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A question analogous to the flux conjecture

concerning Lagrangian submanifolds

Kaoru Ono

Abstract. We discuss a question analogous to the flux conjecture concerning the
space of Lagrangian submanifolds. Under suitable conditions, we prove C1-closedness

of orbits of the action of Hamiltonian diffeomorphism group on the space of Lagrangian
submanifolds.

1. Introduction

In this note, we discuss a question analogous to the flux conjecture for the quotient
space of Lagrangian submanifolds modulo the Hamiltonian diffeomorphism group of the
ambient symplectic manifold and related questions. We briefly recall the flux conjecture,
see section 2 for more details. Let (M,ω) be a closed symplectic manifold and Ham(M,ω)
the group of Hamiltonian diffeomorphisms of (M,ω). It is obviously a subgroup in the
identity component Symp0(M,ω) of the group of symplectomorphisms. The C1-flux
conjecture states that Ham(M,ω) is closed Symp0(M,ω) with respect to the C1-topology.
This conjecture is equivalent to that the so-called flux group Γω is discrete in H1(M ;R).
From now on, we simply call it the flux conjecture. We proved the flux conjecture in
[5] using Floer cohomology for symplectic isotopies (Floer-Novikov theory). Note that it
implies that the space Symp0(M,ω)/Ham(M,ω) ∼= H1(M ;R)/Γω is Hausdorff.

For a symplectomorphism φ of (M,ω), its graph Grφ ⊂ M × M is a Lagrangian
submanifold with respect to the symplectic form −π∗

1ω + π∗
2ω. Hence the statement on

symplectomorphisms can be rephrased in terms of associated Lagrangian submanifolds,
namely their graphs. We can also consider a Lagrangian submanifold L in a general
symplectic manifold (P,Ω). This leads to the following question.

Let L be a closed embedded Lagrangian submanifold in a closed symplectic submanifold
(P,Ω). Denote by Lag(L) the space of all embedded Lagrangian submanifolds, which are
Lagrangian isotopic to L. The group Ham(P,Ω) of Hamiltonian diffeomorphisms acts on
Lag(L) in a natural way.

Question 1.1. Is Lag(L)/Ham(P,Ω) Hausdorff with respect to the C1-topology?
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In general, the answer is negative. Chekanov [1] studied a certain class of embedded
Lagrangian tori in symplectic vector spaces. The Hausdorffness property fails at monotone
Lagrangian tori in his examples. Although the question is known to be false in general,
we would still like to discuss the question under appropriate conditions on the Lagrangian
submanifold L. In this note, we mainly discuss the following weaker question.

Question 1.2. Are Ham(P,Ω)-orbits closed in Lag(L) with respect to the C1-topology?

It is natural to expect the relation between the stability for Lagrangian submanifolds
and the above question, cf. [8], [9] as well as [3]. Our main result is the following:

Theorem 1.1. Let (P,Ω) be a closed symplectic manifold and L ⊂ P a closed embedded
Lagrangian submanifold with vanishing Maslov class. If L is unobstructed in the sense of
[4], Ham(P,Ω) · L is closed in Lag(L) with respect to the C1-topology.

Corollary 1.2. Let (P,Ω) be a closed symplectic manifold and L ⊂ P a closed embedded
Lagrangian submanifold with vanishing Maslov class. If H2(L; Q) = 0, Ham(P,Ω) · L is
closed in Lag(L) with respect to the C1-topology.

Under a restrictive condition, we also show the following:

Theorem 1.3. In addition, suppose that H1(P ; R) → H1(L; R) is surjective. Then
Lag(L)/Ham(P,Ω) is Hausdorff.

The contents of this note are as follows. In section 2, we review some facts related to
the flux conjecture and formulate our question. In section 3, we collect necessary results
in [4]. We will prove our main theorem in section 4.

2. Preliminaries

From now on, we assume that Lagrangian submanifolds are closed and embedded. We
recall the flux homomorphism and summarize some facts on the flux conjecture. For
a one-parameter family H = {ht} of smooth functions on M , we have the Hamilton-
ian isotopy {φHt }, which is obtained by integrating the one-parameter family {Xht

} of
Hamiltonian vector fields, i.e., i(Xht

)ω = dht. A diffeomorphism φ is called a Hamil-
tonian diffeomorphism, if φ is expressed as the time-one map φH1 for some H = {ht}.
Denote by Ham(M,ω) the group of all Hamiltonian diffeomorphisms of (M,ω), which
is a significant subgroup of the group Symp(M,ω) of all symplectomorphisms of (M,ω).
Clearly, Ham(M,ω) is contained in the identity component Symp0(M,ω).

We introduce some notation. Let θ be a closed 1-form on M . Denote by Xθ the
symplectic vector field such that i(Xθ)ω = θ. Let Θ = {θt} be a one-parameter family
of closed 1-forms. Denote by {ψΘ

t } the symplectic isotopy generated by {Xθt
}. Any

symplectic isotopy {ψt} such that ψ0 = id is described in this way. When Θ is not
specified, we denote by {Xt} the vector field generating {ψt}.

