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Grid diagrams, braids, and contact geometry

Lenhard Ng and Dylan Thurston

Abstract. We use grid diagrams to present a unified picture of braids, Legendrian
knots, and transverse knots.

1. Introduction

Grid diagrams, also known in the literature as arc presentations, are a convenient com-
binatorial tool for studying knots and links in R

3. Although grid diagrams (or equivalent
structures) have been studied for over a century ([Bru, Cro, Dyn]), they have recently
regained prominence due to their role in the combinatorial formulation of knot Floer
homology ([MOS, MOST]).

It has been known for some time that grid diagrams are closely related to contact
geometry as well as to braid theory. Our purpose here is to indicate the extent to which
the relationships are similar. Indeed, braids, like the Legendrian and transverse knots in
contact geometry, can be viewed as certain equivalence classes of grid diagrams, and we
will see that the various equivalences fit into one single description. Furthermore, this
description is compatible with the various maps between these objects, like the trans-
verse knot constructed from a braid. Much of the picture we will present has previously
appeared, but we believe that the full picture (especially the part concerning braids) is
new.

Definition 1. A grid diagram with grid number n is an n×n square grid with n X’s and
n O’s placed in distinct squares, such that each row and each column contains exactly
one X and one O.

We will employ the word “knot” throughout as shorthand for “oriented knot or oriented
link”. Then any grid diagram yields a diagram of a knot in a standard way: connect O to
X in each row, connect X to O in each column, and have the vertical line segments pass
over the horizontal ones (Figure 1). In addition, one can associate to any grid diagram
not only a topological knot but also a braid, a Legendrian knot, and a transverse knot.
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Figure 1. A grid diagram and corresponding knot diagram and Legen-
drian front.

We will use the following notation:

G = {grid diagrams}

K = {isotopy classes of topological knots}

B = {isotopy classes of braids modulo conjugation and exchange}

L = {Legendrian isotopy classes of Legendrian knots}

T = {transverse isotopy classes of transverse knots}.

(For definitions, see Section 2.)
In Section 2, we will review maps between these various sets that fit together into the

following commutative diagram:

G //

�� ��?
?

?
?

?
?

?

��

L

��

��0
0
0
0
0
0
0
0
0
0
0
0
0
0

B //

''PPPPPPPPPPPPPP T

  A
AA

AA
AA

A

K.

(1)

Here the map from G to K is as described above. For the other maps, see also [Ben, Cro,
Dyn, KN, MM, OST].

In [Cro] (see also [Dyn]), Cromwell provides a list of alterations of grid diagrams
that do not change topological knot type, the grid-diagram equivalent of Reidemeister
moves for knot diagrams. These are collectively known as Cromwell moves and consist of
translations, commutations, and stabilizations/destabilizations. The last we distinguish
into four types, X:NW, X:NE, X:SW, and X:SE, following [OST].
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braids mod
conjugacy + exchange

Legendrian knots

transverse knots

topological knots

SESW

NW NE

Figure 2. Quotienting G̃, the set of grid-diagram orbits under transla-
tion and commutation, by various combinations of X (de)stabilizations
yields equivalence classes of braids and various types of knots.

Proposition 1 (Cromwell [Cro]). The map G → K sending grid diagrams to topological
knots induces a bijection

K ←→ G/(translation, commutation, (de)stabilization).

We will see that the maps from G to B, L, and T can be similarly understood. More
precisely, we have the following result.

Proposition 2. Let G̃ denote the quotient set G/(translation, commutation). The maps
G → B, G → L, and G → T induce bijections

B ←→ G̃/(X:NE,X:SE (de)stabilization)

L ←→ G̃/(X:NE,X:SW (de)stabilization)

T ←→ G̃/(X:NE,X:SW,X:SE (de)stabilization).

It follows from this result that the maps between B,L, T ,K can also be interpreted in
terms of grid diagrams. For instance, the map B → T is the quotient

G̃/(X:NE,X:SE (de)stabilization) −→ G̃/(X:NE,X:SW,X:SE (de)stabilization).

Similarly, the maps B → K, L → T , L → K, T → K, in terms of grid diagrams, are
quotients by various (de)stabilizations.

Proposition 2 is summarized diagrammatically in Figure 2. The bijections in Proposi-
tion 2 involving L and T have already been established in [OST]; the new content in this
note is the bijection involving B.

