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Abstract. We give a simplified proof of the generalized Kirszbraun theorem for

Alexandrov spaces, which is due to Lang and Schroeder. We also discuss related
questions, both solved and open.

1. Introduction

Kirszbraun’s theorem states that any short map (i.e., 1-Lipschitz map) from a subset
of Euclidean space to another in Euclidean space can be extended as a short map to the
whole space.

This theorem was proved first by Kirszbraun in [6]. Later it was reproved by Valentine
in [14] and [15], where he also generalized it to pairs of Hilbert spaces of arbitrary dimen-
sion as well as pairs of spheres of the same dimension and pairs of hyperbolic spaces with
the same curvature. J. Isbel in [5] studied target spaces that satisfy the above condition
for any source space.

Valentine was also interested in pairs of metric spaces, say U and L, which satisfy the
above property, namely, given a subset Q ⊂ U , any short map Q → L can be extended to a
short map U → L. It turns out that this property has a lot in common with the definition
of Alexandrov spaces (see theorems 5.1, 3.1 and 3.2). Surprisingly, this relationship was
first discovered only in the 1990’s; it was first published by Lang and Schroeder in [9].
(The third author of this paper came to similar conclusions a couple of years earlier, and
told it to the first author, but did not publish the result.)

We slightly improve the results of Lang and Schroeder. Our proof is based on the
barycentric maps used by Kleiner in [7]. These maps originate from earlier work on
Riemannian center of mass, as introduced by Grove and Karcher [4]. As far as we know
Kleiner was the first to focus on the importance of the barycentric maps considered here.

The material of this paper will be included in the book on Alexandrov geometry that
we currently are writing. We hope our paper will spur further progress on the questions
raised here, thereby improving the book. In any case, since the book will not appear for
several years, we would like to let people know about the present state of the art around
Kirszbraun’s Theorem.

Structure of the paper. We introduce notations in Section 2. In section 3 we
give alternative definitions of Alexandrov spaces based on the Kirszbraun property for
4-point sets. The generalized Kirszbraun theorem is proved in Section 5. In the sections
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4 and 6 we describe some comparison properties of finite subsets of Alexandrov spaces.
In Section 7 we discuss related open problems. Appendices A and B describe Kleiner’s
barycentric map and an analog of Helly’s theorem for Alexandrov spaces.

Historical remark. Not much is known about the author of this remarkable theorem.
The theorem appears in Kirszbraun’s master’s thesis which he defended in Warsaw Uni-
versity in 1930. His name is Mojżesz and his second name is likely to be Dawid but
is uncertain. He was born either in 1903 or 1904 and died in a ghetto in 1942. After
university, he worked as an actuary in an insurance company; [6] seems to be his only
publication in mathematics.

Acknowledgment. We want to thank S. Ivanov, N. Lebedeva and A. Lytchak for useful
comments and pointing out misprints. Also we want to thank L. Grabowski for bringing
to our attention the entry about Kirszbraun in the Polish Biographical Dictionary.

2. Preliminaries

In this section we mainly introduce our notations.

Metric spaces. Let X be a metric space. The distance between two points x, y ∈ X will
be denoted as |xy| or |xy|X .

Given R ∈ [0,∞] and x ∈ X , the sets

B(x,R) = {y ∈ X | |xy| < R},
B[x,R] = {y ∈ X | |xy| 6 R}.

are called respectively the open and closed ball of radius R with center at x.
A metric space X is called intrinsic if for any ε > 0 and any two points x, y ∈ X

with |xy| < ∞ there is an ε-midpoint for x and y; i.e., there is a point z ∈ X such that
|xz|, |zy| < 1

2 ·|xy| + ε.
Model space. M

m[κ] denotes m-dimensional model space with curvature κ; i.e., the
simply connected m-dimensional Riemannian manifold with constant sectional curvature
κ.

Set ̟κ = diamM
2[κ], so ̟κ = ∞ if κ 6 0 and ̟κ = π/

√
κ if κ > 0. (The letter ̟ is

a glyph variant of lower case π, but is usually pronounced as pomega.)

Ghost of Euclid. Let X be a metric space and I be a real interval. A globally isometric
map γ : I → X will be called a unitspeed geodesic. A unitspeed geodesic between p and q
will be denoted by geod[pq]. We consider geod[pq] with parametrization starting at p; i.e.,

geod[pq](0) = p and geod[pq](|pq|) = q. The image of geod[pq] will be denoted by [pq] and
called a geodesic.

Also we will use the following short-cut notation:

]pq[ = [pq]\{p, q}, ]pq] = [pq]\{p}, [pq[ = [pq]\{q}.
A metric space X is called geodesic if for any two points x, y ∈ X there is a geodesic

[xy] in X .
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Given a geodesic [pq], we denote by dir[pq] its direction at p. We may think of dir[pq]
as belonging to the space of directions Σp at p, which in turn can be identified with the
unit sphere in the tangent space Tp at p. Further we set log[pq] = |pq| ·dir[pq]; it is a
tangent vector at p, that is, an element of Tp.

For a triple of points p, q, r ∈ X , a choice of triple of geodesics ([qr], [rp], [pq]) will
be called a triangle and we will use the notation [pqr] = ([qr], [rp], [pq]). If p is distinct
from x and y, a pair of geodesics ([px], [py]) will be called a hinge, and denoted by
[p x

y ] = ([px], [py]).

