sα,β →֒ H1(Σ; Z) ∼= Z2g.

The hypothesis says that the last inclusion is an isomorphism, which means that the
composition is surjective. Since its domain and target are both Z2g, the map must be an
isomorphism. This shows that Sα ⊕ Sβ −→ Sα,β is an isomorphism as well. �
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Finally, a triple Heegaard diagram (Σ,α,β,γ) consists of a Riemann surface Σ together
with three good collections of curves α = (α1, . . . , αn), β = (β1, . . . , βn), and γ =
(γ1, . . . , γn). A triply periodic domain is then a two-chain on Σ that is a linear combination
of the components of Σ− (∪αi)− (∪βi)− (∪γi), and with the property that its boundary
is a linear combination of the alpha, beta, and gamma curves.

The group of triply periodic domains is denoted Πα,β,γ . Set Sα,β,γ = Sα + Sβ + Sγ in
H1(Σ; Z). A straightforward analog of Lemma 3.1 then says that Πα,β,γ is a free Abelian
group of rank equal to 3n+ 1 − rank(Sα,β,γ).

3.2. The ungraded triangle

The following theorem was proved in [9]:

Theorem 3.3. Let L be a link in S3, and L0 and L1 the two resolutions of L at a
crossing, as in Figure 1. Denote by l, l0, l1 the number of components of the links L,L0,
and L1, respectively, and set m = max{l, l0, l1}. Then, there is an exact triangle

ĤFK(L) ⊗ V m−l → ĤFK(L0) ⊗ V m−l0 → ĤFK(L1) ⊗ V m−l1 → ĤFK(L) ⊗ V m−l,

where V denotes a two-dimensional vector space over F.

Our goal will be to study how the maps in the exact triangle behave with respect to
the δ-grading. In order to do this, we recall how the maps were constructed in [9].

The starting point is a special Heegaard diagram which we associate to a regular,
connected, planar projection D of the link L. (This is a suitable stabilization of the
diagram considered in [16].) We assume that one of the crossings in D is c0, such that
the two resolutions at c0 are diagrams D0 and D1 for L0 and L1, respectively. If D has
k crossings, then it splits the plane into k + 2 regions. Let A0, A1, A2, A3 be the regions
near c0 in clockwise order, as in Figure 5, and e the edge separating A0 from A1. We can
assume that A0 is the unbounded region in R2 − D. Denote the remaining regions by
A4, . . . , Ak+1. Let p be a point on the edge e. If m = max{l, l0, l1} is as in the statement
of Theorem 3.3, then we can choose p1, . . . , pm−1 to be a collection of points in the plane,
distinct from the crossings and such that for every component of any of the links L, L0

and L1, the projection of that component contains at least one of the points pi or p.

e

A3 A1

A0

A2

Figure 5. The regions near the crossing c0. Since c0 can be either neg-
ative or positive, we have not marked which strand is the overpass.
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We denote by Σ the boundary of a regular neighborhood of D in S3, a surface of
genus g = k + 1. To every region Ar (r > 0) we associate a curve αr on Σ, following the
boundary of Ar. To each crossing c in D we associate a curve βc on Σ as indicated in
Figure 6. In addition, we introduce an extra curve βe which is the meridian of the knot,
supported in a neighborhood of the distinguished edge e. We also mark the surface Σ
with two basepoints, one on each side of βe, as shown on the left side of Figure 7.

βc

Figure 6. Piece of the Heegaard surface Σ associated to a crossing c. It
contains four (or fewer) bits of alpha curves, shown in dashed lines, and
one beta curve βc.

Furthermore, for every edge ei of D containing one of the points pi, i = 1, . . . ,m− 1,
we introduce a ladybug, i.e. an additional pair of alpha-beta curves on Σ, as well as an
additional pair of basepoints. This type of configuration is shown on the right side of
Figure 7.

βe

α1 αj
αei

βei

Figure 7. A neighborhood of the distinguished edge e (left) and a la-
dybug around some edge ei marked by pi (right).

