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Tight contact structures on the Weeks

manifold

András I. Stipsicz

Abstract. We construct tight contact structures on the Weeks manifold W ,
the closed hyperbolic 3–manifold with smallest volume. The contact structures
are constructed through contact surgery diagrams involving contact (±1)–
surgeries. The tightness of these contact structures are verified by showing
that the contact Ozsváth–Szabó invariants of the structures are nonzero.

1. Introduction

Suppose that Y is a closed oriented 3–manifold and ξ is a 2–plane field on Y

which can be given as the kernel of a 1–form α satisfying α ∧ dα > 0. Such ξ

is called a (positive, cooriented) contact structure on Y . A contact structure ξ

is tight if Y does not contain any embedded disk D with the property that ξ is
tangent to D along ∂D . Such disks are called overtwisted disks, and a contact
structure containing such a disk is called overtwisted. According to the famous
result of Eliashberg [5], overtwisted contact structures are determined by the
homotopy type of the 2–plane field, hence do not capture geometric information of
the underlying 3–manifold. Tight contact structures, however, are more geometric
objects, and play prominent role in the study of low dimensional manifolds.

It is known that on a connected sum Y1#Y2 tight structures decompose uniquely
as tight structures on the factors Y1, Y2 . Therefore in understanding existence
and classification questions we can restrict our attention to prime 3–manifolds.
According to the solution of the Geometrization Conjecture, a prime 3–manifold
Y either admits a hyperbolic metric, is Seifert fibered, or contains an essential
torus (i.e., a 2–torus T 2 ⊂ Y such that the embedding induces an injective homo-
morphism on the fundamental groups). According to [2, 8] a toroidal 3–manifold
(i.e., a 3–manifold containing an essential torus) admits infinitely many different
tight contact structures. (Moreover, by [2] an atoroidal manifold admits at most
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finitely many isotopy classes of tight contact structures.) The existence problem
for Seifert fibered 3–manifolds was recently answered:

Theorem 1.1 ([14]). A Seifert fibered 3–manifold admits a tight contact structure

if and only if it is not orientation preserving diffeomorphic to the result of (2n−1)–
surgery along the (2, 2n + 1)–torus knot T2,2n+1 ⊂ S3 for some n ∈ N. �

The proof of this theorem utilized the explicite surgery presentation of the Seifert
fibered 3–manifolds. Using a surgery presentation, we were able to modify it
to a contact surgery presentation of the same 3–manifold, where contact (±1)–
surgeries were performed along Legendrian knots in the standard contact 3–sphere.
(For more on contact surgery see [3, 11].) Tigthness of the resulting contact
structures were verified by the computation of the corresponding contact Ozsváth–
Szabó invariants — their nonvanishing implied that the surgery diagrams gave rise
to tight structures.

This approach cannot be applied for hyperbolic 3–manifolds in general. In this
note we show that the Weeks manifold W , which is known to be the closed
hyperbolic 3–manifold with smallest hyperbolic volume [6], admits tight contact
structures. Recall that W is defined as surgery along the Whitehead link, with
surgery coefficients (5, 5

2
). Following the convention of [1] we take the clasp at the

Whitehead link in such a way that (+1)–surgery on one of its components turns
the other one into the right–handed trefoil knot, while (−1)–surgery on the same
component turns the other into the Figure–8 knot. For the surgery presentation
of W see Figure 1, cf. also [4, page 249].

5

5/2

Figure 1. The Weeks manifold, presented as surgery along the
Whitehead link
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2. Contact structures on the Weeks manifold W

In the following, through a sequence of surgery diagrams we describe contact
structures on W with both of its orientations. Let us start with −W (where the
orientation of W is given by the diagram of Figure 1). A diagram for −W can be
given by considering the mirror image of the link of Figure 1, with the framings
multiplied by (−1), as it is given by Figure 2. After an inverse slam dunk (cf. [7])
and an isotopy of the projection we can put these knots in Legendrian position in a
way that a sequence of contact (−1)–surgeries is needed (when surgery coefficient
is measured with respect to the contact framing), cf. Figure 2. Since on the
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Figure 2. Stein fillable contact structures on −W
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Legendrian knot L of Figure 2(iii) we are free to choose the stabilization either
on the right or on the left, we constructed two nonisotopic Stein fillable contact
structures, which can be distinguished by the first Chern classes of their Stein
fillings, cf. [9].

Now we turn our attention to the Weeks manifold W with the orientation given
by Figure 1. A sequence of inverse slam dunks and blow–downs (cf. [7]) turns
this diagram into the one given by Figure 3(iii). Isotoping the link to Legendrian
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Figure 3. Another surgery diagrams for the Weeks manifold

position we get Figure 4. Now the standrad algorithm for turning a positive
integer contact surgery into a sequence of contact (−1)–surgeries and a contact
(+1)–surgery (as it is described in detail in [3]) yields contact surgery diagrams
for W :

• stabilize the Legendrian unknot of Figure 4 with contact surgery coefficient
(−2) once (either on the left or on the right side) and perform contact
(−1)–surgery on the result, and
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−1
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−2

Figure 4. Contact surgery diagram for W

• consider the Legendian push-off of the (+4)–framed curve, stabilize it
once (either on the right or on the left), and then push off the result two
more times; perform contact (+1)–surgery on the orginial knot (which we
will call L), while on the push–offs perform contact (−1)–surgeries.

Notice that in this algorithm we have two choices on whether we put the stabi-
lizations to the left or to the right on the two curves, so in fact we produce four
diagrams and hence four contact structures ξi,j where i, j ∈ {l, r} (corresponding
to left or right stabilizations).