We note that stabilization operations on braids and Legendrian and transverse knots
can be expressed in terms of Cromwell moves. More precisely, we have the following.
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Proposition 3. Under the identifications of Proposition 2, we have

positive braid stabilization←→ X:SW stabilization

negative braid stabilization←→ X:NW stabilization

positive Legendrian stabilization←→ X:NW stabilization

negative Legendrian stabilization←→ X:SE stabilization

transverse stabilization←→ X:NW stabilization.

Proposition 3 follows from an inspection of the effect of the various X stabilizations on
the corresponding braid or Legendrian or transverse knot. See also the table at the end
of Section 2.4.

Propositions 2 and 3 give an alternate proof via grid diagrams of the following result.

Proposition 4 (Transverse Markov Theorem [OSh, Wr]). Two braids represent isotopic
transverse knots if and only if they are related by a sequence of conjugations and positive
braid stabilizations and destabilizations.

In the usual formulation of Proposition 4, the map from braids to transverse knots uses a
contact-geometric construction of Bennequin [Ben] (cf. Section 2.4), rather than the map
we use here; see [KN] for a proof that the two maps coincide.

In Section 2, we recall the various relevant constructions and discuss the effects of grid-
diagram symmetries on the maps in Formula (1). We prove our main result, Proposition 2,
in Section 3.

2. Definitions and maps

2.1. Grid diagrams

The Cromwell moves on grid diagrams, translation, commutation, and stabilization/
destabilization, are illustrated in Figure 3 and defined below. From that figure it is clear
that each Cromwell move preserves the topological type of the corresponding knot.

Translation views a grid diagram as lying on a torus by identifying opposite ends
of the grid, and changes the diagram by translation in the torus. Any translation is
a composition of some number of vertical translations, which move the top row of the
diagram to the bottom or vice versa, and horizontal translations, which move the leftmost
column of the diagram to the rightmost or vice versa.

Commutation interchanges two adjacent rows (vertical commutation) or two adjacent
columns (horizontal commutation). These adjacent rows or columns are required to be
disjoint or nested in the following sense. For rows, the four X’s and O’s in the adjacent
rows must lie in distinct columns, and the horizontal line segments connecting O and X
in each row must be either disjoint or nested (one contained in the other) when projected
to a single horizontal line; there is an obvious analogous condition for columns.

An X (resp. O) destabilization replaces a 2× 2 subgrid containing two X’s and one O
(resp. two O’s and one X) with a single square containing an X (resp. O), eliminating
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Figure 3. Illustration of a sequence of Cromwell moves. In succes-
sion: X:SE destabilization; horizontal commutation; vertical torus trans-
lation; vertical commutation; horizontal torus translation; O:SW stabi-
lization. The highlighted sections of each diagram indicate the portion
that changes under the following move.

one row and one column in the process. Stabilization is the inverse of destabilization.
Each (de)stabilization is identified by its type, X or O, along with the corner in the 2× 2
subgrid not occupied by a symbol. This yields eight possibilities: X:NW, X:NE, X:SW,
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X:SE, O:NW, O:NE, O:SW, O:SE. It is easy to check that any O:NW (resp. O:NE, O:SW,
O:SE) (de)stabilization can be expressed as a composition of translations, commutations,
and one X:SE (resp. XSW, X:NE, X:NW) (de)stabilization. Thus we restrict our set of
Cromwell moves to include only X (de)stabilizations.

Remark 5. By the argument of [OST, Lemma 4.3], we can instead drop torus transla-
tions and keep matching O (de)stabilizations to yield alternate definitions for topological,
Legendrian, and transverse knots in terms of grid diagrams. In particular, X:NE, X:SW,
O:SW, and O:NE (de)stabilizations, combined with commutations, generate all torus
translations. The same argument can also be adapted for braids: that is, B is also G
modulo commutation and X:NE, X:SE, O:NW, and O:SW (de)stabilization, as follows.
Sequences of moves similar to those from [OST, Lemma 4.3] show that any horizontal
torus translation can be achieved by these moves, as can any vertical torus translation
where the O appears to the left of the X. But any vertical torus translation can be put
into the correct position by horizontal torus translations.

