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An introduction to reduced volume
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Abstract. In these lecture notes we give an introduction to Perelman’s theory of
reduced distance and reduced volume. We begin with a quick introduction to some
classical results about Riemannian manifolds with nonnegative Ricci curvature, and
we end with two applications of the monotonicity of reduced volume.

1. Introduction

In Riemannian geometry we study the geometric properties of Riemannian manifolds,
such as the relation between curvature and topology, the existence of metrics satisfying
certain curvature conditions, and properties of various other geometric quantities. Such a
study often requires us to consider collections of Riemannian manifolds, one such example
is the Cheeger-Gromov compactness theorem and its applications. A special case of
collections of Riemannian manifolds is a one-parameter family of Riemannian metrics
g(s) on a given manifold M , this is used by S.T. Yau in his celebrated proof of the
existence of Ricci flat Kähler metrics using the continuity method. Ricci flow, introduced
by R. Hamilton, is a one-parameter family of metrics g̃(t), t ∈ (α, T ), which satisfies
the flow equation ∂

∂t g̃(t) = −2Rc(g̃(t)) where Rc(g̃(t)) stands for the Ricci curvature of
g̃(t). We hasten to add that Ricci flow is a very special one-parameter family of metrics.
Through the work of G. Perelman on smooth Ricci flow we clearly see that there is an
organic relation between the time variable t and the space variables in Ricci flow, which
suggests some kind of space-time geometry. In these notes of a mini-course we give an
introduction to two key notions which support the space-time viewpoint: reduced distance
and reduced volume.

Because of the analogy between Ricci flow and the geometry of Riemannian manifolds
with nonnegative Ricci curvature, we begin the lectures with a quick review of some
classical global results which hold on any Riemannian manifolds with nonnegative Ricci
curvature. The purpose of §2 is to help the reader to understand the results and calcula-
tions that appear later in §3 and §4 about the reduced distance and the reduced volume,
respectively. In §5 we give two applications of reduced volume, in particular, the no local
collapsing theorem.

Key words and phrases. Ricci flow, reduced distance, reduced volume, no local collapsing.
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As always going back to the source (original article(s)) fundamentally helps one’s un-
derstanding of math, for reduced distance and reduced volume we strongly suggest that
the reader consults Perelman’s paper [Pe02], in particular, §7, §8, and §6.

We assume that the reader has some exposure to Riemannian geometry and Ricci flow
before.

We end this introduction with a warning and a list. In these notes we have swept
under the rug the issue about how to do calculus at cut-locus points where distance
function r(·) is not smooth. There are standard procedures to handle it: Calabi trick or
barrier functions. In the calculation below we pretend that r(·) is smooth. Similar issue
exists for the reduced distance (e.g., §3.2A) and the issue can be solved using barrier
functions, again in the calculation below we pretend that the reduced distance is smooth.

Conventions and notations:

We adopt Einstein summation convention

g(x, t): the inner product on the tangent space at point x defined by metric g(t)

R: scalar curvature

R(x, t): scalar curvature of metric g(t) at x

Rc: Ricci curvature. Rij = Rikkj = Rk
kij

Rc(x, t): Ricci curvature of metric g(t) at x

Rm: Riemann curvature tensor; Rm
(

∂
∂xi ,

∂
∂xj

)

∂
∂xk = Rl

ijk
∂

∂xl and Rijkl = glpR
p
ijk

Rm(x, t): Riemann curvature tensor of metric g(t) at x

Distance function: r(x) = d(p, x) for some point p

Lapalace-Beltrami operator: ∆ = 1√
|g|

∂
∂xi

(

√

|g|gij ∂
∂xj

)

where |g| = det(gij)

Volume form: dµg =
√

|g|dx1 · · · dxn

2. Riemannian manifolds with nonnegative Ricci curvature

Throughout this section (Mn, g) denotes a smooth n dimensional complete connected
oriented Riemannian manifold with Rc ≥ 0. Mainly this section is about the distance
function.

2.1. First variation of length

2.1A. Length. Given a smooth path γ : [a, b] → M , its length is defined by

L(γ) =

∫ b

a

|γ̇(u)|du (2.1)

where |γ̇(u)| is the length of the tangent vector γ̇(u) = dγ
du . Given two points x, y ∈ M

the distance between them is defined by

d(x, y) = inf
{γ:γ(a)=x,γ(b)=y}

L(γ)

where γ runs through smooth paths.
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2.1B. First variation of length. Now we compute the first variation of length.
Let γs(u), s ∈ (−ǫ, ǫ) be a smooth family of smooth paths with γ0 = γ parametrized by

arc-length parameter u (i.e., |γ̇(u)| = 1). Denote Y = ∂γs

∂s

∣

∣

∣

s=0
to be the variation vector

field. Then using ∇Y γ̇s −∇γ̇s
Y = [Y, γ̇s] = 0 and integrating by parts we get

d

ds

∣

∣

∣

∣

s=0

L(γs) =

∫ b

a

1

2
〈γ̇s(u), γ̇s(u)〉−1/2 · Y 〈γ̇s, γ̇s〉

∣

∣

∣

∣

s=0

du

=

∫ b

a

〈γ̇,∇γ̇Y 〉 du =

∫ b

a

(γ̇(〈γ̇, Y 〉) − 〈∇γ̇ γ̇, Y 〉) du

= 〈γ̇, Y 〉 (b) − 〈γ̇, Y 〉 (a) −
∫ b

a

〈∇γ̇ γ̇, Y 〉 du.

Hence the critical point equation of the length functional L on the space of smooth
paths with fixed end points is

∇γ̇ γ̇ = 0. (2.2)

This is the equation of geodesics. Any path that satisfies (2.2) is called a geodesic.
In local coordinates x = (xi) the equation is the following system of ordinary differential
equations (ode)

d2xi

du2
+ Γi

jk(x(u))
dxj

du
· dxk

du
= 0, (2.3)

where Γi
jk = 1

2gil (∂jglk + ∂kgjl − ∂lgjk) is the Christoffel symbol.

2.1C. Jacobi field. Consider the set of all geodesics defined on [a, b] and call it the
moduli space of geodesics, the tangent directions of this space satisfy a second order
linear ode. Let γs(u), s ∈ (−ǫ, ǫ) be a smooth family of geodesics with γ0 = γ. Let

Y = ∂γs

∂s

∣

∣

∣

s=0
be the variation vector field of γs. Taking the ∇Y -derivative of the geodesic

equation ∇γ̇s
γ̇s ≡ 0, we have

0 = ∇Y ∇γ̇s
γ̇s = ∇γ̇s

∇Y γ̇s + Rm(Y, γ̇s) γ̇s.

Using [Y, γ̇s] = 0 and evaluating at s = 0, we get the Jacobi equation

∇γ̇∇γ̇Y + Rm(Y, γ̇) γ̇ = 0. (2.4)

Any vector field Y along a geodesic γ which satisfies (2.4) is called a Jacobi field.

2.1D. Exponential map and Jacobian under geodesic spherical coordinates.
Consider the initial value problem of second order ode (2.2) by choosing a point p ∈ M
(corresponding to the value of {xi(0)} in (2.3)) and a unit vector V ∈ TpM (corre-

sponding to the value of {dxi

du (0)} in (2.3)). This defines the so-called exponential map
expp(uV ) = γ(u). There is a star-shaped open connected subset 0 ∈ Ωp ⊂ TpM such that
expp : Ωp → M \ Cutp is a diffeomorphism. Here Cutp is the so-called cut locus of p in
M .
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Let r(x) = d(x, p) and let (θ1, · · · , θn−1, r) be local spherical coordinates on TpM−{0}.
Then the inverse map exp−1

p : M \({p}∪Cutp) → Ωp\{0} defines the geodesic spherical

coordinates of M . By Gauss lemma g( ∂
∂r , ∂

∂r ) = 1 and g( ∂
∂θa , ∂

∂r ) = 0, a = 1, · · · , n− 1,
and hence the metric can be written as

g = dr2 + gabdθadθb. (2.5)

The volume form can be written as

dµ =
√

det(gab) dθ1 · · · dθn−1dr.

J =
√

det(gab) is called the Jacobian of the exponential map. The area form on
the sphere S(p, r0) of radius r0 and centered at p can be written as

dσ = Jdθ1 ∧ · · · dθn−1. (2.6)

Recall Hessian Hess f of a smooth function f on M is defined by (Hess f)(X,Y ) =
X(Y f) − (∇XY )f for any X,Y ∈ TxM . It follows from (2.5) that | ∂

∂r | = 1, ∇ ∂
∂r

∂
∂r = 0,

and (Hess r)( ∂
∂r , ∂

∂r ) = 0. Hence |Hess r|2 ≥ 1
n−1 (∆r)2.

2.1E. Mean curvature of spheres. We continue to use geodesic spherical coordinates
(θ1, · · · , θn−1, r). Let h denote the second fundamental form of S (p, r0). Note ∂

∂r is
the unit outward normal vector field to S (p, r0). From equation (2.5) we have

hab = h

(

∂

∂θa
,

∂

∂θb

)

=

〈

∇ ∂
∂θa

∂

∂r
,

∂

∂θb

〉

= −
〈

∂

∂r
,∇ ∂

∂θa

∂

∂θb

〉

= −Γn
ab =

1

2

∂

∂r
gab.

Hence the mean curvature H of S (p, r0) is given by

H = gabhab =
1

2
gab ∂

∂r
gab =

∂

∂r
log
√

det (gab) =
∂

∂r
log J . (2.7)

On the other hand the mean curvature H can be computed as

H =

〈

∇ ∂
∂θa

∂

∂r
,

∂

∂θa

〉

=

〈

∇ ∂
∂θa

∂

∂r
,

∂

∂θa

〉

+

〈

∇ ∂
∂r

∂

∂r
,

∂

∂r

〉

= ∆r. (2.8)

2.2. Bochner formula for functions and its consequence

2.2A. Bochner formula. Let f be a smooth function on M . We compute the commu-
tator [∆,∇j ]f as

∆∇jf = ∇i∇i∇jf = ∇i∇j∇if = ∇j∇i∇if − Rijil∇lf = ∇j∆f + Rjl∇lf. (2.9)

We also compute

∆ |∇f |2 = 2∇i(∇jf · ∇i∇jf) = 2∇i∇jf · ∇i∇jf + 2∇jf · ∇i∇i∇jf.