The surface Σ, together with the collections of alpha curves, beta curves and basepoints,
forms a multi-pointed Heegaard diagram for S3 compatible with L, in the sense of [10,
Definition 2.1]. We denote the alpha and the beta curves in the diagram by αi, βi with
i = 1, . . . , n, where n = g + m − 1. We reserve the index n for the beta curve β = βn
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associated to the crossing c0. Also, we let Σ̂ denote the complement of the basepoints in
the surface Σ.

We can construct similar Heegaard diagrams compatible with L0 and L1 as follows.
The surface Σ, the alpha curves and the basepoints remain the same. However, for L0

we replace the beta curves by gamma curves γi, i = 1, . . . , n, while for L1 we use delta
curves δi, i = 1, . . . , n. For i < n, the curves γi and δi are small isotopic translates of βi,
such that they intersect βi in two points, and they also intersect each other in two points.
For i = n, we draw the curves γ = γn and δ = δn as in Figure 8; see also Figure 9, where
the following intersection points are labelled:

β ∩ γ = {A,U}, γ ∩ δ = {B, V }, δ ∩ β = {C,W}.

1

3 4

2

W

β
γ

δ

A

Figure 8. Piece of Σ near the crossing c0. There are three bits of alpha
curves, shown dashed. This piece is joined to the rest of the diagram by
four tubes, which we mark by the numbers 1,2,3,4.

For the purpose of defining Floer homology, we need to ensure that the Heegaard
diagrams for L,L0 and L1 constructed above are admissible in the sense of [22, Definition
3.5]. We achieve admissibility by stretching one tip of the alpha curve of each ladybug,
and bringing it close to the basepoints associated to the distinguished edge e. It is easy
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43

2
1

δ

γ

W V
A

U

B

β

C

Figure 9. A different view of Figure 8. The four gray disks correspond
to the four tubes from Figure 8, and are marked accordingly.

to see that the result is admissible; see Figure 10 for an example. In that figure, to get
the diagrams for L0 and L1, which are both the unknot, we replace β = β4 by curves γ
and δ, respectively, as in Figure 8.

Now consider the tori

Tα = α1 × · · · × αn, Tβ = β1 × · · · × βn,

Tγ = γ1 × · · · × γn, Tδ = δ1 × · · · × δn,

which we view as totally real submanifolds of the symmetric product Symn(Σ̂). The
Floer complex CF (Tα,Tβ) is the vector space freely generated by the intersection points
between Tα and Tβ , and endowed with the differential

∂x =
∑

y∈Tα∩Tβ

∑

{φ∈π̂2(x,y)
∣∣µ(φ)=1}

#

(
M(φ)

R

)
y. (7)

Here π̂2(x,y) denotes the space of homology classes of Whitney disks connecting x to

y in Symn(Σ̂), M(φ) denotes the moduli space of pseudo-holomorphic representatives
of φ (with respect to a suitable almost complex structure as in [18]), µ(φ) denotes its
formal dimension (Maslov index), and the # sign denotes the mod 2 count of points in
the (zero-dimensional) moduli space. (We will henceforth use µ to denote Maslov index,
rather than the incidence number, as in Section 2.)
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β2
α3

β3 β1

α1

α4

α2

β4

Figure 10. A Heegaard diagram compatible with the Hopf link L, with
g = 3, m = 2 and n = 4. The beta curves β2 and β = β4 are associated
to the two crossings, β1 to the distinguished edge, and β3 is part of
a ladybug. There are three alpha curves associated to planar bounded
regions and one, α4, which is part of a ladybug. One tip of α4 is stretched
to achieve admissibility.