Let S̃ymp0(M,ω) be the universal covering group of Symp0(M,ω). Set

F̃ ({ψt}) =

∫ 1

0

[i(Xt)ω]dt ∈ H1(M ; R).
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Then it descends to a homomorphism

F̃ : S̃ymp0(M,ω) → H1(M ; R).

Denote by Γω, which is called the flux group, the image of the kernel of the covering pro-

jection S̃ymp0(M,ω) → Symp0(M,ω), which is isomorphic to π1 (Symp0(M,ω)), under

F̃ . Then F̃ induces the flux homomorphism

F : Symp0(M,ω) → H1(M ; R)/Γω,

which is continuous with respect to the C1-topology on the domain. It is known that
Ham(M,ω) coincides with the kernel of the flux homomorphism F . The flux conjecture
stated in the introduction is equivalent to that Γω is discrete in H1(M ; R) in the usual
topology. In fact, this is the statement, which we proved in [5]. Hence, we have

Symp0(M,ω)/Ham(M,ω) ∼= H1(M ; R)/Γω

is a Hausdorff space.
Consider the graph Grψ of a symplectomorphism ψ as a Lagrangian submanifold in

(M ×M,−pr∗1ω + pr∗2ω). The diagonal ∆ ⊂ M ×M is the graph of the identity. When
ψ ∈ Symp0(M,ω), Grψ is Lagrangian isotopic to ∆, i.e., Grψ ∈ Lag(∆). Thus we can

identify the space Symp0(M,ω)/Ham(M,ω) with Lag⋔(∆)/ ({id} × Ham(M,ω)), where

Lag⋔(∆) is the subspace of Lag(∆) consisting of L transverse to all fibers of the first and
second factor projections. We may ask whether Lag(∆)/Ham(M ×M,−pr∗1ω + pr∗2ω) is
Hausdorff. This is a special case of Question 1.1. We come back to this question in the
end of section 4.

Before proceeding further, we explain the C1-topology on Lag(L) for the sake of
reader’s convenience. For L′ ∈ Lag(L), we pick a tubular neighborhood U of L′, which
is certainly diffeomorphic to L, such that U is symplectomorphic to a neighborhood V of
the zero section OL′ in T ∗L′ (Weinstein neighborhood). Let f : U → V be a symplecto-
morphism such that f(L′) = OL′ . Denote by Sη the cross section of T ∗L′ corresponding
to a 1-form on L′. Pick and fix a Riemannian metric on L′. Note that the C1-norm
of differential forms depends on the choice of Riemannian metrics and is not preserved
by self-diffeomorphisms. However, the C1-topology is certainly well-defined, when the
manifold is compact. For a sufficiently small ǫ > 0, we set

Uǫ(L
′) = {f−1(Sη)|η is a closed 1-form on L′, ‖ η ‖C1< ǫ}.

The family of such sets gives a basis of the C1-topology on Lag(L). As a warm-up to
Question 1.1, we discuss the case that the ambient symplectic manifold is exact, e.g., the
total space of the cotangent bundle equipped with the standard symplectic form. Firstly,
we have the following:

Proposition 2.1. Let (X, dλ) be an exact symplectic manifold and i : L → X a La-
grangian embedding. For any φ ∈ Ham(X, dλ), we have

[i∗λ] = [(φ ◦ i)∗λ] ∈ H1(L; R).
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In particular, if i : L→ X is an exact Lagrangian embedding, i.e., i∗λ is an exact 1-form,
then φ ◦ i is also an exact Lagrangian embedding.

Proof. Let {φHt } be a Hamiltonian isotopy generated by H = {ht}. Then we have

d

dt
(φHt ◦ i)∗λ = i∗ ◦

d

dt
φH∗
t λ

= i∗ ◦ φH∗
t LXht

λ

= d
(
i∗ ◦ φH∗

t (i(Xht
)λ+ ht)

)
.

Thus i∗λ and (φ ◦ i)∗λ are cohomologous.
If i∗λ is an exact 1-form, (φHt ◦i)∗λ is also exact. Namely, φH1 ◦i is an exact Lagrangian

embedding. �

Remark 2.1. If a symplectic manifold (P,Ω) satisfies [Ω] ∈ Im
(
H2(P ; Z) → H2(P ; R)

)
,

there exists a so-called prequantum line bundle L→ P . A Lagrangian submanifold L ⊂ P
is called exact (a Bohr-Sommerfeld orbit), if L can be lifted to a Legendrian submanifold
in the unit circle bundle S(L). The above argument is easily extended to show that
Hamiltonian deformations of exact Lagrangian submanifolds are exact.