Hence we get the Bochner formula for f

∆ |∇f |2 = 2 |∇∇f |2 + 2Rij∇if∇jf + 2∇if∇i (∆f) . (2.10)
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2.2B. Laplacian comparison theorem. In (2.10) let f(x) = r(x) be the distance

function. Using Rc ≥ 0, |∇r| = 1 and |Hess r|2 ≥ 1
n−1 (∆r)2 we get

∂

∂r
(∆r) +

1

n − 1
(∆r)2 ≤ 0.

Since ∆r → n−1
r as r → 0+ and ∂

∂r (n−1
r ) + 1

n−1 (n−1
r )2 = 0, from the differential inequal-

ity above and the ode comparison property we conclude the Laplacian comparison
theorem on complete manifolds with Rc ≥ 0

∆r ≤ n − 1

r
. (2.11)

2.2C. Bishop-Gromov volume comparison theorem. Let A (r0) be the area of
sphere S (p, r0). Then by (2.6), (2.7), (2.8), and (2.11) we have

d

dr
A (r) =

∫

Sn−1

dJ

dr
dθ1 ∧ · · · dθn−1 =

∫

S(p,r)

HJdθ1 ∧ · · · dθn−1 ≤ n − 1

r
A (r) .

Integrating this differential inequality, we see that

A (r2) rn−1
1 ≤ A (r1) rn−1

2 for r2 ≥ r1 > 0.

Integrating again we get

nωn

∫ r2

0

dr2

∫ r1

0

A (r2) rn−1
1 dr1 ≤ nωn

∫ r2

0

dr2

∫ r1

0

A (r1) rn−1
2 dr1,

where ωn is the volume of unit Euclidean ball.
Let B (p, r0) be the ball of radius r0 and centered at p, and let VolB (p, r0) denote the

volume of the ball. Using VolB (p, r0) =
∫ r0

0
A (r) dr the inequality above can be written

as

Vol B (p, r2)

ωnrn
2

≤ VolB (p, r1)

ωnrn
1

for r2 ≥ r1 > 0, (2.12)

i.e., Vol B(p,r)
ωnrn is a monotone decreasing function (compare with (4.7)). (2.12) is the

Bishop-Gromov volume comparison theorem for complete manifolds with Rc ≥ 0.

2.3. Differential Harnack inequality

2.3A. Li-Yau Harnack estimate. Now we discuss Li-Yau differential Harnack estimate
for positive solutions of heat equation ∂u

∂t = ∆u defined on (Mn, g). Let L = log u and
Q = ∆L. We compute the evolution equation of L as

∂L

∂t
=

1

u
△ u = △L + |∇L|2 .
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We compute the evolution equation of Q as

∂Q

∂t
= △

(

∂

∂t
L

)

= △
(

△L + |∇L|2
)

= △Q + 2 〈△∇L,∇L〉 + 2 |∇∇L|2

= △Q + 2 〈∇△ L,∇L〉 + 2Rc (∇L,∇L) + 2 |∇∇L|2 ,

where we have used (2.9) to get the last equality. Hence, from Rc ≥ 0 and |∇∇L|2 ≥
1
n (∆L)2 we have

∂Q

∂t
≥ △Q + 2 〈∇L,∇Q〉 +

2

n
Q2.

From this inequality and the maximum principle we may deduce the following Li-Yau
differential Harnack estimate for positive solutions of heat equation on complete
manifolds with Rc ≥ 0

Q = ∆ log u ≥ − n

2t
. (2.13)

Note that the equality above is satisfied by the heat kernel u = 1
(4πt)n/2 e−

|x|2
4t on Euclidean

space R
n.

2.3B. Harnack estimate for heat kernel. The following estimate is proved by Lei Ni
in 2004 (J. Geom. Anal. 14, 87–100). Let H = 1

(4πt)n/2 e−f be a heat kernel of (Mn, g)

with Rc ≥ 0. Then for t > 0

t(2∆f − |∇f |2) + f − n ≤ 0. (2.14)

This estimate is closely related to Perelman’s Harnack inequality ([Pe02], Corollary 9.3).

2.4. Second variation of length

2.4A. Second variation formula. Let γs(u), u ∈ [a, b], s ∈ (−ǫ, ǫ) be a smooth family
of paths. Assume that γ0(u) = γ(u) is a geodesic of unit speed (i.e., |γ̇(u)| = 1). Denote

Y = ∂γs

∂s

∣

∣

∣

s=0
to be the variation field. We compute

d2

ds2

∣

∣

∣

∣

s=0

L(γs) =
d

ds

∣

∣

∣

∣

s=0

∫ b

a

|γ̇s(u)|−1 · 〈γ̇s,∇Y γ̇s〉 du

=

∫ b

a

(

−〈γ̇,∇Y γ̇〉2 + 〈∇Y γ̇,∇γ̇Y 〉 + 〈γ̇,∇Y ∇γ̇Y 〉
)

du

=

∫ b

a

(

|∇γ̇Y |2 − 〈∇γ̇Y, γ̇〉2 + 〈γ̇,Rm (Y, γ̇) Y 〉 + 〈γ̇,∇γ̇∇Y Y 〉
)

du.
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Hence the second variation of length at a unit speed geodesic γ is given by

d2

ds2

∣

∣

∣

∣

s=0

L (γs)

=

∫ b

a

(

|∇γ̇Y |2 − 〈∇γ̇Y, γ̇〉2 − 〈Rm (Y, γ̇) γ̇, Y 〉
)

ds + 〈∇Y Y, γ̇〉|ba . (2.15)

2.4B. Index form. Let γ : [a, b] → M be a geodesic. The index form is defined by

I(V,W ) =

∫ b

a

(〈∇γ̇V,∇γ̇W 〉 − 〈Rm(V, γ̇)γ̇,W 〉) du, (2.16)

where V and W are vector fields along γ vanishing at γ(a), γ(b) and perpendicular to γ̇.
Note that 〈∇γ̇Y, γ̇〉 = 0 when Y in (2.15) is perpendicular to γ̇, hence as a quadratic form
of Y the right side of (2.15) gives rise to the bilinear form (2.16).

The Index lemma says the following. Suppose there is not any pair of conjugate
points on geodesic γ(u), u ∈ [a, b]. Given A ∈ Tγ(a)M,B ∈ Tγ(b)M with 〈A, γ̇(a)〉 =
〈B, γ̇(b)〉 = 0, the unique Jacobi field J along γ with J(a) = A, J(b) = B, satisfies

I(J, J) ≤ I(W,W ). (2.17)

Here W is any the vector field along γ which is perpendicular to γ̇ and satisfies W (a) =
A, W (b) = B.

2.5. Some other results

There are other theorems that hold for all complete manifolds with Rc ≥ 0. Here we
give one example. Recall that a geodesic γ : R → (M, g) is called a line if L(γ|[a,b]) =

d(γ(a), γ(b)). The Cheeger-Gromoll splitting theorem says the following. Let
(Mn, g) be a complete Riemannian manifold with Rc ≥ 0. Suppose there is a line in
M , then (M, g) is isometric to R ×

(

Nn−1, h
)

with the product metric. Here (N,h) is
a complete Riemannian manifold with Rc ≥ 0. The proof uses Busemann function, an
important function in the study of noncompact Riemannian manifolds.

3. The reduced distance

The reduced distance and reduced volume are formally introduced by Perelman in
[Pe02], §7. The motivation he gives in §6 is both interesting and mysterious. From the
work of Perelman and others it is evident that the reduced distance and reduced volume
are fundamental tools in Ricci flow. It is desirable to find more applications of them.

In this section we establish various identities and inequalities about reduced dis-
tance. Some of these inequalities will be used in next section to show the finiteness
and monotonicity of reduced volume. Since formulae in this section come out of relatively
lengthy calculation, here we only provide glimpses of these calculation, readers can either
figure out the detail themselves or find the detailed calculation in the literature.
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Throughout this section Nn is a n-dimensional connected oriented manifold, and
(Nn, g(τ)) , τ ∈ [0, T ], is a solution to the backward Ricci flow ∂

∂τ g(τ) = 2Rc(g(τ))
with bounded Riemann curvature supM×[0,T ] |Rm(x, τ)| < ∞. We assume that g(τ) is

complete for each τ ∈ [0, T ] (called complete solution). Below, the notation ∇, ∆, R,
Rc, Rm stand for connection, Lapalace-Beltrami operator and curvatures defined by g(τ).

3.1. First variation formula of L-length

3.1A. Definition of reduced distance. Let γ : [0, τ ] → N be a smooth path with
τ ≤ T . The L-length of γ is defined by

L (γ) =

∫ τ

0

√
τ̃

(

R (γ (τ̃) , τ̃) +

∣

∣

∣

∣

dγ

dτ̃
(τ̃)

∣

∣

∣

∣

2

g(τ̃)

)

dτ̃ . (3.1)

Fix a point p ∈ N , the L-distance from (p, 0) to (x, τ) ∈ N × (0, T ] is defined by

L (x, τ) = inf
{γ:γ(0)=p,γ(τ)=x}

L (γ) .

We call (p, 0) the basepoint. A minimizing path in the definition of L-distance is called
a minimal L-geodesic. The reduced distance is defined by

ℓ (x, τ) =
1

2
√

τ
L (x, τ) .

3.1B. First variation of L-length. Let γs(τ̃), τ̃ ∈ [0, τ ], s ∈ (−ǫ, ǫ), be a smooth

family of smooth paths with γ0 = γ. Let X = γ̇, and let Y = ∂γs

∂s

∣

∣

∣

s=0
be the variation

field. The first variation formula for L-length is given by

1

2

d

ds

∣

∣

∣

∣

s=0

L (γs)

=
√

τ̃ 〈Y,X〉
∣

∣

∣

τ

0
+

∫ τ

0

√
τ̃Y ·

(

1

2
∇R − 1

2τ̃
X −∇XX − 2Rc (X)

)

dτ̃ , (3.2)

where the covariant derivative ∇ = ∇g(τ̃).
If γ is a critical point of the L-length functional (3.1) among smooth paths with fixed

endpoints, then γ is called an L-geodesic. From (3.2) we get the L-geodesic equation:

∇XX − 1

2
∇R + 2Rc (X) +

1

2τ̃
X = 0. (3.3)

3.1C. Calculating (3.2). We compute in a way similar to the deduction of the first
variation formula for length (§2.1B).

d

ds
L (γs) =

∫ τ

0

√
τ̃

(

∂

∂s
R (γs (τ̃) , τ̃) +

∂

∂s

∣

∣

∣

∣

∂γs

∂τ̃
(τ̃)

∣

∣

∣

∣

2

g(τ̃)

)

dτ̃

=

∫ τ

0

√
τ̃ (〈∇R, Y 〉 + 2 〈∇Y X,X〉) dτ̃ . (3.4)
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Using

〈∇Y X,X〉 = 〈∇XY,X〉 =
d

dτ̃
[g (Y,X)] − 〈Y,∇XX〉 − 2Rc (Y,X) ,

we get

1

2

d

ds
L (γs) =

∫ τ

0

√
τ̃

(

1

2
〈∇R, Y 〉 +

d

dτ̃
〈Y,X〉 − 〈Y,∇XX〉 − 2Rc (Y,X)

)

dτ̃ .