2.2. Braids

As usual, a braid of braid index n is an element of the group Bn generated by
σ1, . . . , σn−1 with relations σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2 and σiσj = σjσi for
|i− j| ≥ 2. Note the natural inclusion Bn ⊂ Bn+1 sending σi to itself for i ≤ n− 1. The
relevant moves to consider on braids are:

• braid conjugation: B 7→ B′B(B′)−1 for B,B′ ∈ Bn;
• exchange move [BM]: B1σn−1B2σ

−1
n−1 7→ B1σ

−1
n−1B2σn−1 on Bn, where B1, B2 are

in Bn−1 ⊂ Bn;
• braid stabilization: either positive braid stabilization (B ∈ Bn) 7→ (Bσn ∈ Bn+1)

or negative braid stabilization (B ∈ Bn) 7→ (Bσ−1
n ∈ Bn+1); and

• braid destabilization: the inverse of braid stabilization.

In fact, by an observation of Birman and Wrinkle [BW], an exchange move can be
expressed as a combination of one positive stabilization, one positive destabilization, and
a number of conjugations. (Here the positive stabilization and positive destabilization
can equally well be replaced by a negative stabilization and negative destabilization.) For
reference, we include the calculation here.

B1σn−1B2σ
−1
n−1

conj
7−→ σn−1B1σn−1B2σ

−2
n−1

+ stab
7−→ σn−1B1σn−1B2σ

−2
n−1σn

conj
7−→ B1σn−1B2σ

−2
n−1σnσn−1 = B1σn−1B2σnσn−1σ

−2
n

conj
7−→ σ−2

n B1σn−1σnB2σn−1 = B1σn−1σnσ−2
n−1B2σn−1

conj
7−→ σ−2

n−1B2σn−1B1σn−1σn
+ destab
7−→ σ−2

n−1B2σn−1B1σn−1

conj
7−→ B1σ

−1
n−1B2σn−1.
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Figure 4. Positive and negative Legendrian stabilizations of the front
projection of a Legendrian knot.

We will depict braids horizontally from left to right, with strands numbered from top
to bottom; for instance, σ1 interchanges the top two strands, with the top strand passing
over the other as we move from left to right.

2.3. Legendrian and transverse knots

We give a quick description of Legendrian and transverse knots, which occur naturally
in contact geometry; see, e.g., [Et] for more details. A Legendrian knot is a knot in
R

3 along which the standard contact form dz − y dx vanishes everywhere; a transverse
knot is a knot in R

3 along which dz − y dx > 0 everywhere. (Note for the condition
dz− y dx > 0 that the knot is oriented.) We consider Legendrian (resp. transverse) knots
up to Legendrian isotopy (resp. transverse isotopy), which is simply isotopy through
Legendrian (resp. transverse) knots.

One convenient way to depict a Legendrian knot is through its front projection, or
projection in the xz plane. A generic front projection has three features: it has no
vertical tangencies; it is immersed except at cusp singularities; and at all crossings, the
strand of larger slope passes underneath the strand of smaller slope. Any front with these
features corresponds to a Legendrian knot, with the y coordinate given by y = dz/dx.

The knot diagram corresponding to any grid diagram can be viewed as the front
projection of a Legendrian knot by rotating it 45◦ counterclockwise and smoothing out
the corners, creating cusps where necessary; see Figure 1 for an example. This yields a
map G → L from grid diagrams to isotopy classes of Legendrian knots. Note that our
convention differs from the convention of [OST]: the convention there is to reverse all
crossings in the grid diagram and then rotate 45◦ clockwise. See also Section 2.5.

In [OST], it is verified that changing a grid diagram by translation, commutation, or
(in our convention) X:SW, X:NE (de)stabilization does not change the isotopy class of
the corresponding Legendrian knot. Changing by X:NW (resp. X:SE) stabilization does
change the Legendrian knot type, by positive Legendrian stabilization (resp. negative
Legendrian stabilization). Legendrian stabilizations can be described in the front projec-
tion as adding a zigzag, as shown in Figure 4.

Any Legendrian knot is isotopic to one obtained from some grid diagram. It is shown
in [OST] that the set of equivalence classes of Legendrian knots under Legendrian isotopy
corresponds precisely to grid diagrams modulo translation, commutation, and X:NE,
X:SW (de)stabilization, as presented in Proposition 2.