Let it : L → X be a one-parameter family of exact Lagrangian embeddings. Then we
can find a Hamiltonian isotopy {φHt } of the ambient exact symplectic manifold such that
it = φHt ◦i. In general, a one-parameter family of Lagrangian embeddings may not extend
to a symplectic isotopy of the ambient symplectic manifold. We have the following:

Lemma 2.2. Let (P,Ω) be a symplectic manifold and L an embedded closed connected
Lagrangian submanifold. If the embedding i : L→ P induces a surjective homomorphism
i∗ : H1(P ; R) → H1(L; R), then any one-parameter deformation of Lagrangian embedding
i extends to an ambient symplectic isotopy of (P,Ω) starting from id. In other words, the
action of Symp0(P,Ω) on Lag(L) is transitive.

In the case of the zero section OX in the cotangent bundle T ∗X equipped with the
standard symplectic form dλ, we have the following:

Proposition 2.3. There is a canonical continuous bijection

Lag(OX)/Ham(T ∗X, dλ) ∼= H1(L; R),

hence Lag(OX)/Ham(T ∗X, dλ) is Hausdorff.

Proof. Firstly, we define G : Lag(OX) → H1(L; R) as follows. Let L ∈ Lag(OX). For a
loop γ in OX , we pick a loop γ′ in L such that γ and γ′ are homologous in T ∗X. Pick a
2-chain C such that ∂C = γ′ − γ. Then we set

〈G(L), [γ]〉 =

∫

C

dλ

=

∫

γ′

λ−

∫

γ

λ.
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Let θ be a closed 1-form and {ψθ1} the corresponding symplectic isotopy, i.e., the addition
of tθ fiberwisely. Then G

(
ψθ1(OX)

)
= [θ], so G is surjective.

Let L′, L′′ ∈ Lag(OX) such that G(L′) = G(L′′). Choose Θ′ = {θ′t},Θ
′′ = {θ′′t } such

that L′ = ψΘ′

(OX) and L′′ = ψΘ′′

(OX). Note that

G(L′) =

∫ 1

0

[θ′t]dt and G(L′′) =

∫ 1

0

[θ′′t ]dt,

which are equal to each other. Consider Θ(s) = {(1 − s)θ′t + sθ′′t }. Then the time-

one maps ψ
Θ(s)
1 are Hamiltonian isotopic. Therefore L′ and L′′ are Hamiltonian iso-

topic. Hence G induces a bijection G : Lag(OX) → H1(L; R). Since G is continuous,
Lag(OX)/Ham(T ∗X, dλ) is Hausdorff. �

3. Floer theory for Lagrangian submanifolds

We summarize some results from [4], which are necessary for our later argument. In
this section, a Lagrangian submanifold L, resp. a pair (L(0), L(1)) of closed embedded
Lagrangian submanifolds, is equipped with a relative spin structure (see §44 in [4]). For
such an L, we constructed a filtered A∞-algebra associated to L, which satisfies the
gapped condition. Although it depends on various auxiliary choices, its homotopy type is
uniquely determined (Theorems 10.11 and 14.1 in [4]). By the canonical model theorem
(Theorem 23.2 in [4]), we can reduce the filtered A∞-structure to the m1-cohomology,
namely we have the following:

Theorem 3.1 (see Theorem A in [4]). To each relatively spin Lagrangian submanifold
L we can associate a structure of filtered A∞-algebra {mk} on H∗(L; Λ0,nov), which is
well-defined up to isomorphism. A symplectomorphism ψ : (P,L) → (P ′, L′) induces an
isomorphism of filtered A∞-algebras, whose homotopy class depends only on ψ.

Here Λ0,nov is a graded ring called the universal Novikov ring (see Definition 6.2 in
[4]). We introduce two generators e and T such that deg e = 0 and deg T = 0.

Λnov = {
∑

i

aie
µiTλi | ai ∈ Q, µi ∈ Z, λi ∈ R, λi → +∞(i→ +∞)}

Λ0,nov = {
∑

i

aie
µiTλi ∈ Λnov | λi ≥ 0}

Λ+
0,nov = {

∑

i

aie
µiTλi ∈ Λnov | λi > 0}

We will also use the subring consisting of elements of degree zero:

Λdeg=0
nov = {

∑

i

aiT
λi | ai ∈ Q, λi ∈ R, λi → +∞(i→ +∞)}.

Let (L(0), L(1)) be a relative spin pair of Lagrangian submanifolds, which is of clean
intersection. We constructed a filtered A∞-bimodule over the filtered A∞-algebras asso-
ciated to L(1) and L(0) (see Theorem F in [4]). However, in general, the Floer complex of

5



ONO

the pair (L(0), L(1)) may not be constructed, since the bubbling-off of pseudo-holomorphic
discs can happen as codimension one phenomena. We developed obstruction theory in
order to define the Floer complex for a pair of Lagrangian submanifolds.