(3.2) follows from integration by parts
∫ τ

0

√
τ̃

d

dτ̃
〈Y,X〉 dτ̃ = −1

2

∫ τ

0

1√
τ̃
〈Y,X〉 dτ̃ +

√
τ̃ 〈Y,X〉

∣

∣

∣

τ

0
.

3.1D. Other form of (3.1) and (3.3). Sometimes we need to use the following para-
metrization:

σ̃ = 2
√

τ̃ and β (σ̃) = γ
(

σ̃2/4
)

. (3.5)

Then we may rewrite L-length as

L (γ) =

∫ σ=2
√

τ

0

(

σ̃2

4
R
(

β (σ̃) , σ̃2/4
)

+

∣

∣

∣

∣

dβ

dσ̃
(σ̃)

∣

∣

∣

∣

2

g(σ̃2/4)

)

dσ̃, (3.6)

and L-geodesic equation as

∇ZZ − σ̃2

8
∇R + σ̃ Rc (Z) = 0, (3.7)

where Z (σ̃) = dβ(σ̃)
dσ̃ =

√
τ̃X(τ̃). A simple consequence of (3.7) is that solutions to the

initial value problem for β exist. Consequently the minimal L-geodesic between any two
points exists.

3.2. First order derivatives of L-distance

In this subsection we give some consequences of the first variation formula of L-length.
Below L-distance is defined using the basepoint (p, 0).

3.2A. Spatial derivative ∇L. Given Y ∈ TxN , by choosing a family of minimal
L-geodesics γs(τ̃), τ̃ ∈ [0, τ ], s ∈ (−ǫ, ǫ) such that γs(0) = p, d

ds

∣

∣

s=0
γs(τ) = Y , and

L(γs) = L(γs(τ), τ), we get from the first variation formula (3.2)

〈∇L (x, τ) , Y 〉 =
d

ds

∣

∣

∣

∣

s=0

L(γs) =
〈

2
√

τX (τ) , Y
〉

.

Hence the spatial derivative of the L-distance function

∇L (x, τ) = 2
√

τX (τ) , (3.8)

where X is the tangent vector field of the minimal L-geodesic γ = γ0 from (p, 0) to (x, τ).
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3.2B. Time derivative ∂L
∂τ . We compute, using the chain rule and (3.8),

∂L

∂τ
(x, τ) =

∂L (γ (τ) , τ)

∂τ
=

d

dτ
(L (γ (τ) , τ)) −∇L(x, τ) · X(τ)

=
d

dτ

[

∫ τ

0

√
τ̃

(

R (γ (τ̃) , τ̃) +

∣

∣

∣

∣

dγ

dτ̃
(τ̃)

∣

∣

∣

∣

2
)

dτ̃

]

− 2
√

τ |X (τ)|2

=
√

τ
(

R (x, τ) + |X (τ)|2
)

− 2
√

τ |X (τ)|2 .

Hence the time-derivative of the L-distance function

∂L

∂τ
(x, τ) = −

√
τ
(

R (x, τ) + |X (τ)|2
)

+ 2
√

τR (x, τ) , (3.9)

where X is the tangent vector field of the minimal L-geodesic γ from (p, 0) to (x, τ).

3.3. Second variation formula of L-length

For the purpose of getting information about the second order derivatives of L-distance,
in this subsection we compute the second variation of L-length.
3.3A. Second variation formula of L-length. Using (3.4) and the notation in calcu-
lating the first variation formula we have

d2L (γs)

ds2

∣

∣

∣

∣

s=0

=

∫ τ

0

√
τ̃
(

Y (Y (R)) + 2 〈∇Y ∇Y X,X〉 + 2 |∇Y X|2
)

dτ̃ .

From
〈∇Y ∇Y X,X〉 = 〈∇Y ∇XY,X〉 = 〈Rm (Y,X) Y,X〉 + 〈∇X∇Y Y,X〉 ,

it follows

d2L (γs)

ds2

∣

∣

∣

∣

s=0

=

∫ τ

0

√
τ̃
(

Y (Y (R)) + 2 〈Rm (Y,X) Y,X〉 + 2 〈∇X∇Y Y,X〉 + 2 |∇Y X|2
)

dτ̃ .

To get a better form for the term 2 〈∇X∇Y Y,X〉, we have

d

dτ̃
〈∇Y Y,X〉 = 〈∇X∇Y Y,X〉 + 〈∇Y Y,∇XX〉 +

∂g

∂τ̃
(∇Y Y,X) +

〈(

∂

∂τ̃
∇
)

Y

Y,X

〉

,

this is because both the inner product and the connection in 〈∇Y Y,X〉 depend on τ̃ .
Using

〈(

∂

∂τ̃
∇
)

Y

Y,X

〉

= 2 (∇Y Rc) (Y,X) − (∇X Rc) (Y, Y )

(derived from the formula for Christoffel symbols), we get

d

dτ̃
〈∇Y Y,X〉 = 〈∇X∇Y Y,X〉 + 〈∇Y Y,∇XX〉 + 2Rc (∇Y Y,X)

+ 2 (∇Y Rc) (Y,X) − (∇X Rc) (Y, Y ) . (3.10)

10
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Hence

d2L (γs)

ds2

∣

∣

∣

∣

s=0

=

∫ τ

0

√
τ̃
(

Y (Y (R)) + 2 〈Rm(Y,X) Y,X〉 + 2 |∇Y X|2
)

dτ̃

+ 2

∫ τ

0

√
τ̃

(

d
dτ̃ 〈∇Y Y,X〉 − 〈∇Y Y,∇XX〉 − 2Rc (∇Y Y,X)

−2 (∇Y Rc) (Y,X) + (∇X Rc) (Y, Y )

)

dτ̃

=

∫ τ

0

√
τ̃
(

Y (Y (R)) + 2 〈Rm(Y,X) Y,X〉 + 2 |∇Y X|2
)

dτ̃

+ 2

∫ τ

0

√
τ̃

(

−〈∇Y Y,∇XX〉 − 2Rc (∇Y Y,X)

−2 (∇Y Rc) (Y,X) + (∇X Rc) (Y, Y )

)

dτ̃

+ 2
√

τ̃ 〈∇Y Y,X〉
∣

∣

∣

τ

0
−
∫ τ

0

1√
τ̃
〈∇Y Y,X〉 dτ̃ .

Assume γ0 is an L-geodesic and

Y (0) = 0, (3.11)

we compute using integration by parts,

d2L (γs)

ds2

∣

∣

∣

∣

s=0

= 2
√

τ 〈∇Y Y,X〉 +

∫ τ

0

√
τ̃

(

Y (Y (R)) −∇Y Y · ∇R

+2 〈Rm (Y,X) Y,X〉 + 2 |∇Y X|2

)

dτ̃

+ 2

∫ τ

0

√
τ̃

(

−
〈

∇Y Y,
[

∇XX + 2Rc (X) − 1
2∇R + 1

2τ̃ X
]〉

−2 (∇Y Rc) (Y,X) + (∇X Rc) (Y, Y )

)

dτ̃

= 2
√

τ 〈∇Y Y,X〉 +

∫ τ

0

√
τ̃
(

∇2
Y,Y R + 2 〈Rm (Y,X) Y,X〉 + 2 |∇Y X|2

)

dτ̃

+

∫ τ

0

√
τ̃ (−4 (∇Y Rc) (Y,X) + 2 (∇X Rc) (Y, Y )) dτ̃ ,

where ∇2
Y,Y R denotes the Hessian (Hess R)(Y, Y ).

We have derived formula (7.7) in [Pe02].

Lemma 3.1. Let γ : [0, τ ] → N be an L-geodesic and let γs be a smooth variation of
γ = γ0. Assume the variation field Y = ∂

∂sγs satisfies Y (0) = 0. The second variation of
L-length is given by

d2L (γs)

ds2

∣

∣

∣

∣

s=0

= 2
√

τ 〈∇Y Y,X〉 (τ)

+

∫ τ

0

√
τ̃

(

∇2
Y,Y R + 2 〈Rm (Y,X) Y,X〉 + 2 |∇Y X|2

−4 (∇Y Rc) (Y,X) + 2 (∇X Rc) (Y, Y )

)

dτ̃ . (3.12)

3.3B. Another form of the second variation formula of L-length. To write the
second variation formula of L-length in a better form (relating to Hamilton’s matrix

11
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Harnack quantity), we need to introduce a term
(

∂
∂τ̃ Rc

)

(Y, Y ) into (3.12). Note that
Rc (Y, Y ) = Rc(γ(τ̃), τ̃) (Y (τ̃) , Y (τ̃)), we have

d

dτ̃
[Rc (Y, Y )] =

(

∂

∂τ̃
Rc

)

(Y, Y ) + (∇X Rc) (Y, Y ) + 2Rc (∇XY, Y ) .

It follows

−
∫ τ

0

√
τ̃

(

∂

∂τ̃
Rc

)

(Y, Y ) dτ̃ = −
√

τ̃ Rc (Y, Y )
∣

∣

∣

τ

0
+

+

∫ τ

0

√
τ̃

(

1

2τ̃
Rc (Y, Y ) + (∇X Rc) (Y, Y ) + 2Rc (∇XY, Y )

)

dτ̃ .