The homology of CF (Tα,Tβ) is the Floer homology HF (Tα,Tβ). Up to a factor, this
is the knot Floer homology of L:

HF (Tα,Tβ) ∼= ĤFK(L) ⊗ V m−l,

where V is a two-dimensional vector space as in Theorem 3.3.
We can similarly take the Floer homology of Tα and Tγ , or Tα and Tδ, and obtain

HF (Tα,Tγ) ∼= ĤFK(L0) ⊗ V m−l0 ,

HF (Tα,Tδ) ∼= ĤFK(L1) ⊗ V m−l1 .

Therefore, the exact triangle from Theorem 3.3 can be written as

HF (Tα,Tδ)
(f1)∗

−−−−→ HF (Tα,Tβ)
(f2)∗

−−−−→ HF (Tα,Tγ)
(f3)∗

−−−−→ HF (Tα,Tδ) (8)

The maps (fi)∗ (i = 1, 2, 3) from the triangle (8) are all induced by chain maps fi

between the corresponding Floer complexes. To define the maps fi, let us first recall
the definition of the usual triangle maps appearing in Floer theory. Given totally real
submanifolds T1, T2, T3 in a symplectic manifold (satisfying several technical conditions
which will hold in our situations), there is a chain map

CF (T1, T2) ⊗ CF (T2, T3) → CF (T1, T3),
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defined by counting pseudo-holomorphic triangles. In particular, given an intersection
point z ∈ T2 ∩ T3 which is a cycle when viewed as an element of CF (T2, T3), we have a
chain map

Fz(x) =
∑

y∈T1∩T3

∑

{φ∈π̂2(x,z,y)
∣∣µ(φ)=0}

#(M(φ))y.

Here π̂2(x, z,y) denotes the space of homology classes of triangles with edges on T1, T2, T3

and vertices x, z and y, respectively (in clockwise order), µ is the Maslov index, and
# (M(φ)) the number of their pseudo-holomorphic representatives.

Going back to our set-up, whenever we have two isotopic curves η and η′ on the surface
Σ such that they intersect in exactly two points, we will denote by Mηη′ ∈ η ∩ η′ the top
degree generator of CF (η, η′). Given one of the intersection points in Figure 9, for example
A ∈ β ∩ γ, we obtain a corresponding intersection point in Tβ ∩Tγ by adjoining to A the
top degree intersection points Mβiγi

∈ βi ∩ γi. We denote the resulting generators by the
respective lowercase letters in bold:

a = Mβ1γ1
×Mβ2γ2

× · · · ×Mβn−1γn−1
×A ∈ Tβ ∩ Tγ ;

b = Mγ1δ1
×Mγ2δ2

× · · · ×Mγn−1δn−1
×B ∈ Tγ ∩ Tδ;

c = Mδ1β1
×Mδ2β2

× · · · ×Mδn−1βn−1
× C ∈ Tδ ∩ Tβ ;

u = Mβ1γ1
×Mβ2γ2

× · · · ×Mβn−1γn−1
× U ∈ Tβ ∩ Tγ ;

v = Mγ1δ1
×Mγ2δ2

× · · · ×Mγn−1δn−1
× V ∈ Tγ ∩ Tδ;

w = Mδ1β1
×Mδ2β2

× · · · ×Mδn−1βn−1
×W ∈ Tδ ∩ Tβ .

The chain maps fi giving rise to (8) are then defined to be the sums

f1 = Fc + Fw : CF (Tα,Tδ) → CF (Tα,Tβ);

f2 = Fa + Fu : CF (Tα,Tβ) → CF (Tα,Tγ);

f3 = Fb + Fv : CF (Tα,Tγ) → CF (Tα,Tδ).