Theorem 3.2 (see Theorems B and G in [4]). To each relatively spin Lagrangian sub-
manifold L ⊂ P , we can associate a set Mweak,def(L), which may be empty, and maps

πamb : Mweak,def(L) → H2(P ; Λ0,nov)

PO : Mweak,def(L) → Λ+
0,nov

with the following properties.
(1) A symplectomorphism ψ : (P,L) → (P ′, L′) induces a map

ψ∗ : Mweak,def(L) → Mweak,def(L
′)

such that πamb ◦ ψ∗ = (ψ−1)∗ ◦ πamb and PO ◦ ψ∗ = PO.
(2) For (b1,b0) ∈ Mweak,def(L

(1)) ×πamb,PO Mweak,def(L
(0)), we can associate the Floer

cohomology HF∗
(
(L(1),b1), (L

(0),b0); Λ0,nov

)
. After extending the coefficient ring from

Λ0,nov to Λnov, we have HF∗
(
(L(1),b1), (L

(0),b0); Λnov
)
.

(3) Let {φHt } be a Hamiltonian isotopy generated by H and

(b1,b0) ∈ Mweak,def(L
(1)) ×πamb,PO Mweak,def(L

(0)).

Then {φHt } induces an isomorphism

({φHt }, id)∗ : HF∗
(
(L(1),b1), (L

(0),b0); Λnov

)
→ HF∗

(
(φH1 (L(1)), φH1∗b1), (L

(0),b0); Λnov

)
.

Definition 3.1. A relatively spin Lagrangian submanifold L is said to be unobstructed
after infinitesimal deformation, or bulk/boundary deformation, if Mweak,def(L) 6= ∅. The
element b ∈ Mweak,def(L) is called a solution of the Maurer-Cartan equation in the
filtered A∞-algebra associated to L. If there is b ∈ Mweak,def(L) such that πamb(b) = 0
and PO(b) = 0, then we simply call L unobstructed.

Remark 3.1. In the case that the Maslov class vanishes on π2(P,L), the potential
function PO is automatically zero.

We have not yet found satisfactory sufficient condition for unobstructedness (after
infinitesimal deformation), but have the following:

Theorem 3.3 (Theorem C in [4]). There exist a series of positive integers mk and classes

[o2mk

k (L; weak,def)] ∈
H2mk(L; Q)

Im (i∗H2mk(P ; Q) → H2mk(L; Q))
,

k = 1, 2, . . . , (obstruction classes) such that if [o2mk

k (L; weak,def)] are all zero, then
Mweak,def(L) is non-empty. The number 2 − 2mk is a sum of the Maslov indices of a
finite collection of homotopy classes in π2(P,L) realized by pseudo-holomorphic discs with
respect to a compatible almost complex structure on P .

In particular, we find the following:
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Corollary 3.4. If i∗ : H2mk(P ; Q) → H2mk(L; Q) is surjective, Mweak,def(L) 6= ∅.

Corollary 3.5. If the Maslov class µL : π2(P,L) → Z is zero, all obstruction classes

[o2mk

k (L; weak,def)] lie in H2(L; Q).

We have the following non-vanishing result.

Theorem 3.6 (see Theorem E, Theorem 24.12 in [4]). Suppose that b ∈ Mweak,def(L)
and the Maslov indices of all pseudo-holomorphic discs bounding L are non-positive. Then
the Poincare dual PD[pt] of the point class gives non-trivial element in the Bott-Morse
Floer cohomology HF∗ ((L,b)(L,b); Λnov). The Poincare dual PD[L] of the fundamental
class of L can be deformed to a non-trivial element PD[L]′ of HF∗ ((L,b), (L,b); Λnov)
such that PD[L]′ ≡ PD[L] mod Λ+

0,nov.

If the Maslov class µL vanishes on π2(P,L), we can equip L with a grading struc-
ture (a graded Lagrangian submanifold) in the sense of Kontsevich and Seidel [7]. We
denote a graded Lagrangian submanifold by (L, σ). Changing the grading structure
shifts the degree by a constant. For a relatively spin pair (L(0), L(1)) of graded La-
grangian submanifolds with bi ∈ Mweak,def(L

(i)), we can construct the Floer cohomology

HF∗
(
(L(1),b1, σ1), (L

(0),b0, σ0); Λ
deg=0
nov

)
over Λdeg=0

nov . We also have the Floer cohomol-

ogy over Λdeg=0
0,nov = Λ0,nov ∩ Λdeg=0

nov . A Lagrangian isotopy {Lt} induces the one-to-one

correspondence between grading structures on L = L0 to those on L′ = L1. All results
above hold for these Floer cohomologies for graded Lagrangian submanifolds. Then the
degree of PD[pt], resp. PD[L]′, is n, resp. 0. Here n = dimL.

4. Proof of Theorem 1.1

Let L ⊂ P be a relatively spin Lagrangian submanifold and L∗ ∈ Lag(L). It is obvious
that L∗ is diffeomorphic to L. Pick a tubular neighborhood U of L∗, which is symplecto-
morphic to a tubular neighborhood V of the zero section OL∗

of T ∗L∗, i.e., there exists a
symplectomorphism f : (U,L∗) → (V,OL∗

). Then a Lagrangian submanifold L′, which is
sufficiently close to L∗ in the C1-topology, is described by a closed 1-form on L∗. If two
Lagrangian submanifolds L1, L2 are sufficiently close to L∗ in the C1-topology and corre-
spond to cohomologous closed 1-forms, L2 can be realized by a Hamiltonian deformation
of L1. Hence small Lagrangian deformations of L′ up to Hamiltonian deformations are
parametrized by a small neighborhood W ⊂ H1(L; R) of the origin. We announced the
following statement in the case that L∗ = L in [6].