Hence we can rewrite (3.12) as

d2L (γs)

ds2

∣

∣

∣

∣

s=0

− 2
√

τ 〈∇Y Y,X〉 + 2
√

τ Rc (Y, Y )

=

∫ τ

0

√
τ̃

((

2
∂

∂τ̃
Rc+

1

τ̃
Rc

)

(Y, Y ) + ∇2
Y,Y R − 2 |Rc (Y )|2

)

dτ̃

+

∫ τ

0

√
τ̃ (2 〈Rm (Y,X) Y,X〉 − 4 (∇Y Rc) (Y,X) + 4 (∇X Rc) (Y, Y )) dτ̃

+

∫ τ

0

2
√

τ̃ |∇XY + Rc (Y )|2 dτ̃ .

In the above formula by substituting Hamilton’s matrix Harnack quantity

H (X,Y ) = − 2

(

∂

∂τ̃
Rc

)

(Y, Y ) −∇2
Y,Y R + 2 |Rc (Y )|2 − 1

τ̃
Rc (Y, Y )

− 2 〈Rm (Y,X) Y,X〉 − 4 (∇X Rc) (Y, Y ) + 4 (∇Y Rc) (Y,X) , (3.13)

we obtain

d2L (γs)

ds2

∣

∣

∣

∣

s=0

− 2
√

τ 〈∇Y Y,X〉 + 2
√

τ Rc (Y, Y )

= −
∫ τ

0

√
τ̃H (X,Y ) dτ̃ +

∫ τ

0

2
√

τ̃ |∇XY + Rc (Y )|2 dτ̃ . (3.14)

By a little calculation we have

∫ τ

0

2
√

τ̃ |∇XY + Rc (Y )|2 dτ̃ =

∫ τ

0

2
√

τ̃

∣

∣

∣

∣

∇XY + Rc (Y ) − 1

2τ̃
Y

∣

∣

∣

∣

2

dτ̃ +
|Y (τ)|2√

τ
.

Hence we have proved

12
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Lemma 3.2. Let γ : [0, τ ] → N be an L-geodesic and let γs be a smooth variation of
γ = γ0. Assume the variation field Y = ∂

∂sγs satisfies that Y (0) = 0 when s = 0. Then

d2L (γs)

ds2

∣

∣

∣

∣

s=0

− 2
√

τ 〈∇Y Y,X〉 (τ) + 2
√

τ Rc (Y, Y ) (τ)

= −
∫ τ

0

√
τ̃H (X,Y ) dτ̃ +

∫ τ

0

2
√

τ̃

∣

∣

∣

∣

∇XY + Rc (Y ) − 1

2τ̃
Y

∣

∣

∣

∣

2

dτ̃ +
|Y (τ)|2√

τ
, (3.15)

where H(X,Y ) is defined by (3.13).

3.4. Estimate of second derivatives of L-distance

In this subsection we give some consequences of the second variation formula of L-length.
Below L-distance is defined using the basepoint (p, 0).

3.4A. Estimate of Hessian of L-distance. Given (x, τ) ∈ N×(0, T ], let γ : [0, τ ] → N
be a minimal L-geodesic from p to x. Fix a vector Y ∈ TxN and define a vector field
Ỹ (τ̃) along γ by solving the following ode along γ:

∇X Ỹ = −Rc
(

Ỹ
)

+
1

2τ̃
Ỹ , τ̃ ∈ [0, τ ] , (3.16a)

Ỹ (τ) = Y. (3.16b)

A direct computation gives d
dτ̃ |Ỹ |2 = 1

τ̃ |Ỹ |2, which implies that

|Ỹ (τ̃) |2g(τ̃) = |Ỹ |2 =
τ̃

τ
|Y |2. (3.17)

Hence from (3.15) we have

d2L (γs)

ds2

∣

∣

∣

∣

s=0

− 2
√

τ 〈∇Y Y,X〉 + 2
√

τ Rc (Y, Y )

= −
∫ τ

0

√
τ̃H

(

X, Ỹ
)

dτ̃ +
|Y |2√

τ
(3.18)

for any γs with variation field being Ỹ (τ̃).

Let γs : [0, τ ] → N, s ∈ (−ε, ε), be a smooth family of paths with

∂γs

∂s

∣

∣

∣

∣

s=0

(τ̃) = Ỹ (τ̃) and

(

∇ ∂γs
∂s

∂γs

∂s

)∣

∣

∣

∣

s=0

(τ) = 0.

Since L (γs) is an upper barrier function for the L-distance function L (γs(τ), τ) at s = 0,
we have

(

Hess(x,τ) L
)

(Y, Y ) ≤ d2

ds2

∣

∣

∣

∣

s=0

L (γs) .

From (∇Y Y ) (τ) = 0 and (3.18) we get

13
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Theorem 3.3 (Hessian Comparison for L-distance). Let γ be a minimal L-geodesic

from (p, 0) to (x, τ). Given Y ∈ TxN , let Ỹ (τ̃) be a solution of (3.16a) and (3.16b). Then

(

Hess(x,τ) L
)

(Y, Y ) ≤ −
∫ τ

0

√
τ̃H

(

X, Ỹ
)

dτ̃ +
|Y |2√

τ
− 2

√
τ Rc (Y, Y ) , (3.19)

where X is the tangent vector field of γ and H(X, Ỹ ) is defined by (3.13). Equality in

(3.19) holds when L (·, τ) is C2 at x and Ỹ (τ̃) is the variation vector field of a family of

minimal L-geodesics γs satisfying
(

∇ ∂γs
∂s

∂γs

∂s

)∣

∣

∣

s=0
(τ) = 0.

3.4B. Laplacian comparison theorem for L-distance. Given (x, τ) ∈ N × (0, T ], let
γ : [0, τ ] → N be a minimal L-geodesic from p to x and let X = γ̇. Fix an orthonormal

basis {Ei}n
i=1 of (TxN, g(x, τ)). For each i we define the vector field Ẽi (τ̃) along γ to

be the solution of (3.16a) with Ẽi (τ) = Ei. A direct computation gives d
dτ̃

〈

Ẽi, Ẽj

〉

=

1
τ̃

〈

Ẽi, Ẽj

〉

, which implies that

〈

Ẽi, Ẽj

〉

(τ̃) =
τ̃

τ
〈Ei, Ej〉 =

τ̃

τ
δij . (3.20)

Hence the matrix Harnack expression
n
∑

i=1

H
(

X(τ̃), Ẽi(τ̃)
)

=
τ̃

τ

n
∑

i=1

H

(

X(τ̃),

√

τ

τ̃
Ẽi(τ̃)

)

=
τ̃

τ
H (X) , (3.21)

where H(X) is the trace Harnack quantity

H (X) = −∂R

∂τ̃
− 2∇R · X + 2Rc (X,X) − R

τ̃
. (3.22)

Taking Y = Ei in (3.19) and summing over i, we have

∆L (x, τ) =

n
∑

i=1

(

Hess(x,τ)

)

L (Ei, Ei)

≤ −
∫ τ

0

√
τ̃

n
∑

i=1

H
(

X (τ̃) , Ẽi (τ̃)
)

dτ̃ +
n√
τ
− 2

√
τ

n
∑

i=1

Rc (Ei, Ei)

= −
∫ τ

0

τ̃3/2

τ
H (X) dτ̃ +

n√
τ
− 2

√
τR (x, τ)

= −1

τ
K +

n√
τ
− 2

√
τR (x, τ) ,

where K is the trace Harnack integral

K = K (γ, τ) =

∫ τ

0

τ̃3/2H (X) dτ̃ . (3.23)

We have proven
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Theorem 3.4 (Laplacian comparison for L-distance). For any (x, τ) ∈ N × (0, T ]
the L-distance satisfies

∆L (x, τ) ≤ −1

τ
K +

n√
τ
− 2

√
τR (x, τ) , (3.24)

where K is defined by (3.23) using a minimal L-geodesic γ : [0, τ ] → N from p to x.

3.5. Equalities and inequalities satisfied by L and ℓ

In this subsection L-distance and reduced distance ℓ are defined using basepoint (p, 0).

3.5A. A formula for K in (3.23). We need a better formula for K in (3.23). Let
γ : [0, τ ] → N be an L-geodesic from p to x and let X = γ̇. Using the L-geodesic equation
(3.3), we compute the evolution of the L-length integrand for γ

d

dτ̃

(

R (γ (τ̃) , τ̃) + |X (τ̃)|2g(τ̃)

)

=
∂R

∂τ̃
+ ∇R · X + 2Rc (X,X) + 2 〈∇XX,X〉

=
∂R

∂τ̃
+ ∇R · X + 2Rc (X,X) +

〈

∇R − 4Rc (X) − 1

τ̃
X,X

〉

=
∂R

∂τ̃
+ 2∇R · X − 2Rc (X,X) − 1

τ̃
|X|2 .

Hence

d

dτ̃

(

R + |X|2
)

= −H (X) − 1

τ̃

(

R + |X|2
)

.

Multiplying the above equation by τ̃3/2 and integrating by parts, we get

−K (γ, τ) =

∫ τ

0

[

τ̃3/2 d

dτ̃

(

R + |X|2
)

+ τ̃1/2
(

R + |X|2
)

]

dτ̃

= τ3/2
(

R (γ (τ) , τ) + |X (τ)|2
)

− 1

2

∫ τ

0

τ̃1/2
(

R + |X|2
)

dτ̃

= τ3/2
(

R (x, τ) + |X (τ)|2
)

− 1

2
L (γ) .

We have proved that for any minimal L-geodesic γ : [0, τ ] → N from p to x, we have

τ3/2
(

R (x, τ) + |X (τ)|2
)

= −K (γ, τ) +
1

2
L (x, τ) . (3.25)
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3.5B. Equalities and inequalities satisfied by L-distance. Using (3.25), we can
rewrite (3.9) and (3.8), and (3.24) as the following: At (x, τ),

∂L

∂τ
=

1

τ
K − 1

2τ
L + 2

√
τR, (3.26a)

|∇L|2 = −4τR − 4√
τ

K +
2√
τ

L, (3.26b)

∆L ≤ −1

τ
K +

n√
τ
− 2

√
τR, (3.26c)

where K = K (γ, τ) is given by (3.23) and γ : [0, τ ] → N is a minimal L-geodesic from p
to x.

3.5C. Equalities and inequalities satisfied by reduced distance ℓ. Recall that the
reduced distance ℓ (x, τ) = 1

2
√

τ
L (x, τ). We have at (x, τ),

∂ℓ

∂τ
=

1

2τ3/2
K − ℓ

τ
+ R, (3.27a)

|∇ℓ|2 = −R − 1

τ3/2
K +

ℓ

τ
, (3.27b)

∆ℓ ≤ − 1

2τ3/2
K +

n

2τ
− R, (3.27c)

where K = K (γ, τ) is given by (3.23) and γ : [0, τ ] → N is a minimal L-geodesic from p
to x.

