Twisting 4-manifolds along $\mathbb{R P}^{2}$

Selman Akbulut

Abstract

We prove that the Dolgachev surface $E(1)_{2,3}$ (which is an exotic copy of the elliptic surface $E(1)=\mathbb{C P}^{2} \# 9 \overline{\mathbb{C P}}^{2}$) can be obtained from $E(1)$ by twisting along a simple "plug", in particular it can be obtained from $E(1)$ by twisting along $\mathbb{R} \mathbb{P}^{2}$.

1. Introduction

Given a smooth 4-manifold M^{4}, what is the minimal genus g of an imbedded surface $\Sigma_{g} \subset M^{4}$, such that twisting M along Σ produces an exotic copy of M ? Here twisting means cutting out a tubular neighborhood of Σ and regluing back by a nontrivial diffeomorphism. When $g>1$ we don't get anything new (because by ($[\mathrm{O}]$, page 133$)^{1}$ any diffeomorphism of a circle bundle over Σ_{g} can be isotoped to preserve the fiber, and hence it extends to the corresponding disk bundle). The case $g=1$ is the well known "logarithmic transform" operation, which can change the smooth structure in some cases; in fact the first example of a closed exotic manifold found by Donaldson [D] was the Dolgachev surface $E(1)_{2,3}$ which is obtained from $E(1)=\mathbb{C P}^{2} \# 9 \overline{\mathbb{P}}^{2}$ by two log transforms. The $g=0$ case is not well understood, twisting along S^{2} is usually called "Gluck construction" and we don't know if this operation changes the smooth structure of any orientable manifold, but there is an example of non-orientable manifold which the Gluck construction changes its smooth structure [A1]. The interesting case of $\Sigma=\mathbb{R}^{2}{ }^{2}$ was studied indirectly in [AY1] under the guise of plugs, which are more general objects. Recall that Figure 1 describes the tubular neighborhood W of $\mathbb{R P}^{2}$ in S^{4} as a disc bundle over $\mathbb{R} \mathbb{P}^{2}$ (e.g. [A2]):

Figure 1. W

[^0]If we attach a 2 -handle to W as in Figure 2 we obtain an interesting manifold, which is the $W_{1,2}$ "plug" of [AY1]. Recall [AY1], a plug (P, f) of M^{4} is a codimension zero Stein submanifold $P \subset M$ with an involution $f: \partial P \rightarrow \partial P$, such that f does not extend to a homemorphism inside; and the operation $N \cup_{i d} P \mapsto N \cup_{f} P$ of removing P from M and regluing it to its complement N by f, changes the smooth structure of M (this operation is called a "plug twisting"). For example the involution $f: \partial W_{1,2} \rightarrow \partial W_{1,2}$ is induced from 180° rotation of the Figure 2, e.g. it maps the (red and blue) loops to each other $\alpha \leftrightarrow \beta$.

Figure 2. $W_{1,2}$

Notice that the twisting along $W_{1,2}$ is induced by twisting along $\mathbb{R P}^{2}$ inside (i.e. cutting out W and regluing by the involution induced by the rotation). In [AY1] some examples of changing smooth structures via plug twisting were given, including twisting the $W_{1,2}$ plug. Here we prove that by twisting along a $W_{1,2}$ plug (in particular twisting along $\mathbb{R}^{2}{ }^{2}$) we can completely decompose the Dolgachev surface $E(1)_{2,3}$. The following theorem should be considered as a structure theorem for the Dolgachev surface complementing Theorem 1 of [A3], where it was shown that a "cork twisting" also completely decomposes $E(1)_{2,3}$.

Theorem 1.1. $E(1)_{2,3}$ is obtained by plug twisting $E(1)$ along $W_{1,2}$, i.e. we have a decomposition $E(1)=N \cup_{i d} W_{1,2}$, so that $E(1)_{2,3}=N \cup_{f} W_{1,2}$.

Proof. By cancelling the 1- and 2-handle pair of Figure 2 we obtain Figure 3, which is an alternative picture of $W_{1,2}$. By inspecting the diffeomorphism Figure $2 \mapsto$ Figure 3 we see that the involution f twists the tubular neighborhood of α once, while mapping to β.

By attaching a chain of eight 2-handles to $-W_{1,2}$ (the mirror image of Figure 3) and a +1 framed 2-handle to α, we obtain Figure 4, which is a handlebody of $E(1)$ given in [A3]. In Figure 4 performing $W_{1,2}$ plug twist to $\mathrm{E}(1)$ has the effect of replacing the +1 -framed 2 -handle attached to α, with a zero framed 2 -handle attached to β. Here the complement of $W_{1,2}$ in $E(1)$ is the submanifold N consisting of the zero framed 2-handle (the cusp)

Twisting 4-manifolds along $\mathbb{R}^{2}{ }^{2}$

Figure 3. $W_{1,2}$
and the chain of eight 2-handles, and the plug twisting is the operation: $N \cup \alpha^{+1} \mapsto N \cup \beta^{0}$ (as seen from N).