Proposition 4.1. Let L ⊂ P be a relatively spin Lagrangian submanifold such that the
Maslov class µL vanishes on π2(P,L) and L∗ ∈ Lag(L). Suppose that L is unobstructed
after infinitesimal deformation, i.e., there exists b ∈ Mweak,def(L). Let {φHt } be a Hamil-
tonian isotopy generated by H. Suppose that L and φH1 (L) are sufficiently close to L∗ in
the C1-topology, hence f(L) and f ◦ φH1 (L) are the graphs of closed 1-forms η and η′ on
L. Then η′ is cohomologous to η.
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Before giving the proof, we prepare some notation. Let θ be a closed 1-form on L∗. By
abuse of notation, we denote by θ the closed 1-form f∗◦pr∗(θ) on the tubular neighborhood
U of L∗, where pr is the projection of the cotangent bundle of L∗. Then denote by Xθ the
vector field on U such that i(Xθ)Ω = θ and by {ψθt } the symplectic local flow generated
by Xθ. Once a Riemannian metric is chosen on L∗, we have a one-to-one correspondence
between vector fields and 1-forms. We denote by θ# the vector field such that

〈θ#, ·〉 = θ(·).

Proof. Firstly, we note that L′ = φH1 (L) is also unobstructed after infinitesimal defor-
mation, i.e., b′ = φH1∗(b) ∈ Mweak,def(L

′). We also have πamb(b) = πamb(b
′) and

PO(b) = PO(b′). (Under the assumption that the Maslov class vanishes on π2(P,L),
the latter is zero.)

Since µL vanishes on π2(P,L), there is a grading structure σ on L. A Lagrangian
deformation {Lt} such that L′ = L1 induces the grading structure σ{Lt} on L′. In

particular, the Hamiltonian isotopy {φHt } induces the grading structure σH = σ{φH
t (L)}.

If L and L′ are sufficiently C1-close to L∗, we can regard L, resp. L′, as the graph of

a closed 1-form η, resp. η′ in T ∗L∗. Clearly L′ = ψη
′−η

1 (L). The Lagrangian deformation

{ψη
′−η
t (L)} induces the grading structure ση,η

′

= σ{ψη′
−η

t (L)} on L′. Two grading struc-

tures σH and ση,η
′

may not coincide, hence the degrees in Floer theory may be shifted by
a constant. Namely, there is an integer c such that HF∗

(
(L′,b′, σH), (L,b, σ); Λdeg=0

nov

)
is

isomorphic to HF∗+c
(
(L′,b′, ση,η

′

), (L,b, σ); Λdeg=0
nov

)
as graded Λdeg=0

nov -modules.

Now we explain, more precisely, the condition how close L and L′ are to L∗ in the
C1-topology. Namely, ‖ η ‖C1 , ‖ η′ ‖C1< ǫ for some ǫ > 0, which we will specify later.
Pick and fix a Riemannian metric on L∗. We may assume that V ⊂ T ∗L∗ is the δ-
neighborhood of the zero section OL∗

with respect to the induced metric. Denote by V ′

the 2δ/3-neighborhood of OL∗
and set U ′ = f−1(V ′). Pick an almost complex structure

J compatible with Ω. By the monotonicity lemma for J-holomorphic curves, there exists
a constant e > 0 such that

∫
S

Ω > e for any non-constant compact J-holomorphic curve
in P \ U ′ with ∂S ⊂ ∂U ′. We will choose δ > 0 sufficiently small later. Note that the
constant e > 0 does not depend on the choice of δ, whenver ∂U ′ is of contact type. (By
the maximal principle, such a J-holomorphic curve is not contained in any Weinstein
neighborhood of L∗.)

Choose a Morse function h on L∗ such that |dh| < δ/3. We may assume, without loss
of generality, that h has a unique maximum and a unique minimum. We also assume that
maxh − minh < e/4. Next we pick contractible neighborhoods W ′ ⋐ W of the set of
critial points of h and a smooth cut off function ρ such that the diameter of W is bounded
by 1/ℓ and

ρ = 1 on W ′, ρ = 0 on L∗ \W, |dρ| < 2ℓ,

where K is a positive number.
The first condition for ǫ > 0 is
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ǫ <
1

100
min
L∗\W ′

|dh|. (1)

In particular, this condition implies that ǫ < δ/300.
Suppose that the closed 1-forms η and η′ satisfy that ‖ η ‖C0 , ‖ η′ ‖C0< ǫ. Since W

is contractible, we find that (η′ − η)|W = dg for some smooth function g on W . We may
assume that |g| < 2ǫ/ℓ, since |dg| < 2ǫ and the diameter of W is at most 1/ℓ. We regard
ρ · g as a smooth function on L∗. Then η′′ = dh + η′ − d(ρ · g) is also a closed 1-form
cohomologous to η′.