Note that in (3.27a), (3.27b) and (3.27c) the trace Harnack integral K depends on the
path γ which is not favorable. However, from (3.27a), (3.27b) and (3.27c) we have the
following four partial differential inequalities or equality which do not involve K.

Lemma 3.5. At (x, τ) the reduced distance ℓ satisfies

∂ℓ

∂τ
− ∆ℓ + |∇ℓ|2 − R +

n

2τ
≥ 0, (3.28a)

2∆ℓ − |∇ℓ|2 + R +
ℓ − n

τ
≤ 0, (3.28b)

∂ℓ

∂τ
+ ∆ℓ +

ℓ

τ
− n

2τ
≤ 0, (3.28c)

2
∂ℓ

∂τ
+ |∇ℓ|2 − R +

ℓ

τ
= 0, (3.28d)

lim
τ→0+

ℓ (x, τ)
(

dg(0) (p, x)
)2
/

4τ
= 1, (3.28e)

inf
x∈N

ℓ (x, τ) ≤ n

2
. (3.28f)
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We skip the proof of (3.28e) but use it to give a proof of (3.28f). It follows from (3.28c)
that

(

∂

∂(−τ)
− ∆

)

(4τℓ(x, τ) − 2nτ) ≥ 0.

It follows from the maximum principle that infx∈N (4τℓ (x, τ) − 2nτ) is a nondecreasing

function of −τ . Note that (3.28e) implies limτ→0+
4τℓ(x, τ) =

(

dg(0)(p, x)
)2

and hence
limτ→0+

infx∈N (4τℓ (x, τ) − 2nτ) = 0. We get infx∈N (4τℓ (x, τ) − 2nτ) ≤ 0 and (3.28f)
follows.

3.6. L-Jacobi field

In this subsection we discuss the L-Jacobi field associated with L-length, which is
analogous to the Jacobi field associated with length.

3.6A. L-Jacobi field. Now we consider the moduli space of L-geodesics, the tangent
direction to this space satisfies a second order linear ode. Let γs : [0, τ ] → N, s ∈ (−ε, ε),
be a smooth family of L-geodesics. Denote γ0 = γ, Xs = γ̇s, and Ys = d

dsγs. Taking
∇Ys

-derivative of the L-geodesic equation (3.3) for γs, we compute

∇Xs
(∇Xs

Ys) = ∇Xs
(∇Ys

Xs) = Rm (Xs, Ys) Xs + ∇Ys
(∇Xs

Xs)

= Rm (Xs, Ys) Xs + ∇Ys

(

1

2
∇R − 2Rc (Xs) −

1

2τ̃
Xs

)

.

Set s = 0, then Y (τ̃) = Y0(τ̃) satisfies the following ode called the L-Jacobi equation:

∇X (∇XY )

= − 2Rc (∇XY ) − 1

2τ̃
∇XY + Rm(X,Y ) X +

1

2
∇Y (∇R) − 2 (∇Y Rc) (X) . (3.29)

We call any solution of the above equation an L-Jacobi field.

Using the parametrization defined in (3.5) and Z(σ̃) = dβ
dσ̃ =

√
τ̃X(τ̃), we can rewrite

the L-Jacobi equation of Ŷ (σ̃) = Y (τ̃) as

∇Z

(

∇Z Ŷ
)

= − 2σ̃ Rc
(

∇Z Ŷ
)

+ Rm
(

Z, Ŷ
)

Z +
σ̃2

2
∇Ŷ (∇R) − 2σ̃

(

∇Ŷ Rc
)

(Z) . (3.30)

Hence the initial value problem of (3.30) is solvable.

3.6B. Estimate of L-Jacobi field. Let γs be as in §3.6A. By the first variation formula
for the L-length,

d

ds

∣

∣

∣

∣

s=0

L (γs) = 2
√

τ 〈Xs, Ys〉 (τ) .

We differentiate this again to get

d2

ds2

∣

∣

∣

∣

s=0

L (γs) = 2
√

τ 〈∇XY, Y 〉 (τ) + 2
√

τ 〈X, ∇Ys
Ys|s=0〉 (τ) .
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Now we compute the derivative of the norm squared of the L-Jacobi field

d

dτ̃

∣

∣

∣

∣

τ̃=τ

|Y (τ̃)|2g(τ̃) = 2Rc (Y, Y ) (τ) + 2 〈∇XY, Y 〉 (τ)

= 2Rc (Y, Y ) (τ) +
1√
τ

(

d2

ds2

∣

∣

∣

∣

s=0

L (γs)

)

− 2 〈X, ∇Ys
Ys|s=0〉 (τ) , (3.31)

Let Ỹ be a vector field along γ which satisfies (3.16a) with Ỹ (τ) = Y (τ), here we need
to assume Y (0) = 0. Let γ̃s : [0, τ ] → N be a variation of γ with

∂

∂s

∣

∣

∣

∣

s=0

γ̃s = Ỹ , γ̃s (τ) = γs (τ) , and γ̃s (0) = γs (0) .

Note that the choice of γ̃s implies ∇Ys
Ys|s=0 (τ) =

(

∇ ∂γ̃s
∂s

∂γ̃s

∂s

)∣

∣

∣

s=0
(τ). If we assume

that the γs are all minimal L-geodesics, then L (γs) ≤ L (γ̃s) for all s, and equality holds
at s = 0. Hence

d2

ds2

∣

∣

∣

∣

s=0

L (γs) ≤
d2

ds2

∣

∣

∣

∣

s=0

L (γ̃s) ,

where equality holds if Ỹ is an L-Jacobi field. Combining this with (3.31), we get

d

dτ̃

∣

∣

∣

∣

τ̃=τ

|Y |2 ≤ 2Rc (Y, Y ) (τ) +
1√
τ

(

d2

ds2

∣

∣

∣

∣

s=0

L (γ̃s)

)

− 2 〈X,∇Y Y 〉 (τ) .

By (3.18), we have

(

d2

ds2

∣

∣

∣

∣

s=0

L (γ̃s)

)

− 2
√

τ

〈

X,

(

∇ ∂γ̃s
∂s

∂γ̃s

∂s

)∣

∣

∣

∣

s=0

〉

(τ)

= −
∫ τ

0

√
τ̃H

(

X, Ỹ
)

dτ̃ +
|Y (τ)|2√

τ
− 2

√
τ Rc (Y, Y ) (τ) .

Hence we have proved

Lemma 3.6. Let γs : [0, τ̄ ] → N be a smooth family of minimal L-geodesics with

γs (0) = p. Then for any τ ∈ (0, τ̄ ] the L-Jacobi field Y (τ) = dγs

ds

∣

∣

∣

s=0
(τ) satisfies the

estimate

d

dτ
|Y (τ)|2g(τ) ≤ − 1√

τ

∫ τ

0

√
τ̃H

(

X, Ỹ
)

dτ̃ +
|Y (τ)|2

τ
, (3.32)

where X is the tangent vector field of γ = γ0, Ỹ (τ̃) is a solution of (3.16a) on [0, τ ] with

Ỹ (τ) = Y (τ), and H(X, Ỹ ) is defined by (3.13).
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3.7. L-exponential map and L-Jacobian

In §2 we have seen the role played by the exponential map in considering the volume
of balls, in this subsection we consider the L-exponential map, in next section we will see
that it plays a similar role in reduced volume. In this subsection we use the basepoint
(p, 0) to define the L-distance.

3.7A. L-exponential map. Given τ , define the L-exponential map at time τ

Lτ exp : TpN → N, Lτ exp (V ) = γV (τ) ,

where γV (τ̃) = β(σ̃) is the L-geodesic obtained by solving (3.7) with dβ
dσ̃ (0) = V ∈ TpN

and β(0) = p.

3.7B. L-Jacobian. If we want to compute the tangent map D (Lτ exp(V )) of Lτ exp at
V ∈ TpN , we need to consider a family of L-geodesics γVs

(τ̃) where Vs is a variation of
V , and hence we need to consider the corresponding L-Jacobi field.

Given an orthonormal basis
{

E0
i

}n

i=1
of (TpN, g (p, 0)), let JV

i (τ̃) = ĴV
i (σ̃),

i = 1, . . . , n, be L-Jacobi fields along γV where σ̃ = 2
√

τ̃ and ĴV
i (σ̃) is defined by solving

(3.30) with initial value

ĴV
i (0) = 0 and

(

∇Z ĴV
i

)

(0) = E0
i .

Then D (Lτ exp(V )) (E0
i ) = JV

i (τ), and the Jacobian of the L-exponential map Lτ JV ∈ R

(called the L-Jacobian) is given by

Lτ JV =

√

det
(

〈

JV
i (τ) , JV

j (τ)
〉

g(Lτ exp(V ),τ)

)

n×n
. (3.33)

Note that the pull-back volume form is

(Lτ exp(V ))
∗
dµg(Lτ exp(V ),τ) = Lτ JV dy

where dy is the standard Euclidean volume form on (TpN, g(p, 0)).

Let Ēi(τ) be the parallel translation of E0
i along γV (τ̃) with respect to g(0). From

the definition of ĴV
i (σ̃) we have |JV

i (τ) − 2
√

τĒi(τ)|g(0) = o(2
√

τ) and hence we get the
following asymptotic behavior of the L-Jacobian

lim
τ→0+

Lτ JV

τn/2
= lim

τ→0+

τ−n/2
√

det
(

〈2
√

τĒi(τ), 2
√

τĒj(τ)〉g(0)

)

= 2n. (3.34)

3.7C. Estimate of L-Jacobian. We have the following estimate of the time-derivative
of the L-Jacobian, which follows from the estimate of Jacobi fields.