3.3. Periodic domains

Let us apply the discussion in Section 3.1 to the setting of Section 3.2.
Note that (Σ;α,β), for example, is a Heegaard diagram for S3, hence the alpha and

the beta curves span all of H1(Σ; Z). Applying Corollary 3.2 we deduce that

Πα,β = Πα + Πβ . (9)

Similarly, we have Πα,γ = Πα + Πγ and Πα,δ = Πα + Πδ.
The situation for Πβ,γ is different. Before analyzing it, let us first understand the

components of Σ − (∪βi), which span Πβ , in detail. Their number is m, which equals
either l or l+1, according to whether the two strands of Lmeeting at c are on different link
components, or on the same link component. LetK1, . . . ,Kl be the connected components
of L, such that Kl is the one containing the edge e. If m = l, then each Ki corresponds

to a unique component Dβ
i of Σ − (∪βi), which lies in a neighborhood of Ki (when Σ

is viewed as the boundary of a neighborhood of L). If m = l + 1, then for i < l, each
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Ki corresponds again to some Dβ
i , but in the neighborhood of Kl there are now two

components of Σ − (∪βi), which we denote by Dβ
l and Dβ

l+1, such that Dβ
l is the one

whose boundary contains the curve β = βn.

3 4

2

5

1

βn

Figure 11. We illustrate here Equation (10). The component Dβ
l , which

gives a homological relation between βn and other β-curves, is shaded.
There are two cases: whenm = ℓ, the region labelled here by 5 is included

in Dβ
l . Otherwise, when m = ℓ + 1, Dβ

l terminates in a different merid-

ional β-circle. In either case, the boundary of Dβ
l consists of β-circles,

and it contains βn with multiplicity one.

Note that, regardless of whether m = l or m = l + 1, the component Dβ
l contains the

curve βn with multiplicity ±1 (see Figure 11). This means that the class [βn] ∈ Sβ ⊂
H1(Σ; Z) is in the span of the other beta curves. In other words,

Sβ = Span (β1, . . . , βn−1). (10)

Similar remarks apply to Σ− (∪γi) and Σ− (∪δi). Their components are denoted Dγ
i

and Dδ
i , respectively, for i = 1, . . . ,m. Recall that for each i = 1, . . . , n− 1, the curves βi,

γi and δi are isotopic. Therefore, Equation (10), together with its analogs for the beta
and gamma curves, implies that

Sβ = Sγ = Sδ. (11)

For each j = 1, . . . , n − 1, the curves βj and γj are separated by two thin bigons

in Σ. The difference of these bigons is a periodic domain Dβ,γ
j , with boundary βj − γj .

Equation (11) implies that rank(Sβ,γ) = rank(Sβ) = g, so from Lemma 3.1 we deduce
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that rank(Πβ,γ) = 2n+ 1 − g = n+m. In fact, it is not hard to check that the following
is true:

Lemma 3.4. The domains Dβ
i ,D

γ
i (i = 1, . . . ,m) and Dβ,γ

j (j = 1, . . . , n − 1) span the
group Πβ,γ .

Note that we gave a set of 2m+n−1 generators for the group Πβ,γ of rank n+m. There
are indeed m− 1 independent relations between these generators, namely for each of the
m− 1 components Ki of L (or L0) not containing either of the strands intersecting at c,

the difference Dβ
i −Dγ

i can also be written as a sum of some domains Dβ,γ
j (corresponding

to the crossings on Ki).
Next, let us look at the triply periodic domains with boundary on the alpha, beta, and

gamma curves.

Lemma 3.5. We have Πα,β,γ = Πα + Πβ,γ .

Proof. Let D be any triply periodic domain in Πα,β,γ . If the curve γn appears (with
nonzero multiplicity) in the boundary of D, by the analog of (10) for gamma curves we
can subtract some domain in Πγ ⊂ Πβ,γ from D and obtain a new domain, in which
the multiple of γn from ∂D was traded for a combination of the other gamma curves
γ1, . . . , γn−1. Next, whenever we have some curve γj in the boundary (j < n), we can add

the corresponding domain Dβ,γ
j ∈ Πβ ⊂ Πβ,γ to trade it for a beta curve. Thus we arrive

at a domain in Πα,β and the conclusion follows from Equation (9). �

Note that Lemma 3.4 has straightforward analogs about the structure of the groups
Πγ,δ and Πδ,β . Similarly, Lemma 3.5 has straightforward analogs about the structure of
the groups Πα,γ,δ and Πα,δ,β .