A Legendrian knot can be C0 perturbed to a transverse knot, its positive transverse
pushoff. The resulting map L → T is not injective; negative Legendrian stabilization does

126



Grid diagrams, braids, and contact geometry

not change the transverse isotopy type of the positive transverse pushoff. It is a standard
fact in contact geometry [EFM] that this gives a bijection

T ←→ L/(negative Legendrian stabilization).

Since negative Legendrian stabilization corresponds to an X:SE Cromwell move, the char-
acterization in Proposition 2 of T as a quotient of G holds. Note that positive Legendrian
stabilization becomes the “transverse stabilization” operation on transverse knots.

2.4. Maps between G,B,L, T ,K

Here we collect the constructions of the maps in Formula (1). It suffices to define
G → L, G → B, L → T , B → T , and T → K, since the other maps follow by composition.
We note that the commutativity of the square

G //

��

L

��
B // T

was established in [KN], and in fact our description of the maps is essentially identical to
the one given there. The maps G → L and L → T have already been discussed; since the
map T → K is obvious, we are left with G → B and B → T .

We begin with the map G → B, as described in [Cro, Dyn]; this is also called a
“flip” in [MM]. Any braid in Bn can be viewed as a braid diagram: a tangle diagram
of n strands in the strip [0, 1] × R, oriented so that the orientation points rightward
at all points, with some collection of n distinct points x1, . . . , xn ∈ R for which the
braid intersects {0} × R and {1} × R in {(0, x1), . . . , (0, xn)} and {(1, x1), . . . , (1, xn)}
respectively. Define a rectilinear braid diagram (cf. “braided rectangular diagram” [MM])
to be a tangle diagram in [0, 1]×R with the same boundary conditions as a braid diagram,
but consisting exclusively of horizontal and vertical line segments, satisfying the following
properties:

• vertical segments always pass over horizontal segments;
• each strand can be oriented so that every horizontal segment is oriented right-

wards.

Any rectilinear braid diagram can be perturbed into a standard braid diagram by
perturbing vertical segments slightly to point rightwards, as in Figure 5.

Now given a grid diagram, one obtains a knot diagram as usual by drawing horizontal
and vertical lines. Turn this into a rectilinear braid diagram by replacing any horizontal
line oriented leftwards from O to X by two horizontal lines, one pointing rightwards from
the O, one pointing rightwards to the X, and have these new horizontal lines pass under
all vertical line segments as usual. The rectilinear braid diagram corresponds to a braid
as described above. This produces the desired map G → B.

It remains to define the map B → T . The original contact-geometric definition from
[Ben] is as follows. Identify ends of B to obtain a knot or link in the solid torus S1×D2.
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Figure 5. Braid version (left) of the grid diagram in Figure 1. Omitting
the X’s and O’s produces a rectilinear braid diagram, which can be
perturbed to become a braid, in this case σ−1

2 σ1σ
2
2σ2

1 ∈ B3.

B

Figure 6. A Legendrian front for a braid B.

View the solid torus as a small (framed) tubular neighborhood of the standard transverse
unknot in R

3 with self-linking number −1. Then B becomes a transverse knot in a
neighborhood of the transverse unknot.

There is also a combinatorial description for the map B → T , which we now describe.
(This description is proven to coincide with the contact-geometric description in [KN];
see also [MM, OSh]). Create a front by replacing each braid crossing as shown in Figure 6
and joining corresponding braid ends. (Joining ends introduces 2n cusps for a braid with
n strands; see Figure 6.) This construction produces a Legendrian knot from any braid.

It is an easy exercise in Legendrian Reidemeister moves to show that changing the braid
by isotopy changes the Legendrian knot by isotopy and negative Legendrian (de)stabili-
zation; the stabilization is needed when one introduces cancelling terms σiσ

−1
i or σ−1

i σi

in the braid. Similarly, a conjugation or exchange move on a braid produces a Legendrian
isotopy of the Legendrian knot. See Figure 7 for the exchange move.

The map B → T is now given as follows: given a braid, the corresponding Legendrian
front is well-defined up to isotopy and negative Legendrian stabilization, and hence its
positive transverse pushoff is well-defined. This transverse knot (equivalently, the class
of the Legendrian knot modulo negative Legendrian (de)stabilization) is unchanged by
braid conjugation and exchange.

128



Grid diagrams, braids, and contact geometry

=

=

=

B1 B2

B1 B2

B1 B2

B1 B2

Figure 7. A braid exchange move produces a Legendrian-isotopic front.
Equality denotes Legendrian isotopy.