It is easy to see that

|η′′| ≤ |dh| + |η′| + |d(ρ · g)| < |dh| + 7ǫ,

which is smaller than 2δ/3. Thus Sη′′ is contained in V ′. It guarantees a Hamiltonian
isotopy {φKt }, which maps f−1(Sη′) to f−1(Sη′′), such that the support of K is contained
in U ′ ∼= V ′. Note also that

|dh− (η′′ − η)| < 6ǫ.

By the construction, we find that Sη and Sη′′ intersect transversally and their intersection
points are identified with the critical points of h.

Since (1) holds on L∗ \W
′ and η′′ − η = dh on W ′,

|dh− (η′′ − η)| <
1

10
|dh|, (2)

we find that

dh
(
(η′′ − η)#

)
≥

9

10
dh

(
(dh)#

)
.

Hence the function h increases along integral curves of (η′′ − η)#, i.e., h is a Liapunov
function.

Now we give the second condition for ǫ through δ. Note that ‖ η ‖C1 , ‖ η′′ ‖C1< 2δ/3.
Pick δ > 0 sufficiently small, there is a diffeomorphism Ψ supported in V ′ such that
Ψ(OL∗

) = Sη and Ψ(Sdh) = Sη′′ with the following property.

• Let {Jht } be the t-dependent family of almost complex structures on V ⊂ T ∗L∗

associated to h, which Floer introduced in [2]. Ψ is C1-close enough to the identity such

that the family Ĵ = {Ψ∗J
h
t } of almost complex structures is tamed by the canonical

symplectic structure on T ∗L∗.

We arrange the almost complex structure J on P , which may depend on t ∈ [0, 1], so

that J coincides with Ĵ on U ′. Then all Floer connecting trajectories, i.e., J-holomorphic
strip u bounded by L = f−1(Sη) and L′′ = f−1(Sη′′), contained in U correspond to the
bounded solution of

γ̇(τ) = (η′′ − η)# (γ(τ)) .

Then the energy E(u) of the Floer connecting trajectory u satisfies
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E(u) =

∫

R×[0,1]

u∗ωcan

=

∫ +∞

−∞

γ∗(η′′ − η),

where ωcan is the standard symplectic form on T ∗L∗. By (2), we have

(η′′ − η)
(
(η′′ − η)#

)
= |(η′′ − η)#|2 <

9

8
dh

(
(η′′ − η)#

)
.

Thus we find that

E(u) <
9

8

(
h(p+) − h(p−)

)
<
e

2
.

Here p± = limτ→±∞ γ(τ), which are critical points of h. Thus all Floer connecting
trajectories for (L,L′′) contained in U have symplectic area less than e/2. Note also that
∂U is a boundary of contact type.

We fix ǫ > 0 satisfying the above conditions. Note that, if a Floer connecting trajectory
is not contained in U , its symplectic area must be more than e.

Denote by H#K the time-dependent Hamiltonian, which generates the concatenation

of {φHt } and {φKt }. Write (L′′,b′′, σ′′) = (φH#K
1 (L), φH#K

1∗ b, φK1∗σ
η,η′). Now we consider

the Floer complex CF∗
(
(L′′,b′′, σ′′), (L,b, σ); Λdeg=0

nov

)
. The Floer coboundary operator

δb
′′,b decomposes into

δb
′′,b = δb

′′,b
<e + δb

′′,b
≥e .

Here δb
′′,b

<e counts Floer connecting trajectories of relative index 1 and with energy less

than e, i.e, those contained in U , while δb
′′,b

≥e is other contributions to δb
′′,b.

The operator δb
′′,b

<e can be identified with the coboundary operator of the Novikov
complex for the closed 1-form η′′ − η.

Denote by pmin and pmax the unique minimum and maximum of h, hence, the unique
zero of η′′ − η of index 0, n, respectively. If η′′ − η, hence η′ − η, is not exact, the
Novikov cohomology HN∗(η′′ − η) vanishes in degrees ∗ = 0, n. Let pmin, pmax be lifts
of pmin, pmax to the abelian covering space of L∗ associated to the de Rham cohomology

class [η′′ − η] = [η′ − η]. Hence δb
′′,b

<e pmin 6= 0, and there are qi of index n such that

δb
′′,b

<e (
∑
i aiqi) = pmax.

Since pmin is the unique zero of η′′−η with index 0 and the Floer coboundary operator
δb

′′,b is linear over the field Λdeg=0
nov , there does not exist a non-trivial Floer cocycle of

degree 0.
Note also that pmax is the unique zero of η′′−η with index n. Using the energy filtration,

we can find that any Floer cocycle of degree n is a Floer coboundary. Therefore we find
that

HF∗
(
(L′′,b′′, σ′′), (L,b, σ); Λdeg=0

nov

)
= 0

10
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for ∗ = 0, n. Because the Maslov class µL vanishes on π2(P,L), the degree of L ∩ L′′

is determined by the index of zeros of η′′ − η. Hence the degrees are between 0 and n.
Combining these, we find that if

HF∗
(
(L′′,b′′, σ′′), (L,b, σ); Λdeg=0

nov

)
6= 0

for ∗ = k, ℓ, then |k − ℓ| < n− 1.
By the hypothesis that µL vanishes on π2(P,L), the Maslov indices of all pseudo-

holomorphic discs are zero. Thus Theorem 3.6 guarantees existence of non-trivial classes
PD[pt] and PD[L]′ in HF∗

(
(L,b, σ), (L,b, σ); Λdeg=0

nov

)
with ∗ = n, 0, respectively.