Proposition 3.7. Fix a V ∈ TpN , let γV (τ̃) , τ̃ ∈ [0, τ̄ ], be a minimal L-geodesic with

γV (0) = p and limτ̃→0+

√
τ̃ dγV

dτ̃ = V . For any τ ∈ (0, τ̄) the L-Jacobian Lτ JV satisfies
(

d

dτ
logLτ JV

)

≤ n

2τ
− 1

2τ
3
2

K, (3.35)

where K = K(γV , τ) is defined by (3.23).
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Proof. Choose an orthonormal basis {Ei (τ)} of (TγV (τ)N, g(γV (τ) , τ)). We can extend
Ei (τ) to an L-Jacobi field Ei (τ̃) along γV for τ̃ ∈ [0, τ ] with Ei (0) = 0. Then there is a

matrix
(

Aj
i

)

∈ GL (n, R), such that

JV
i (τ̃) =

n
∑

j=1

Aj
iEj (τ̃)

for all τ̃ ∈ [0, τ ]. The reason for the existence of Ei (τ̃) and
(

Aj
i

)

is that there is no

nontrivial L-Jacobi field along γV (τ̃) which vanishes at the endpoints τ̃ = 0, τ .
Now we compute the evolution of the L-Jacobian along γV using (3.33) and (3.32):

d

dτ̃

∣

∣

∣

∣

τ̃=τ

logLτ̃ JV =
d

dτ̃

∣

∣

∣

∣

τ̃=τ

log

√

√

√

√

√det





〈

n
∑

k=1

Ak
i Ek (τ̃) ,

n
∑

ℓ=1

Aℓ
jEℓ (τ̃)

〉

g(γV (τ̃),τ̃)





=
1

2

d

dτ̃

∣

∣

∣

∣

τ̃=τ

log det (〈Ek, El〉 (τ̃)) +
1

2

d

dτ̃

∣

∣

∣

∣

τ̃=τ

log det
(

Ak
i

)

+
1

2

d

dτ̃

∣

∣

∣

∣

τ̃=τ

log det
(

Aℓ
j

)

=
1

2

n
∑

i=1

d

dτ̃

∣

∣

∣

∣

τ̃=τ

〈Ei, Ei〉 (τ̃)

≤ −1

2

1√
τ

∫ τ

0

√
τ̃

n
∑

i=1

H
(

X, Ẽi

)

dτ̃ +
1

2

n
∑

i=1

|Ei (τ)|2
τ

= − 1

2τ3/2

∫ τ

0

τ̃3/2H (X) dτ̃ +
n

2τ
.

Here det (〈Ek, El〉 (τ̃)) denotes the determinant of n× n matrix (〈Ek, El〉 (τ̃)), the Ẽi (τ̃)

are the vector fields along γV satisfying (3.16a) and Ẽi (τ) = Ei (τ), and in the last
equality above we have used (3.21). �

4. Reduced volume

In this section we use the properties of reduced distance to prove the monotonicity of
reduced volume, in the next section we will see that this monotonicity has fundamental
consequences about the properties of Ricci flow.

Throughout this section Nn is an n-dimensional connected oriented manifold, and
(Nn, g(τ)) , τ ∈ [0, T ], is a complete solution to the backward Ricci flow ∂

∂τ g(τ) =
2Rc(g(τ)) with bounded Riemann curvature supM×[0,T ] |Rm(x, τ)| < ∞. The reduced

distance ℓ is defined using the basepoint (p, 0) for some p ∈ N . Several claims in this
section will not be proved.
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4.1. Definition of reduced volume

The reduced volume function Ṽ : (0, T ] → R>0 is defined by

Ṽ (τ) =

∫

N

(4πτ)
−n/2

exp [−ℓ (x, τ)] dµg(τ) (x) , (4.1)

and Ṽ (0) is defined to be 1. We will see that the integral in (4.1) is finite in §4.2A.

Comment. 1) A simple exercise shows that on the Euclidean space where g(τ) = gEuc

we have ℓ(x, τ) = (dEuc(x,p))2

4τ and Ṽ (τ) = 1 for all τ .

2) There is some similarity between the reduced volume and the volume ratio Vol B(p,r)
ωnrn

which appeared in the Bishop-Gromov volume comparison theorem for complete manifolds
with Rc ≥ 0.

In the rest of this subsection we give another formula for the integral in (4.1). The L-
cut-locus Lτ Cutp of the map Lτ exp consists of points Lτ exp(V ) where either V ∈ TpN

is a critical point of Lτ exp or there is V̂ 6= V such that γV̂ (as defined above (3.35)) is
a minimal L-geodesic over [0, τ ] joins p and Lτ exp(V ). Note that Lτ Cutp has measure
zero in (N, g(τ)) (claim).

Given V ∈ TpN there is a unique τV ∈ (0, T ] such that the L-geodesic γV |[0,τ ] is

minimal when τ < τV and is not minimal when τ > τV (claim). We define Ωp(τ) = {V ∈
TpN, τ < τV }. Then

Lτ exp : Ωp(τ) → N \ Lτ Cutp

is a diffeomorphism (claim).
Let dy be the standard Euclidean volume form on (TpN, g(p, 0)). Using Lτ exp and

Ωp(τ) we can rewrite the reduced volume as

Ṽ (τ) =

∫

N\Lτ Cutp

(4πτ)−n/2 exp [−ℓ (x, τ)] dµg(τ) (x)

=

∫

Ωp(τ)

(4πτ)−n/2e−ℓ(Lτ exp(V ),τ)Lτ JV dy (V ) , (4.2)

=

∫

TpN

(4πτ)−n/2e−ℓ(γV (τ),τ)Lτ JV dy (V ) , (4.3)

where we have used the formula after (3.33) to get (4.2) and the convention Lτ JV = 0
for V /∈ Ωp(τ) to get (4.3).

4.2. The monotonicity of reduced volume

In this subsection we give two proofs of the monotonicity.
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4.2A. Monotonicity of reduced volume using L-Jacobian. For any V ∈ Ωp(τ),
from (3.8) we have γ̇V (τ) = (∇ℓ)(γV (τ) , τ). We compute

d

dτ

[

(4πτ)
−n/2

e−ℓ(γV (τ),τ)Lτ JV

]

=
[

(4πτ)
−n/2

e−ℓ(γV (τ),τ)Lτ JV

]

(

− n

2τ
−∇ℓ · γ̇V − ∂ℓ

∂τ
+

d

dτ
logLτ JV

)

=
[

(4πτ)
−n/2

e−ℓ(γV (τ),τ)Lτ JV

]

(

− n

2τ
− |∇ℓ|2 − ∂ℓ

∂τ
+

d

dτ
logLτ JV

)

≤0,

where the last inequality follows from (3.27a), (3.27b) and (3.35). Hence we have proved
(i) of the following.

Lemma 4.1. Using the notation from §4.1 we have

(i) for any V ∈ Ωp(τ)

d

dτ

[

(4πτ)
−n/2

e−ℓ(γV (τ),τ)Lτ JV

]

≤ 0. (4.4)

(ii) For any V ∈ TpM and 0 ≤ τ ≤ T,

(4πτ)
−n/2

e−ℓ(γV (τ),τ)Lτ JV ≤ π−n/2e−|V |2g(p,0) . (4.5)

(iii) The reduced volume is well defined and takes values in (0, 1].

Proof. (ii) Similar to (3.28e) we have (claim)

lim
τ→0+

ℓ (γV (τ) , τ) = |V |2g(p,0) .

Hence from (3.34) we have

lim
τ→0+

(4πτ)
−n/2

e−ℓ(γV (τ),τ)Lτ JV = π−n/2e−|V |2g(p,0) . (4.6)

(ii) then follows from (i).

(iii) This follows from (4.3), (ii) and
∫

TpN

π−n/2e−|V |2g(p,0)dy (V ) = 1

where dy is the standard Euclidean volume form on (TpN, g(p, 0)). The above equality

and (4.6) indicates that defining Ṽ (0) = 1 is reasonable. �

The next theorem follows from (4.3) and (4.4).

Theorem 4.2 (Monotonicity of reduced volume). We have Ṽ (τ2) ≤ Ṽ (τ1) for
τ2 ≥ τ1, i.e.,

d

dτ
Ṽ (τ) ≤ 0. (4.7)
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4.2B. Monotonicity of reduced volume without using L-Jacobian. We compute
formally

d

dτ
Ṽ (τ) =

∫

N

∂

∂τ

(

(4πτ)
−n/2

e−ℓ(·,τ)dµg(τ)

)

(4.8)

=

∫

N

(

− n

2τ
− ∂ℓ

∂τ
+ R

)

(4πτ)
−n/2

e−ℓ(·,τ)dµg(τ)

≤
∫

N

(

|∇ℓ|2 − ∆ℓ
)

(4πτ)
−n/2

e−ℓ(·,τ)dµg(τ) (4.9)

≤ 0. (4.10)

Here (4.9) follows from (3.28a). To justify the switch of the order of differentiation
and integration to get (4.8) and the integration by parts to get (4.10), one need certain
estimates on the growth of reduced distance ℓ(x, τ) and its derivatives. These estimates
are not established in §3, we encourage the reader to find the details of proving (4.8) and
(4.10) in the literature.

5. Applications of monotonicity of reduced volume

In this section we give two applications of reduced distance and reduced volume to
justify their importance in the study of Ricci flow. The reader can find their other
applications in the literature.

5.1. No local collapsing theorem

Recall that if a Ricci flow solution does not exist up to time +∞, we say that it develops
a singularity in finite time. The no local collapsing theorem is used in the singularity
analysis of Ricci flow. When combined with the Hamilton’s Cheeger-Gromov-type
compactness theorem it implies the existence of singularity models for Ricci flow
developing singularities in finite time.

Throughout this subsection Mn is a n-dimensional connected oriented manifold, and
(Mn, g̃ (t)) , t ∈ [0, T ), is a complete solution to the Ricci flow with T < ∞, and we
assume supM×[0,T0] |Rmg̃ (x, t)| < ∞ for all T0 < T .

5.1A. The statement of no local collapsing theorem. Before we state the theorem
we need a

Definition 5.1 (Strongly κ-collapsed). Let κ > 0 be a constant. We say that Ricci
flow (Mn, g̃ (t)), t ∈ [0, T ), is strongly κ-collapsed at (x0, T0) ∈ M × (0, T ) at scale
r > 0 if

(i) (curvature bound in a parabolic cylinder) |Rmg̃ (x, t)| ≤ 1
r2 for all x ∈ Bg̃(T0)(x0, r)

and t ∈ [max
{

T0 − r2, 0
}

, T0], and

(ii) (volume of ball is κ-collapsed)

Volg̃(T0) Bg̃(T0)(x0, r)

rn
< κ.
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Given an r > 0, if for any T0 ∈ [r2, T ) and any x0 ∈ M the solution g̃ (t) is not strongly
κ-collapsed at (x0, T0) at scale r, then we say that (M, g̃ (t)) is weakly κ-noncollapsed
at scale r.