Grid diagram Braid Legendrian knot Transverse knot

torus translation conjugation Legendrian isotopy transverse isotopy
vertical commutation unchanged Legendrian isotopy transverse isotopy
horizontal commutation conj, exchange Legendrian isotopy transverse isotopy
X:NE, O:SW stab unchanged Legendrian isotopy transverse isotopy
X:SW, O:NE stab conj, + braid stab Legendrian isotopy transverse isotopy
X:SE, O:NW stab unchanged − Legendrian stab transverse isotopy
X:NW, O:SE stab conj, − braid stab + Legendrian stab transverse stab

Table 1. The effect of Cromwell moves on associated topological structures.

Table 1 has a summary of the effect of the Cromwell moves on grid diagrams corre-
spond to changes in the associated braid, Legendrian knot, and transverse knot. The
braid column is verified in Section 3, while the Legendrian and transverse columns were
established in [OST]. For completeness, the table includes O as well as X stabilizations.

2.5. Symmetries and conventions

Here we discuss various symmetries of grid diagrams and how they relate the con-
ventions for the maps in Formula (1) to other, sometimes conflicting, conventions in the
literature. In this section, we will denote the maps G → L, G → T , G → B described in
Section 2.4 by G 7→ L(G), G 7→ T (G), G 7→ B�(G), respectively.

Consider the symmetries S1, S2, S3, and S4 of grid diagrams defined as follows:

• S1 rotates the grid diagram 180◦;
• S2 reflects the diagram about the NE-SW diagonal and interchanges X’s and O’s;
• S3 reflects the diagram across the horizontal axis; and
• S4 rotates the grid diagram 180◦ and interchanges X’s and O’s.
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Symm Knot Braid Legendrian Transverse X stabilizations

S1 K 7→ K B� 7→ B� L 7→ µ(L) —
NW dd

$$I
II

II
NE::

zzuuu
uu

SW SE

S2 K 7→ K B� 7→ B� L 7→ L T 7→ T
NW:: NE::

zzuuu
uu

SW SE uu

S3 K 7→ m(K) B� 7→ m(B�) — —
NWOO
��

NEOO
��

SW SE

S4 K 7→ −K B� 7→ −B� L 7→ −µ(L) T 7→ −µ(T )
NW:: NE77

SW
ww

SE uu

Table 2. The effect of symmetries of a grid diagram on associated
topological structures.

Both S1 and S2 preserve topological knot type, while S3 produces the topological
mirror knot m(K) (with reversed orientation on R

3), and S4 produces the inverse (i.e.,
orientation-reversed) knot −K.

The symmetries descend to the quotient G̃ of grid diagrams by translation and commu-
tation. On G̃, it is readily checked that the symmetries permute the four X stabilizations
as shown in Table 2. We will use this information to examine the effect of the symme-
tries on Legendrian and transverse knots and braids, as shown in the table and explained
below.

Since S1 and S2 send X:NE, X:SW stabilizations to themselves or each other, Propo-
sition 2 implies that these symmetries descend to maps on L. Indeed, it can be shown (see,
e.g., [OST, Lemma 4.6]) that S2 does not change Legendrian isotopy type:
L ◦ S2(G) = L(G). It follows also that T ◦ S2(G) = T (G). On the other hand, we
have L ◦ S1(G) = µ(L(G)), where µ : L → L is the Legendrian mirror operation, which
reflects Legendrian front diagrams in the horizontal axis [FT, OST]. In general, the two
maps lead to two distinct Legendrian knots [Ng]; note that Legendrian “mirroring” pre-
serves topological type. We remark that S3 does not descend to a map on L (there is
no Legendrian version of the topological mirror construction), and Legendrian mirrors do
not descend to the transverse category.

The map S4 on Legendrian knots produces the orientation reverse of the Legendrian
mirror: L 7→ −µ(L). This operation descends to (oriented) transverse knots, in an
operation that could be called the transverse mirror.
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We next consider braids. Given a grid diagram, there are four equally valid ways to
obtain a map G → B that preserves topological knot type. One can require that the braid
goes from left to right, as we do in Section 2.4, but one could instead require that the
braid go from bottom to top, right to left, or top to bottom. We write the resulting maps
as G 7→ B�(G), G 7→ B�(G), G 7→ B�(G), and G 7→ B�(G), respectively. In general,
these maps lead to four distinct braids, related by

B� ◦ S1(G) = B�(G) B� ◦ S2(G) = B�(G) B� ◦ S1 ◦ S2(G) = B�(G).