Figure 4. $\mathrm{E}(1)$

Therefore the plug twisting of $E(1)$ along $W_{1,2}$ gives Figure 5. After sliding over β, the chain of eight 2 -handles become free from the rest of the figure, giving a splitting: $Q \# 8 \overline{\mathbb{C P}}^{2}$, where Q is the cusp with the trivially linking zero framed cicle, hence we get $Q=S^{2} \times S^{2}$. So the Figure 5 is just $S^{2} \times S^{2} \# 8 \overline{\mathbb{C P}}^{2}=E(1)$.

Next notice that if we first perform a "knot surgery" operation $E(1) \mapsto E(1)_{K}$ by a knot K, along the cusp inside of Figure 4, and then do the plug twist along $W_{1,2}$ (notice

Figure 5
the cusp is disjoint from the plug since it lies in N) we get the similar splitting except this time resulting: $Q_{K} \# 8 \overline{\mathbf{C P}}^{2}$, where Q_{K} is the knot surgered Q. Notice the manifold $Q=S^{2} \times S^{2}$ is obtained by doubling the cusp, and Q_{K} is obtained by doing knot surgery to one of these cusps. In Theorem 4.1 of [A4] it was shown that when K is the trefoil knot then $Q_{K}=S^{2} \times S^{2}$. Also recall that when K is the trefoil knot we have the identification with the Dolgachev surface $E(1)_{K}=E(1)_{2,3}$ (e.g. [A3]).

Remark 1.1. If we could identify Q_{K} with $S^{2} \times S^{2}$ for infinitely many knots K with distinct Alexander polynomials, we would have infinitely many transforms $E(1) \mapsto E(1)_{K}$ obtained by plug twistings along $W_{1,2}$. This would give infinitely many non-isotopic imbeddings $W_{1,2} \subset E(1)$, similar to the examples in [AY2]. In the absence of such identification we can only conclude that $W_{1,2}$ is a plug of infinitely many distinct exotic copies $E(1)_{K}$ of $E(1)$.
Remark 1.2. Recall that ∂W is the quaternionic 3 -manifold, which is the quotient of S^{3} by the free action of the quaternionic group of order eight (e.g. [A2]):

$$
G=<i, j, k \mid i^{2}=j^{2}=k^{2}=-1, i j=k, j k=i, k i=j>.
$$

This manifold is a positively curved space-form and an L-space (Heegaard Floer homology groups are trivial). Hence the change of smooth structure of $E(1)$ by twisting W is due to the change of S Sin ${ }^{c}$ structures, rather than permuting the Floer homology by the involution as in [A3], [AD].

References

[A1] S. Akbulut, Constructing a fake 4-manifold by Gluck construction to a standard 4-manifold, Topology, vol. 27, no. 2 (1988), 239-243.
[A2] S. Akbulut, Cappell-Shaneson's 4-dimensional s-cobordism, Geometry-Topology, vol.6, (2002), 425-494
[A3] S. Akbulut, The Dolgachev surface, arXiv:0805.1524v4 (2008).
[A4] S. Akbulut, A fake cusp and a fishtail, Turkish Jour. of Math 1 (1999), 19-31.
[A5] S. Akbulut, Variations on Fintushel-Stern knot surgery, Turkish Jour. of Math (2001), 81-92. arXiv:math.GT/0201156.
[AD] S. Akbulut, and S. Durusoy. An involution acting non-trivially on Heegaard-Floer homology, Fields Institute Communications, vol 47, (2005),1-9
[AY1] S. Akbulut and K.Yasui, Corks, Plugs and exotic structures, Jour of GGT 2 (2008), 40-82. arXiv:0806.3010
[AY2] S. Akbulut and K.Yasui, Knotting Corks, Journal of Topology (2009) 2(4), 823-839
[D] S.K. Donaldson, Irrationality and the h-cobordism conjecture, Journal of Differential Geometry 26 (1), (1987) 141-168.
[FS] R. Fintushel and R. Stern Six lectures on 4-manifolds, (2007), arXiv:math.GT/0610700v2.
[GS] R. Gompf and A. Stipsicz 4-manifolds and Kirby calculus, (1999), AMS, GSM vol 20.
[O] P. Orlik Seifert Manifolds, LNM no. 291 Springer-Verlag (1972)
Department of Mathematics, Michigan State University, MI, 48824
E-mail address: akbulut@math.msu.edu

[^0]: The author is partially supported by NSF grant DMS 0905917.
 ${ }^{1}$ We thank Cameron Gordon for pointing out this reference.