3.4. The relative δ-grading

Pick x,y ∈ Tα ∩ Tβ . Let π2(x,y) be the space of homology classes of Whitney
disks in Symn(Σ) connecting x and y. (Recall that π̂2(x,y) is the corresponding space

in Symn(Σ̂).) Since (Σ, α1, . . . , αn, β1, . . . , βn) is a Heegaard diagram for S3, we have
π2(x,y) 6= ∅ for any x and y. Note that π2(x,x) can be identified with the group of
periodic domains Πα,β .

Every class φ ∈ π2(x,y) has a Maslov index µ(φ) ∈ Z. In the usual construction of
knot Floer homology, the extra basepoints on the Heegaard surface Σ are of two types:
half of them are denoted wj and the other half zj , with j = 1, · · · ,m + 1, such that
every connected component of Σ − ∪αi or Σ − ∪βi contains exactly one of the wj and
one of the zk. Let W (φ) and Z(φ) be the intersection numbers of φ with the union of all
{wj}× Symn−1(Σ) and the union of all {zj}× Symn−1(Σ), respectively. Thus π̂2(x,y) is
the space of classes φ with W (φ) = Z(φ) = 0.

The difference in the Maslov grading H (denoted i in the introduction) between x and
y can be calculated by picking some φ ∈ π2(x,y) and applying the formula

H(x) −H(y) = µ(φ) − 2W (φ).
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Similarly, the difference in the Alexander grading A (denoted j in the introduction) is

A(x) −A(y) = Z(φ) −W (φ).

Setting P (φ) = Z(φ) +W (φ), the difference in the grading δ = A−H is then

δ(x) − δ(y) = P (φ) − µ(φ).

Therefore, if we limit ourselves to considering the δ grading, there is no difference
between the two types of basepoints. This explains why we have not distinguished between
them in Section 3.2, and we will not distinguish between them from now on either.

Observe that the relative δ grading is well-defined, i.e. we have µ(φ)−P (φ) = µ(φ′)−
P (φ′) for any φ, φ′ ∈ π2(x,y). Indeed, because µ and P are additive under concatenation,
it suffices to prove that µ(φ) − P (φ) = 0 for any φ ∈ π2(x,x) = Παβ . By Equation (9),
the group Παβ is generated by the connected components of Σ−∪αi and Σ−∪βi. Each
such component has µ(φ) = P (φ) = 2, so the relative δ grading is well-defined.

Lemma 3.6. The chain maps f1, f2, f3 that induce the triangle (8) preserve the relative
δ grading.

Proof. First, observe that a triangle map such as Fa : CF (Tα,Tβ) → CF (Tα,Tγ) pre-
serves the relative δ grading. In other words, we need to show that adding a triply periodic
domain D ∈ Πα,β,γ to a class φ ∈ π̂2(x,a,y) does not change the quantity µ(φ) − P (φ).

By Lemmas 3.4 and 3.5, it suffices to show that the classes of the domains Dα
i ,D

β
i ,D

γ
i and

Dβ,γ
j all have µ = P. Indeed, for Dα

i ,D
β
i and Dγ

i this is the argument in the paragraph

before Lemma 3.6, while for each Dβ,γ
j (j = 1, . . . , n− 1) we have φ = P = 0.

Next, in order to show that f2 = Fa +Fu preserves the relative δ-grading, we exhibit a
class φ ∈ π2(a,u) with µ(φ) = P (φ). In Figure 9 there is a bigon relating A and U which
is connected by the tube numbered 2 to the rest of the Heegaard diagram. This bigon
is also shown on the left in Figure 12. Following the tube, we encounter several disks
(or possibly none) bounded by beta circles as in the middle of Figure 12, until we find a
disk as on the right of Figure 12. Lipshitz’s formula for the Maslov index [8] says that
µ(φ) can be computed as the sum of the Euler measure e(φ) and a vertex multiplicity
n(φ). (We refer to [8] for the definitions.) The punctured bigon on the left of Figure 12
contributes − 1