As noted in [KN], it follows from L ◦ S2(G) = L(G) that the braids B�(G) and B�(G)
represent the same element of T even though they usually differ in B, and the same is
true of the pair B�(G) and B�(G). In addition, if we define operations B 7→ m(B) and
B 7→ −B on braids, where m(B) replaces every letter in B by its inverse and −B is the
braid word B read backwards, then B� ◦S3(G) = m(B�(G)) and B� ◦S4(G) = −B�(G).

All symmetries of the NW-NE-SE-SW square are generated by S1, S2, S3. The follow-
ing generalization of Proposition 2 is an immediate consequence of the symmetries and
Proposition 2.

Corollary 6. We have bijections

G̃/(X:NE,X:SE)
B→−→ B G̃/(X:SW,X:SE)

B↑
−→ B

G̃/(X:NW,X:SW)
B←−→ B G̃/(X:NW,X:NE)

B↓
−→ B

G̃/(X:NE,X:SW)
L
−→ L G̃/(X:NW,X:SE)

L◦S3−→ L

G̃/(X:NE,X:SW,X:SE)
T
−→ T G̃/(X:NW,X:NE,X:SW)

T◦S1−→ T

G̃/(X:NW,X:SW,X:SE)
T◦S3−→ T G̃/(X:NW,X:NE,X:SE)

T◦S3◦S2−→ T

where L, T are induced from the maps G → L, G → T described in Section 2.4.

Note that three of the bijections in Proposition 6 involve S3 and thus topological mirroring.
We now discuss the conventions used in Section 2.4 in light of symmetries of grid

diagrams. Our conventions are chosen to make the maps in Formula (1) always preserve
topological knot type. This involves making several choices:

• vertical over horizontal line segments in grid diagrams (vs. horizontal over verti-
cal), and Legendrian fronts obtained by 45◦ counterclockwise rotation (vs. clock-
wise);
• transverse knots given by positive pushoffs of Legendrian knots (vs. negative);
• braids going from left to right (vs. bottom to top, right to left, top to bottom).

These choices largely agree with the standard conventions in the literature [Cro, Dyn,
EFM, Et, MOS, MOST]. One can obtain different conventions from ours by apply-
ing grid-diagram symmetries. For braids, this is discussed above, while for transverse
knots, positive pushoffs become negative pushoffs by applying the symmetry S1: negative
pushoffs are transversely isotopic under X:NW,X:NE,X:SW (de)stabilization.
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For the knot Floer homology invariant introduced in [OST] and subsequently used in
[KN, NOT], a slightly different set of conventions is useful. Here an element λ+ of combi-
natorial knot Floer homology HK− is associated to any grid diagram, and λ+ is shown to
be invariant under translation, commutation, and X:NW,X:SW,X:SE (de)stabilization.
(Another element λ− is also considered in [OST]; in our notation, λ− = λ+ ◦ S1.) If we
apply symmetry S2 ◦ S3 to a grid diagram G before calculating λ+, then λ+ becomes an
invariant of the transverse knot T (G).

In [KN, NOT, OST], the map G → L is thus given by G 7→ (L◦S2 ◦S3)(G) rather than
G 7→ L(G). More explicitly, given a grid diagram, one can use the horizontal-over-vertical
convention and 45◦ clockwise rotation to obtain a Legendrian front, as is done in these
papers. (In particular, to translate from our conventions to those of [KN], first apply
S2 ◦S3 to all grid diagrams.) Note that due to the presence of S3, λ+ becomes an element
of HK− of the topological mirror of the transverse knot.

3. Proof of Proposition 2

Let B(G) (= B→(G) from Section 2.5) denote the braid associated to a grid diagram
G as described in Section 2. Proposition 2 (or, more precisely, the braid statement of
Proposition 2) is a direct consequence of the following stronger result.

Proposition 7. Let G be a grid diagram.

(1) Changing G by torus translation or X:NE,X:SE (de)stabilization changes B(G)
by conjugation.

(2) Changing G by commutation changes B(G) by a combination of conjugation and
exchange moves.