The following is the so-called weakened no local collapsing theorem ([Pe02], §7.3).

Theorem 5.1. Let (Mn, g̃ (t)) , t ∈ [0, T ), be a complete solution to the Ricci flow with
T < ∞. Suppose there exist r1 > 0 and v1 > 0 such that

Volg̃(0) Bg̃(0) (x, r1) ≥ v1 for all x ∈ M.

Then there exists κ > 0 depending only on r1, v1, n, T, and supM×[0,T/2] Rcg̃ (x, t) such that

g̃ (t) is weakly κ-noncollapsed at any point (p, T0) ∈ M × (T/2, T ) at any scale r <
√

T/2.
Here supRcg̃ (x, t) stands for the largest eigenvalue of Rcg̃ (x, t).

5.1B. Sketch of the proof of Theorem 5.1. Given a time T0 ∈
(

T
2 , T

)

, let g (τ) =
g̃ (T0 − τ). Then (Mn, g (τ)), τ ∈ [0, T0], is a complete solution to the backward Ricci flow
with initial metric g (0) = g̃ (T0) and with bounded Riemann curvature tensor. Given a

point p ∈ M , then we can define reduced distance ℓ(x, τ) and reduced volume Ṽ (τ) using
the basepoint (p, 0). The theorem follows easily from the following two lemmas.

On one hand, we have

Lemma 5.2. There exist c1 (n) > 0 depending only on n and a function φ(ǫ, n) satisfying
limǫ→0+

φ (ε, n) = 0 such that if for some κ satisfying κ1/n ≤ c1 (n), the solution g̃ (t) is

strongly κ-collapsed at some (p, T0) at scale r, where T0 ∈ (T
2 , T ) and r <

√
T0, then the

reduced volume Ṽ as defined above has the upper bound

Ṽ
(

εr2
)

≤ φ (ε, n) ,

where ε = κ1/n.

Sketch of the proof of Lemma 5.2. From (4.3) we can write the reduced volume

integral over TpM as Ṽ
(

εr2
)

= Ṽ1

(

εr2
)

+ Ṽ2

(

εr2
)

where Ṽ1

(

εr2
)

and Ṽ2

(

εr2
)

are the

integrals over {V ∈ TpM, |V |g(p,0) ≤ ǫ−1/4} and {V ∈ TpM, |V |g(p,0) > ǫ−1/4}, respec-

tively. The lemma is proved by bounding Ṽ1

(

εr2
)

and Ṽ2

(

εr2
)

from above separately.
We have

Ṽ1

(

εr2
)

≤ C1(n)ǫn/2 for ǫ < c1(n)

where C1(n) and c1(n) are positive constants depending only on n. Using the assumption
that the solution is strongly κ-collapsed at (p, T0) at scale r, the upper bound estimate
is proved by showing the following two estimates: the L-geodesic γV (τ) (as defined in
§3.7A) is contained in Bg̃(T0)(p, r/2) for some choice of c1(n); and when |V |g(p,0) ≤ ǫ−1/4

ℓ(γV (εr2), εr2) is bounded from below by a constant independent of ǫ.
We have

Ṽ2

(

εr2
)

≤ C2(n)e
− 1

2
√

ǫ
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where C2(n) is a positive constant depending only on n. To see this estimate, by (4.5)
we have

(

4πεr2
)−n/2

e−ℓ(γV (εr2),εr2)Lεr2 JV ≤ π−n/2e−|V |2g(p,0) .

Then

Ṽ2

(

εr2
)

≤
∫

|V |g(p,0)>ǫ−1/4

π−n/2e−|V |2g(p,0)dy

where dy is the standard Euclidean volume form on (TpN, g(p, 0)). The estimate follows.

On the other hand, we have

Lemma 5.3. (i) Fix an arbitrary r0 > 0. There exists a constant C3 > 0, depending
only on r0, n, T, and supM×[0,T/2] Rcg̃ (x, t), and there exists x0 ∈ M such that reduced
distance

ℓ (x, T0) ≤ C3 for all x ∈ Bg̃(0) (x0, r0) .

(ii) Suppose there exist r1 > 0 and v1 > 0 such that

Volg̃(0) Bg̃(0) (x, r1) ≥ v1

for all x ∈ M . Then there exists a constant C4 > 0, depending only on r1, v1, n, T, and
supM×[0,T/2] Rc g̃ (x, t), such that reduced volume

Ṽ (T0) ≥ C4.

Sketch of the proof of Lemma 5.3. (i) By (3.28f), there is x0 ∈ M and a min-
imal L-geodesic γ1 : [0, T0 − T

2 ] → M joining p and x0 such that 1

2
√

T0−T
2

L(γ1) =

ℓ(x0, T0 − T
2 ) ≤ n

2 . Let β : [T0 − T
2 , T0] → (M, g̃(0)) be the constant speed path join-

ing x0 and x ∈ Bg̃(0) (x0, r0). Since γ1 followed by β is a path joining (p, 0) and (x, T0),

ℓ (x, T0) ≤
1

2
√

T0

(

L(γ1) +

∫ T0

T0−T
2

√
τ̃

(

R (β (τ̃) , τ̃) +

∣

∣

∣

∣

dβ

dτ̃
(τ̃)

∣

∣

∣

∣

2

g(τ̃)

)

dτ̃

)

.

Note that the metric g (τ̃) , τ̃ ∈ [T0 − T
2 , T0], corresponds to the metric g̃ (t) , t ∈ [0, T

2 ],
we can estimate the integral above to get (i).

(ii) We compute using x0 in (i)

Ṽ (T0) ≥
∫

Bg̃(0)(x0,r1)

(4πT0)
−n

2 e−ℓ(x,T0)dµg̃(0)(x)

≥ (4πT )−
n
2 e−C3v1.

Now we finish the proof of Theorem 5.1. Suppose the solution g̃ (t) is strongly
κ-collapsed at some (p, T0) at scale r, where κ1/n ≤ c1 (n), T0 ∈ (T

2 , T ) and r <
√

T0.
Combining the two lemmas above about the upper and lower bound of reduced volume
and the monotonicity of reduced volume, we have

C4 ≤ Ṽ (T0) ≤ Ṽ
(

εr2
)

≤ φ (ε, n) .

This forces ε = κ1/n not going to zero. Hence the theorem is proved.
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5.1C. Type I solution and Lemma 5.3. Let (Mn, g̃ (t)) , t ∈ [0, T ), be a complete
solution to the Ricci flow with T < ∞. Recall that g̃(t) is called a type-I solution if there
is a constant C0 such that (T − t)|Rmg̃(x, t)| ≤ C0 for all (x, t) ∈ M × [0, T ). For type-I
solutions we have the following modification of Lemma 5.3.

Lemma 5.4. Let (Mn, g̃ (t)) , t ∈ [0, T ), be a complete solution to the Ricci flow with
T < ∞. Suppose for some constants C0 and α ∈ [1, 3

2 ) we have

(T − t)α|Rcg̃(x, t)| ≤ C0 for all (x, t) ∈ M × [0, T ),

and suppose there exist x1 ∈ M, r1 > 0, and v1 > 0 such that

Volg̃(0) Bg̃(0) (x1, r1) ≥ v1.

Then for any A > 0 there exist two positive constants C5 and C6, both depending only
on A,α, r1, v1, n, T , and C0, such that for any p ∈ Bg̃(0)(x1, A) and T0 ∈ (T/2, T ) the
reduced distance, defined by backward solution g(τ) = g̃(T0 − τ) and basepoint (p, 0),
satisfies

ℓ (x, T0) ≤ C5 for all x ∈ Bg̃(0) (x1, r1) ,

and the reduced volume Ṽ (T0) ≥ C6.

Sketch of the proof of Lemma 5.4. Define γ : [0, T0] → M to be a path joining
p and x ∈ Bg̃(0) (x1, r1) such that γ(τ̃) = x for τ̃ ∈ [0, T0 − T/2] and γ|[T0−T/2,T0]

is

a constant speed minimal geodesic with respect to metric g̃(0). By the Ricci curvature
bound assumption we have for any τ̃ ∈ [T0 − T/2, T0]

|γ̇(τ̃)|2g(τ̃) ≤ e2αC0T 1−α |γ̇(τ̃)|2g̃(0) = e2αC0T 1−α · 4(A + r1)
2

T 2
.

Since |Rcg(x, τ)| ≤ C0τ
−α, we compute

ℓ (x, T0) ≤
1

2
√

T0

L(γ)

=
1

2
√

T0

(

∫ T0

0

2
√

τ̃Rg(γ(τ̃), τ̃)dτ̃ +

∫ T0

T0−T/2

2
√

τ̃ |γ̇(τ̃)|2g(τ̃)dτ̃

)

≤ C5.

Hence

Ṽ (T0) ≥
∫

Bg̃(0)(x1,r1)

(4πT0)
−n

2 e−ℓ(x,T0)dµg̃(0)(x) ≥ (4πT )−
n
2 e−C5v1.

Following the same idea of the proof of Theorem 5.1 (see the paragraph above §5.1C),
we have

Lemma 5.5. Let (Mn, g̃ (t)) , t ∈ [0, T ), be a complete solution to the Ricci flow with
T < ∞. Suppose for some constants C0 and α ∈ [1, 3

2 ) we have

(T − t)α|Rcg̃(x, t)| ≤ C0 for all (x, t) ∈ M × [0, T ),
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and suppose there exist x1 ∈ M, r1 > 0, and v1 > 0 such that Volg̃(0) Bg̃(0) (x1, r1) ≥ v1.
Then for any A > 0 there exists a positive constant κ, depending only on A,α, r1, v1, n, T ,
and C0, such that at any scale r <

√

T/2, g̃ (t) is weakly κ-noncollapsed at any point
(p, T0) ∈ Bg̃(0)(x1, A) × (T/2, T ).

Note that this lemma has a weaker volume assumption than that of Theorem 5.1.

5.2. Backward limits of κ-solutions are shrinkers

A special family of singularity models is the so-called κ-solutions. The main theo-
rem of this subsection shows that some blow-down limits of the solutions are even more
special: shrinking gradient Ricci solitons. This opens the door for possible classification of
singularity models in lower dimensions. A near classification knowledge about κ-solutions
in dimension 3 enables us to perform surgeries on Ricci flow and eventually leads to the
longtime existence of the so-called surgical Ricci flow.