2 to e(φ) and 1
2 to n(φ), each middle disk −1 to e(φ) and 1 to n(φ), and

the disk on the right 0 to e(φ) and 1 to n(φ). Thus µ(φ) = P (φ) = 1.
The arguments for f1 and f3 are similar. �

3.5. The absolute δ-grading

The generators x ∈ Tα ∩ Tβ are of two kinds. They all consist of n-tuples of points
in Σ, one on each alpha curve and on each beta curve. If for each ladybug (consisting
of a pair of curves αi and βi), x contains one of the two points in αi ∩ βi, we call the
generator x Kauffman. Otherwise, it is called non-Kauffman. Note that, if we hadn’t
had to stretch the alpha curves on the ladybugs to achieve admissibility, all generators
would have been Kauffman.
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U

Mγiβi
Mγjβj

A

β

Mβiγi

γi
γj

Mβjγj

βi βj

γ

Figure 12. A relative homology class φ ∈ π2(a,u) of Maslov index 1,
with one basepoint. The grey disks here denote tubes, whereas the small
black dot in the rightmost picture denotes a basepoint.

Every x ∈ Tα ∩Tβ has an absolute δ-grading δ(x) ∈ 1
2Z. We will explain now a simple

formula for δ(x) when x is Kauffman.
Consider the regions A0, A1, A2, . . . , Ak+1 as in the second paragraph after the state-

ment of Theorem 3.3. Each of the k crossings in D is on the boundary of four regions. A
state, cf. [4], is an assignment which associates to each crossing one of the four incoming
quadrants, such that the quadrants associated to distinct vertices are in distinct regions,
and none are corners of the regions A0 or A1.

One can associate a monomial to each state such that as we sum all these monomials we
obtain the Alexander polynomial of the link L, [4]. Therefore, if the Alexander polynomial
∆L(q) is nonzero (or, in particular, if ∆L(−1) = det(L) 6= 0), then there must be at least
one state.

To each Kauffman generator x we can associate a state in an natural way: at each
crossing c the corresponding beta curve intersects exactly one of the alpha curves of the
neighboring regions in a point of x, and the quadrant in that region is the one we associate
to c. In [16], the Maslov and Alexander gradings of Kauffman generators are calculated
in terms of their states; compare also [14].

For our purposes, it suffices to know how to compute the δ-grading. If x is Kauffman
and c is a crossing in D, we let δ(x, c) ∈ {0,±1/2} be the quantity from Figure 13, chosen
according to which quadrant at c appears in the state of x. Then:

δ(x) =
∑

c

δ(x, c). (12)

A similar discussion applies to the diagrams D0 and D1 of the resolutions L0 and L1,
respectively, except that in those cases there is no contribution from the resolved crossing
c0.

Note that the δ-grading of a Kauffman generator x does not depend on which of the
two intersection points between the two curves of a ladybug appears in x.
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0 0

1/2

1/2 −1/2

−1/2

0 0

Figure 13. Contributions to the δ-grading.

Lemma 3.7. Suppose that c0 is a positive crossing in D (so that L0 is the oriented
resolution Lv) and that det(L0) 6= 0. Then the map f2 : CF (Tα,Tβ) → CF (Tα,Tγ)
decreases δ-grading by 1/2.

Proof. By Lemma 3.6, we already know that f2 preserves the relative δ-grading. Thus, it
suffices to exhibit two generators x ∈ Tα ∩ Tβ and y ∈ Tα ∩ Tγ with δ(x) − δ(y) = 1/2,
and such that there exists a holomorphic triangle of index zero in π̂2(x,a,y).