(3) The map G 7→ B(G) induces a bijection between G/(translation, commutation,
X:NE, X:SE (de)stabilization) and B/(conjugation, exchange).

Proof. We first check claims (1) and (2). A quick inspection of braid diagrams reveals that
changing a grid diagram G by horizontal commutation or by X:NE or X:SE stabilization
does not change the braid isotopy type of B(G).

Changing G by horizontal torus translation changes B(G) by conjugation; some portion
of the beginning of B(G) is moved to the end, or vice versa. See Figure 8.

Next we claim that changing G by vertical torus translation also changes B(G) by
conjugation. Indeed, consider moving the topmost column of G to the bottom. By
conjugating by a horizontal torus translation if necessary, we may assume that in the
relevant row, the O lies to the left of the X. Then moving the column keeps the braid
unchanged; see Figure 8 again.

Finally, we claim that changing G by a vertical commutation changes B(G) by conju-
gation and/or exchange. Indeed, by conjugating with an appropriate torus translation if
necessary, we may assume the following: the two relevant rows are the bottom two rows
in the grid diagram; the X and O in the bottom row both lie to the right of the X and
O in the row above it; and the bottom right corner of the grid diagram is occupied by an
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Figure 8. The effect on B(G) of changing G by horizontal (left) and
vertical (right) torus translation. The bold X and O represent the col-
umn/row being moved.

B1 B2 B2B1

Figure 9. The effect on B(G) of changing G by horizontal commutation.
In three cases, B(G) is unchanged. In the other case (upper left), the
n-strand braid B(G) changes from B1σ

−1
n−1B2σn−1 to B1σn−1B2σ

−1
n−1, an

exchange move.

X or O. If X lies to the left of O in both rows, then the commutation changes B(G) by
exchange; otherwise, it does not change B(G). See Figure 9.

We now establish claim (3). From claims (1) and (2), the map in (3) is well-defined.
To prove bijectivity, we construct an inverse. Any braid B can be given a rectilinear braid
diagram by replacing each crossing by an appropriate rectilinear version; see Figure 10.

Perturb the resulting rectilinear diagram slightly to another rectilinear diagram for
which no vertical line segments have the same x-coordinate (i.e., are collinear), and no
horizontal line segments have the same y-coordinate except for those that are identified
when the ends of the braid are identified. The perturbed diagram is oriented (from left
to right), and each corner can be assigned an X or O in the usual way. The collection of
X’s and O’s forms a grid diagram G(B), and by construction we have B = B(G(B)).
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Figure 10. Turning a braid diagram into a rectilinear braid diagram.

B2B1

B1 B2

B1

B1

B2

B2

Figure 11. Accomplishing an exchange move through a sequence of
commutation and (de)stabilization moves. The first arrow is given by
commutations, one X:NE destabilization, and one X:SE destabilization;
the second is a horizontal commutation; the third is commutations, one
X:NE stabilization, and one X:SE destabilization. See also Figure 12 for
the moves corresponding to the first and third arrows.

...

...

...

...

...

...

Figure 12. Detail of local moves in the first step of Figure 11. A vertical
commutation move is followed by X:NE and X:SE destabilization.
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Note that G(B) depends on the choice of perturbation from rectilinear braid diagram to
grid diagram, but a different perturbation simply changes G(B) by commutation. In fact,
up to commutation and X:SW,X:SE (de)stabilization, G(B) is well-defined for an isotopy
class of braids B. This fact is readily established by examining how G(B) changes when
the braid word for B changes by one of the relations σiσ

−1
i = σ−1

i σi = 1, σiσj = σjσi for
|i− j| ≥ 2, and σiσi+1σi = σi+1σiσi+1. See [Cro] for details.

In addition, changing B by conjugation changes G(B) by horizontal torus translation,
while changing B by an exchange move changes G(B) by a combination of horizontal
commutations and X:NE,X:SE (de)stabilizations; see Figures 11 and 12. Thus B induces
a map from B/(conjugation, exchange) to G/(translation, commutation, X:NE, X:SE
(de)stabilization).

If we consider G and B as maps between G/(translation, commutation, X:NE, X:SE
(de)stabilization) and B/(conjugation, exchange), then as noted earlier, B ◦ G is the
identity, and one readily checks that G ◦B is the identity as well. Claim (3) follows, and
the proof of Proposition 7 is complete. �
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