5.2A. κ-solutions and the theorem. First we give a

Definition 5.2. Let κ be a positive constant. A complete ancient solution (Mn, g̃(t)) ,
t ∈ (−∞, 0], of the Ricci flow is called a κ-solution if it satisfies

(i) g̃(t) is nonflat and has nonnegative curvature operator for each t ∈ (−∞, 0].

(ii) Scalar curvature satisfies supM×(−∞,0] Rg̃ (x, t) < ∞.

(iii) g̃(t) is κ-noncollapsed on all scales for all t ∈ (−∞, 0]; i.e., for any r > 0 and for
any (p, t) ∈ M × (−∞, 0], if |Rmg̃ (x, t)| ≤ r−2 for all x ∈ Bg̃(t) (p, r), then

Volg̃(t) Bg̃(t) (p, r)

rn
≥ κ.

Given a κ-solution (Mn, g̃(t)), t ∈ (−∞, 0], we define a solution to the backward Ricci
flow (Mn, g (τ)) , τ ∈ [0,∞), by

g (τ) = g̃ (−τ) .

Given a point p ∈ M , we can define the reduced distance ℓ (x, τ) and reduced volume

Ṽ (τ) using basepoint (p, 0). Let qτ ∈ M be a point such that ℓ(qτ , τ) ≤ n
2 . The existence

of qτ is guaranteed by (3.28f). For any τ > 0, we define solutions to the backward Ricci
flow by parabolic scaling:

gτ (θ) = τ−1 · g(τθ), for θ ∈ [0,∞). (5.1)

The following is Proposition 11.2 in [Pe02].

Theorem 5.6. For any sequence τi → ∞, there exists a subsequence still denoted by τi,
such that (Mn, gτi

(θ), (qτi
, 1)), θ ∈ (0,∞), converges in the Cheeger-Gromov sense to a

complete nonflat shrinking gradient Ricci soliton (Mn
∞, g∞(θ), (q∞, 1)).

Below we give a sketch of the proof of Theorem 5.6.
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5.2B. Estimating reduced distance associated to κ-solutions. The Hamilton’s
trace Harnack inequality says that for a backward Ricci flow solution on [0, T ) with
nonegative curvature operator, the trace Harnack quantity as defined in (3.22) satisfies

H(X)(x, τ̃) ≥ −
(

1

τ̃
+

1

T − τ̃

)

R(x, τ̃). (5.2)

Here for g(τ) we can take T = ∞. By (3.23) we have

K ≥ −
∫ τ

0

τ̃3/2 · τ̃−1R(γ(τ̃), τ̃)dτ̃ ≥ −L(γ) = −2
√

τℓ(x, τ).

Plug this into (3.27b), we have the following estimate

|∇ℓ (x, τ)|2 + R (x, τ) ≤ 3ℓ (x, τ)

τ
(5.3)

for g (τ) coming out of the κ-solution g̃ (t). From (3.27a) and (3.27b) we have

∂ℓ

∂τ
= −1

2
|∇ℓ|2 − ℓ

2τ
+

1

2
R,

hence from (5.3) it follows
∣

∣

∣

∣

∂ℓ

∂τ

∣

∣

∣

∣

≤ 2ℓ

τ
. (5.4)

Lemma 5.7. Given any ε > 0 and A > 1, there exists δ(n, ε,A) > 0 such that for any
τ > 0,

ℓ (x, τ̃) ≤ δ(n, ε,A)−1 and τ̃R (x, τ̃) ≤ δ(n, ε,A)−1

for all (x, τ̃) ∈ Bg(τ)

(

qτ ,
√

ε−1τ
)

×
[

A−1τ,Aτ
]

.

Sketch of the proof of Lemma 5.7. Note that the estimate of τ̃R (x, τ̃) follows
from the estimate of ℓ (x, τ̃) and (5.3). To see the estimate of ℓ (x, τ̃), by (5.3) we have

|∇
√

ℓ(x, τ)|g(τ) ≤
√

3
2 τ−1/2, combining with ℓ(qτ , τ) ≤ n

2 we get an estimate of ℓ(x, τ).
The estimate of ℓ (x, τ̃) then follows from (5.4).

5.2C. The existence of the limit in Theorem 5.6. Fix an A > 1, for the sequence
τi → ∞ in Theorem 5.6, we consider the sequence of pointed backward Ricci flow solutions

(Mn, gτi
(θ), (qτi

, 1)) , θ ∈
[

A−1, A
]

.

For any ε > 0, after parabolic scaling of g (τ) by τi, Lemma 5.7 yields the curvature bound
∣

∣Rmgτi
(x, θ)

∣

∣ ≤ Rgτi
(x, θ) ≤ θ−1δ (n, ε,A)

−1 ≤ Aδ (n, ε,A)
−1

(5.5)

on Bgτi
(1)

(

qτi
,
√

ε−1
)

×
[

A−1, A
]

, here we have used that g(τ) has nonnegative curvature

operator. In particular taking ε = 1 and A = 2, we obtain that for some δ (n, 1, 2) < 1
∣

∣Rmgτi
(x, 1)

∣

∣ ≤ 2δ (n, 1, 2)
−1

for x ∈ Bgτi
(1) (qτi

, 1) .

28



An introduction to reduced volume

Since g(θ) is κ-noncollapsed on all scales, we have gτi
(θ) is κ-noncollapsed on

Bgτi
(1)(qτi

,
√

δ (n, 1, 2) /2) and hence

Volgτi
(1) Bgτi

(1)

(

qτi
,
√

δ (n, 1, 2) /2
)

≥ κ
(

√

δ (n, 1, 2) /2
)n

.

By a theorem of Cheeger, Gromov and Taylor we have the injectivity radius estimate

injgτi
(1) (qτi

) ≥ δ1 (n, κ) (5.6)

for some positive constant δ1 (n, κ) depending only on n and κ.
(5.5) and (5.6) enable us to apply Hamilton’s Cheeger-Gromov-type compactness the-

orem to the sequence of solutions gτi
(θ) of the backward Ricci flow to get a convergent

subsequence

(Mn, gτi
(θ), (qτi

, 1)) −→ (Mn
∞, g∞(θ), (q∞, 1)) for θ ∈

[

A−1, A
]

. (5.7)

The limit g∞(θ) is a complete solution to the backward Ricci flow. Since each gτi
(θ)

satisfies the trace Harnack inequality, g∞(θ) satisfies the trace Harnack inequality (5.2)
with T = ∞. Also g∞(θ) is κ-noncollapsed on all scales, has nonnegative curvature
operator, and satisfies inj g∞(1) (q∞) ≥ δ1 (n, κ). However because the curvature bound

Aδ (n, ε,A)
−1

in (5.5) depends on ε and hence on the radius
√

ε−1, we may not have
curvature bound supM∞ |Rmg∞(x, θ)| < ∞ for each θ ∈ [A−1, A].

By choosing a sequence of Ak → ∞ and using a diagonalization argument, we may
assume that (Mn

∞, g∞(θ)) exists for θ ∈ (0,∞) and that the convergence in (5.7) holds
for θ ∈ (0,∞).

5.2D. Finishing the proof of Theorem 5.6. To finish the proof of Theorem 5.6, we
need to show that for each θ, g∞(θ) is a nonflat shrinking gradient Ricci soliton. Let
ℓi (x, θ) denote the reduced distance of the solution gτi

(θ) with respect to the basepoint
(p, 0). After scaling, (5.3) and (5.4) give the derivative estimates of ℓi(x, θ), by Arzela-
Ascoli theorem some subsequence ℓi(x, θ) converges to a Lipschitz function ℓ∞(x, θ) on
M∞ in the Cheeger-Gromov sense. Similar to the definition of reduced volume (4.1), we
use ℓ∞(x, θ) to define

V̂∞(θ) =

∫

M∞

(4πθ)
−n/2

exp [−ℓ∞ (x, θ)] dµg∞(θ) (x) , θ ∈ (0,∞). (5.8)

By certain estimates on the growth of reduced distance ℓ(x, τ) (not covered in §3), one
can prove the convergence of the reduced volume (defined above (5.1))

lim
i→∞

Ṽ (τiθ) = V̂∞(θ) for each θ > 0.

The monotonicity of reduced volume then implies that V̂∞(θ) is a constant function.
Combining this and (3.28a) for ℓi(x, θ), one can argue that

∂ℓ∞
∂θ

− ∆g∞ℓ∞ + |∇g∞ℓ∞|2 − Rg∞ +
n

2θ
= 0 (5.9)
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in weak sense (we suggest the reader to find the details of the argument in the literature).
Regularity theory of parabolic partial differential equations implies that ℓ∞ is a smooth
function.

Define two functions on M∞ × (0,∞) by u∞(x, θ) = (4πθ)−
n
2 e−ℓ∞(x,θ) and

v∞ =
(

θ(2∆g∞ℓ∞ − |∇g∞ℓ∞|2 + Rg∞) + ℓ∞ − n
)

u∞.

Let operator �
∗ = ∂

∂θ − ∆g∞ + Rg∞ . Equation (5.9) implies that �
∗u∞ = 0. By some

calculation one can show

�
∗v∞ = −2θ

∣

∣

∣

∣

Rc (g∞) + ∇g∞∇g∞ℓ∞ − 1

2θ
g∞

∣

∣

∣

∣

2

u∞. (5.10)

Applying (3.28d) to li(x, θ) we have

2
∂ℓi

∂θ
+
∣

∣∇gτi
ℓi

∣

∣

2 − Rgτi
+

ℓi

θ
= 0.

It can be argued that when i → ∞ the above equality implies

2
∂ℓ∞
∂θ

+ |∇g∞ℓ∞|2 − Rg∞ +
ℓ∞
θ

= 0.

Combining this with (5.9) we get v∞ = 0, and hence it follows from (5.10) that

Rc (g∞) + ∇g∞∇g∞ℓ∞ − 1

2θ
g∞ = 0. (5.11)

We have proved that g∞(θ) is a shrinking gradient Ricci soliton.

The last part that g∞(θ) is nonflat, is argued by contradiction. If it is flat, then
the soliton equation (5.11) gives enough information of g∞ and ℓ∞ (Euclidean shrink-

ing solution) to conclude that V̂∞(θ) = 1. But the equation above (5.9) implies that

V̂∞(θ) = limτ→∞ Ṽ (τ) < 1. We get a contradiction. Now we have finished the sketch of
the proof of Theorem 5.6.
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