3. Contact Ozsváth–Szabó invariants

In [15, 16] Ozsváth and Szabó defined an invariant of a spinc 3–manifold (Y, t),

which is now called the Ozsváth–Szabó homology group ĤF (Y, t) of (Y, t). The
theory (which, for the sake of simplicity we consider here with Z2–coefficients) fits
into the framework of a Topological Quantum Field Theory, in the sense that 4–
dimensional spinc cobordisms between spinc 3–manifolds induce homomorphisms
between the corresponding Ozsváth–Szabó homology groups. Moreover, these
groups and maps provide exact triangles for surgery triples, as it is explained
in [16], cf. also [10]. In addition, in [17] an invariant c(Y, ξ) of a contact 3–

manifold (Y, ξ) as an element of the group ĤF (−Y, tξ) is defined. (Here tξ

denotes the spinc structure induced by the contact structure ξ .) This invariant
has the remarkable property that it vanishes for overtwisted contact strucutres
(hence can be used to detect tightness), it is nonzero for Stein fillable contact
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structures and satisfies the following simple transformation rule: If (YL, ξL) is
given as contact (+1)–surgery along the Legendrian knot L ⊂ (Y, ξ), and the
surgery induces the oriented cobordism X then

c(YL, ξL) = F−X(c(Y, ξ)),

where F−X is the map induced by the cobordism X , with its orientation reversed.

These invariants can be effectively computed in many cases when the contact
structure is given through a contact surgery presentation, cf. [10, 11, 12]. Next
we will determine the contact Ozsváth–Szabó invariants for the contact structures
defined by the surgery diagrams we found on the Weeks manifold.

Theorem 3.1. The contact structures ξi,j (i, j ∈ {l, r}) defined by Figure 4 have

nonvanishing contact Ozsváth–Szabó invariants, hence are all tight. In addition,

the four structures are nonisotopic.

Proof. Let us consider the single curve L of the contact surgery diagram defining
ξij on which contact (+1)–surgery is performed. Recall that by the recipe of
[3], this curve results from the (+4)–framed Legendrian knot of Figure 4. It
is not hard see that L is smoothly isotopic to the right–handed trefoil knot,
and that tb(L) = 1. Therefore the main result of [10] (cf. also [13]) applies and
shows that the contact Ozsváth–Szabó invariant of the resulting contact structure
(S3

2(L), ξL) is nonzero. More explicitely, consider the cobordism X given by the
handle attachment induced by the single surgery along L . The map F−X fits in
the exact triangle

ĤF (S3) ĤF (S3
−2(L))

ĤF (S3
−1(L))

F−X

where L is the mirror image of L (hence smoothly it is the left–handed trefoil

knot). It is not hard to see that ĤF (S3
−n(L) = ĤF (S3

n(L)) = Z
n
2 for all n > 0,

and it is known that ĤF (S3) = Z2 . Since the exactness of the triangle

Z2 Z
2
2

Z2

F−X
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implies the injectivity of F−X , the nonvanishing of the contact invariant c(S3, ξst)
of the standard contact 3–sphere and the identity F−X(c(S3, ξst)) = c(S3

2(L), ξL)
verifies the nonvanishing of c(S3

2(L), ξL).

Since the contact structures ξij constructed on W are all contact (−1)–surgeries
on ξL , the nonvanishing follows from [11, Corollary 3.6]. In fact, since a contact
(−1)–surgery can be cancelled by a contact (+1)–surgery along the Legendrian
push–off of the curve at hand [3, 18], we see that (S3

2(L), ξL) can be given as a
sequence of contact (+1)–surgeries on (W, ξi,j). Therefore, for the corresponding
cobordism U (induced by the surgeries viewed as handle attachments) we get

F−U (c(W, ξi,j)) = c(S3
2(L), ξL),

and since the image is nonzero, we conclude that c(W, ξi,j) 6= 0, implying that
these structures are all tight.

Finally, we show that the structures ξi,j represent different spinc structures, hence
are nonisotopic. To this end, consider Figure 3(iii). Let the normal circle to the
surgery curves a, b, c be denoted by µa, µb, µc . Then it is easy to see (cf. [7]) that
H1(W ; Z) can be presented as

H1(W ; Z) = 〈µ1, µb, µc | 5µa = 0,−2µb + µc = 0,−3µc + µb = 0〉

= 〈µa, µc | 5µa = 5µc = 0〉.

From the surgery presentation of ξi,j we get a 4–manifold X and a cohomology
class K ∈ H2(X; Z), evaluating on the generators of the second homology corre-
sponding to the surgery curves as their rotation numbers. As it is explained in [3],
this characteristic cohomology class determines a spinc structure s on X , with
the property that the restriction of s to the boundary is exactly the spinc struc-
ture of the contact structure given by the diagram. Suppose now that a choice of
stabilizations is fixed, in other words, we picked one of ξi,j (i, j ∈ {l, r}). After
elementary Kirby calculus we can arrive to the diagram of Figure 3(iii), with
the corresponding cohomology class K ′ evaluating on c as ±1 (depending on the
choice of the zig-zag), on b as 0, and on a as ±3. Consequently the Poincaré dual
of c1(ξi,j), which is now an element of H1(W ; Z) can be given in the presentation
discussed above as ±3a ± c . Since these elements are all different in H1(W ; Z)
we get that the contact structures ξi,j induce different spinc structures, hence are
nonisotopic. �
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[12] P. Lisca and A. Stipsicz, Ozsváth–Szabó invariants and tight contact 3–manifolds, III, J.

Symplectic Geometry, to appear, arXiv:math.SG/0505493.
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