By the graded Lagrangian version of Theorem 3.2 (3), we find that

HF∗
(
(L′′,b′′, σH#K), (L,b, σ); Λdeg=0

nov

)
∼= HF∗

(
(L,b, σ), (L,b, σ); Λdeg=0

nov

)
.

Therefore there are k and ℓ such that

HF∗
(
(L′′,b′′, σH#K), (L,b, σ); Λdeg=0

nov

)
6= 0

for ∗ = k, ℓ and k − ℓ = n.
Although the grading structures σH#K and σ′′ may be different, the Floer connecting

trajectories do not depend on the choice of a grading structure and the resulting coho-
mology groups as graded modules are isomorphic up to a degree shift. Namely, there is
an integer c such that

HF∗
(
(L′′,b′′, σ H#K), (L,b, σ); Λdeg=0

nov

)
∼= HF∗+c

(
(L′′,b′′, σ′′), (L,b, σ); Λdeg=0

nov

)
.

Hence we obtain a contradiction. �

Now we are ready to finish

Proof of Theorem 1.1. Recall that f : U → V is a Weinstein neighborhood of L∗. Set

Uǫ = {f−1(Sθ) | θ is a closed 1-form on L∗, ‖ θ ‖C1< ǫ},

which is a neighborhood of L∗ in Lag(L). Then Proposition 4.1 implies that

Ham(P,Ω) · L ∩ Uǫ

consists of f−1(Sθ) such that ‖ η ‖C1< ǫ and θ belongs to a unique cohomology class
a ∈ H1(L∗; R).

If L and L∗ belong to different Ham(P,Ω)-orbits, then the class a is non-zero. Then
there exists a constant d > 0 such that ‖ θ ‖C0> d, hence ‖ θ ‖C1> d, for any θ
representing the class a. If ǫ < d, then

Ham(P,L) · L ∩ Uǫ = ∅.

Therefore Ham(P,L) · L is closed in Lag(L) with respect to the C1-topology. �

Remark 4.1. The above proof is similar to the proof of Theorem 4.3 in [9].

11
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By Corollary 3.5, if a relatively spin Lagrangian submanifold L satisfies that

H2(L; Q) = 0

and the Maslov class vanishes on π2(P,L), L is unobstructed. Hence Corollary 1.2 follows
from Theorem 1.1.

Restrict ourselves to unobstructed Lagrangian submanifolds and denote by Lagunob(L)
the subspace of unobstructed Lagrangian submanifolds in Lag(L). Note that this space
may no longer connected. It may be more natural to ask the following:

Question 4.1. Is Lagunob(L)/Ham(P,Ω) Hausdorff?

Proof of Theorem 1.3. Let L1, L2 ∈ Lag(L) such that φ(L1) 6= L2 for any φ ∈ Ham(P,Ω).
We will find neighborhoods Ui of Li in the C1-topology such that Ham(P,Ω) ·Ui, i = 1, 2,
are disjoint, which is equivalent to that

U1 ∩ Ham(P,Ω) · U2 = ∅. (3)

Let fi : U(Li) → V (OLi
) be Weinstein’s standard form around the Lagrangian subman-

ifold Li. We assume that fi, i = 1, 2, extend to slightly larger Weinstein neighborhoods.

(This condition makes the smooth extension of θi to θ̃i exist in a later argument.) Pick
and fix a Riemannian metric on Li. We set

Vi,ǫ = {Sθ | θ is a closed 1-form on Li, ‖ θ ‖C1(Ω1(Li))< ǫ}.

Pick ǫi > 0 such that V (OLi
) contains the ǫi-neighborhood of OLi

with respect to the
induced metric. By Theorem 1.1, there is small ǫ1 > 0 such that 2ǫ1 < ǫ1 and

Ham(P,Ω) · L2 ∩ Ũ1 = ∅,

where

Ũ1 = {f−1(S) | S ∈ V1,2ǫ1}.

Since L1 and L2 are the images of isotopic embeddings, we find that

ker
(
H1(P ; R) → H1(L1; R)

)
= ker

(
H1(P ; R) → H1(L2; R)

)
.

We denote by K this submodule of H1(P ; R). Although there are no canonical choice of
parametrizing Li, i = 1, 2, we can identify H1(L1; R) and H1(L2; R) through H1(P ; R)/K.