Since det(L0) 6= 0, the diagram D0 has at least one Kauffman generator y. There is
a corresponding Kauffman generator x ∈ Tα ∩ Tβ , such that each yi ∈ γi ∩ y, (i < n)
is close to some xi ∈ βi ∩ x (they are related by the isotopy between γi and βi), while
xn ∈ β ∩ x and yn ∈ γ ∩ y are two vertices of the shaded triangle in Figure 8 with the
third vertex at A. That shaded triangle, coupled with the small triangles with vertices at

xi,yi, and Mβi,γi
for i = 1, . . . , n− 1, gives the desired holomorphic triangle in Symn(Σ̂).

To check that δ(x)− δ(y) = 1/2, note that in formula (12) the contributions to δ(x) and
δ(y) from each crossing are the same, except that there is an extra contribution of 1/2 to
δ(x) coming from c0. �

Lemma 3.8. Suppose that c0 is a positive crossing in D (so that L1 is the unoriented
resolution Lh) and that det(L1) 6= 0. Then the map f1 : CF (Tα,Tδ) → CF (Tα,Tβ) shifts
δ-grading by e/2, where e is as in the statement of Lemma 2.1.

Proof. By Lemma 3.6, we already know that f1 preserves the relative δ-grading. Again,
it suffices to exhibit two generators x ∈ Tα ∩Tβ and y ∈ Tα ∩Tδ with δ(x)− δ(y) = e/2,
and such that there exists a holomorphic triangle of index zero in π̂2(y,w,x).

Since det(L1) 6= 0, we can pick a Kauffman generator y ∈ Tα ∩ Tδ. As in the proof of
Lemma 3.7, there is a corresponding Kauffman generator x ∈ Tα ∩Tβ and a holomorphic
triangle of index zero as desired, consisting of n − 1 small triangles with one vertex at
Mδi,βi

for i = 1, . . . , n− 1, and the shaded triangle in Figure 8 with one vertex at W.
To check that δ(x) − δ(y) = e/2, let n+ be the number of positive crossings in D

(excluding c0) which change sign in D1. At each such crossing c, we have:

δ(x, c) = δ(y, c) + 1/2.

Let also n− be the number of negative crossings in D which change sign in D1. At each
such crossing c, we have:

δ(x, c) = δ(y, c) − 1/2.
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Therefore,
δ(x) − δ(y) = (n+ − n−)/2 = e/2.

�

Proposition 3.9. Let L be a link and L0, L1 its two resolutions at a crossing as in
Figure 1. Assume that det(L0),det(L1) > 0 and det(L) = det(L0) + det(L1). Then, two
of the three maps in the exact triangle from Theorem 3.3 behave as follows with respect
to the δ-grading:

ĤFK
∗−

σ(L1)
2

(L1) ⊗ V m−l1 → ĤFK
∗−

σ(L)
2

(L) ⊗ V m−l0 → ĤFK
∗−

σ(L0)
2

(L0) ⊗ V m−l,

where V denotes a two-dimensional vector space over F, in grading zero.

Proof. When the given crossing in L is positive, this follows from (8), together with the
results of Lemmas 2.1, 3.7, and 3.8. The case when the crossing is negative is similar. �

Proof of Theorem 1.2. Using Proposition 3.9, we can argue in the same way as in the
proof of Theorem 1.1. Note that we do not have to know the change in the absolute
δ-grading under the third map (f3)∗ : HF (Tα,Tγ) → HF (Tα,Tδ) in the exact triangle.

Indeed, recall that the Euler characteristic of ĤFK is (up to a factor) the Alexander
polynomial, which evaluated at −1 gives the determinant of the link. If we know that L0

and L1 are Floer homologically σ-thin and we want to show the same for L, the fact that
det(L) = det(L0) + det(L1) together with the ungraded triangle implies that

rank (ĤFK(L) ⊗ V m−l) = rank (ĤFK(L0) ⊗ V m−l0) + rank (ĤFK(L1) ⊗ V m−l1).

Hence (f3)∗ = 0, and the inductive step goes through. �
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[22] P. Ozsváth and Z. Szabó, Holomorphic disks and link invariants, preprint (2005), math/0512286.
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