Choose a neighborhood W ⊂ H1(P ; R)/K, which we identify with H1(Li,R), i = 1, 2,
of the origin such that any cohomology class in W is represented by some θ on L1 with
‖ θ ‖C1(Ω1(L1))< ǫ1. Since the de Rham cohomology class is determined by the integration
on cycles generating the first homology group, we can also find a sufficiently small ǫ2 > 0
such that ǫ2 < ǫ2 and [θ] ∈W for any closed 1-form θ on L2 with ‖ θ ‖C1(Ω1(L2))< ǫ2.

Write

Ui = {f−1(S) | S ∈ Vi,ǫi},

and prove (3). Suppose that there exist L′ ∈ U1, L
′′ ∈ U2 and φ ∈ Ham(P,Ω) such that

L′ = φ(L′′). Let θi be closed 1-form on Li such that f1(L
′) = Sθ1 and f2(L

′′) = Sθ2 ,
in particular ‖ θi ‖C1(Ω1(Li))< ǫi. We extend θi to the tubular neighborhoods U(Li)

12
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by f∗i ◦ π∗
i (θi), where πi is the projection of the cotangent bundle of Li. Using the

hypothesis that H1(P ; R) → H1(Li; R) is surjective, we extend them to closed 1-forms θ̃i

on P . Note that ψ
eθ2
1 (L2) = L′′. By the choice of ǫ2, the cohomology class [θ2] belongs

to W . Since φ is isotopic to the identity, [φ∗(θ̃2)] mod K belongs to W . Pick a closed

1-form θ′2 on L1 in this class such that ‖ θ′2 ‖C1(Ω1(L1))< ǫ1. Then extend it to θ̃′2 on P

such that [θ̃′2] = [θ̃2] ∈ H1(P ; R) and θ̃′2 coincides with f∗1 ◦ π∗
1(θ′2) on U(L1). Note that

‖ θ1 − θ′2 ‖C1(Ω(L1))< 2ǫ. Since φ ∈ Ham(P,Ω) and [θ̃′2] = [θ̃2], f
−1
1 (Sθ1−θ′2) = ψ

eθ1−eθ′
2

1 (L1)

is Hamiltonian isotopic to L2. It implies that there is a Hamiltonian isotopy {φHt } such

that φH1 (L2) ∈ Ũ1, which is a contradiction. �

Under the hypothesis that H∗(P ; R) → H∗(L; R) is surjective, all L′ ∈ Lag(L) are

unobstructed, i.e., Lag(L) = Lagunob(L). Namely, for any L′ ∈ Lag(L), Lemma 2.2
states that ψ ∈ Symp0(P,Ω) such that L′ = ψ(L). Let b ∈ Mdef,weak(L). Then ψ∗b ∈
Mdef,weak(L

′), i.e., L′ is unbostructed. Combining the argument in [5], we obtain the
following:

Theorem 4.2. Let i : L ⊂ P be a relatively spin Lagrangian submanifold such that
i∗ : H∗(P ; R) → H∗(L; R) is surjective. Then Lag(L)/Ham(P,Ω) is Hausdorff with respect
to the C1-topology.

Remark 4.2. In the case that H2(P ; Z/2Z) → H2(L; Z/2Z) is surjective, L is a relatively
spin submanifold. In particular, the diagonal set ∆ ⊂M ×M satisfies the assumption in
Theorem 4.1. Hence Lag(∆)/Ham(M×2, ω̃) is Hausdorff.

Sketch of the proof. We will show that the Ham(P,Ω)-orbits are closed in the C1-topology.
Then the Hausdorff property follows as in the proof of Theorem 1.2.

Firstly, we note that L is unobstructed after infinitesimal deformation by Corollary
3.4. Pick b ∈ Mdef,weak(L). Suppose that there exists φ ∈ Ham(P,Ω) such that L and
L′ = φ(L) are sufficiently close to L∗ ∈ Lag(L). Let U be as in the proof of Theorem
1.1. Then L, resp. L′, correspond to a closed 1-form η, resp., η′ on L∗ such that
‖ η ‖C1(Ω1(L∗)), ‖ η

′ ‖C1(Ω1(L∗))< ǫ. For a closed 1-form θ on L∗ denote by Hθ → L a flat
line bundle corresponding to [θ] : π1(L) → R.

Theorem 3.2 also holds in the case of twisted by flat bundles on L(i). We use the flat
line bundle Hǫ(η′−η) on L and the trivial bundle R on L′. (We identify L and L∗ by the
projection L ⊂ U → L∗ and regard η, η′ as closed 1-forms on L.) Thus we have

HF∗
(
(L′,b′,R), (L,b,Hǫ(η′−η)); Λnov

)
∼= HF∗

(
(L,b,R), (L,b,Hǫ(η′−η)); Λnov

)
.

While the right hand side is described by ordinary cohomology of L with coefficients
in Hǫ(η′−η), the left hand side is described by Novikov cohomology with coefficients in
Hǫ(η′−η), cf. Theorem H, Theorem 24.5 in [4]. Then we can derive a contradiction in a
similar way as in [5]. �
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