Functions. A locally Lipschitz function f on a metric space X is called λ-convex
(λ-concave) if for any geodesic geod[pq] in X the real-to-real function

t 7→ f ◦ geod[pq](t)− λ

2 ·t
2

is convex (respectively concave). In this case we write f ′′ > λ (respectively f ′′ 6 λ).
A function f is called strongly convex (strongly concave) if f ′′ > δ (respectively

f ′′ 6 −δ) for some δ > 0.

Model angles and triangles. Let X be a metric space, p, q, r ∈ X and κ ∈ R. Let us
define a model triangle [p̃q̃r̃] (briefly, [p̃q̃r̃] = △̃κ(pqr)) to be a triangle in the model plane
M

2[κ] such that

|p̃q̃| = |pq|, |q̃r̃| = |qr|, |r̃p̃| = |rp|.
If κ 6 0, the model triangle is said to be defined, since such a triangle always exists and
is unique up to an isometry of M2[κ]. If κ > 0, the model triangle is said to be defined if
in addition

|pq| + |qr| + |rp| < 2·̟κ.

In this case the triangle also exists and is unique up to an isometry of M2[κ].

If for p, q, r ∈ X , the model triangle [p̃q̃r̃] = △̃κ(pqr) is defined and |pq|, |pr| > 0, then
the angle measure of [p̃q̃r̃] at p̃ will be called the model angle of the triple p, q, r, and will
be denoted by ∡̃

κ(p q
r).

Curvature bounded below. We will denote by CBB⌊κ⌋, complete intrinsic spaces L
with curvature > κ in the sense of Alexandrov. Specifically, L ∈ CBB⌊κ⌋ if for any
quadruple of points p, x1, x2, x3 ∈ U , we have

∡̃
κ(p x1

x2) + ∡̃
κ(p x2

x3) + ∡̃
κ(p x3

x1) 6 2·π. ➊

or at least one of the model angles ∡̃κ(p xi

xj) is not defined.
Condition ➊ will be called (1+3)-point comparison.
According to Plaut’s theorem [11, Th. 27], any space L ∈ CBB is Gδ-geodesic; that

is, for any point p ∈ L there is a dense Gδ-set Wp ⊂ L such that for any q ∈ Wp there is
a geodesic [pq].

We will use two more equivalent definitions of CBB spaces (see [1]). Namely, a complete
Gδ-geodesic space is in CBB if and only if it satisfies either of following conditions:
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(1) (point-on-side comparison) For any geodesic [xy] and z ∈ ]xy[, we have

∡̃
κ(x p

y) 6 ∡̃
κ(x p

z); ➋

or, equivalently,

|p̃z̃| 6 |pz|,
where [p̃x̃ỹ] = △̃κ(pxy), z̃ ∈ ]x̃ỹ[, |x̃z̃| = |xz|.

(2) (hinge comparison) For any hinge [x p
y], the angle ∡[x p

y] is defined and

∡[x p
y] > ∡̃

κ(x p
y).

Moreover, if z ∈ ]xy[, z 6= p then for any two hinges [z p
y] and [z p

x] with common
side [zp]

∡[z p
y] + ∡[z p

x] 6 π.

We also use the following standard result in Alexandrov geometry, which follows from
the discussion in the survey of Plaut [11, 8.2].

2.1. Theorem. Let L ∈ CBB. Given an array of points (x1, x2 . . . , xn) in L, there is
a dense Gδ-set W ⊂ L such that for any p ∈ W , all the directions dir[pxi] lie in an
isometric copy of a unit sphere in Σp. (Or, equivaletntly, all the vectors log[pxi] lie in a
subcone of the tangent space Tp which is isometric to Euclidean space.)

Curvature bounded above. We will denote by CAT⌈κ⌉ the class of metric spaces
U in which any two points at distance < ̟κ are joined by a geodesic, and which have
curvature 6 κ in the following global sense of Alexandrov: namely, for any quadruple of
points p1, p2, x1, x2 ∈ U , we have

∡̃
κ(p1 x1

x2) 6 ∡̃
κ(p1 p2

x1) + ∡̃
κ(p1 p2

x2), or ∡̃κ(p2 x1

x2) 6 ∡̃
κ(p2 p1

x1) + ∡̃
κ(p2 p1

x2), ➌

or one of the six model angles above is undefined.
The condition ➌ will be called (2+2)-point comparison (or (2+2)-point κ-comparison

if a confusion may arise).
We denote the complete CAT⌈κ⌉ spaces by CAT⌈κ⌉.
The following lemma is a direct consequence of the definition:

2.2. Lemma. Any complete intrinsic space U in which every quadruple p1, p2, x1, x2

satisfies the (2+2)-point κ-comparison is a CAT⌈κ⌉ space (that is, any two points at
distance < ̟κ are joined by a geodesic).

In particular, the completion of a CAT⌈κ⌉ space again lies in CAT⌈κ⌉.
We have the following basic facts (see [1]):

2.3. Lemma. In a CAT⌈κ⌉ space, geodesics of length < ̟κ are uniquely determined by,
and continuously dependent on, their endpoint pairs.

2.4. Lemma. In a CAT⌈κ⌉ space, any open ball B(x,R) of radius R 6 ̟κ/2 is convex,
that is, B(x,R) contains every geodesic whose endpoints it contains.
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We also use an equivalent definition of CAT⌈κ⌉ spaces (see [1]). Namely, a metric space
U in which any two points at distance < ̟κ are joined by a geodesic is a CAT⌈κ⌉ space
if and only if it satisfies the following condition:

(1) (point-on-side comparison) for any geodesic [xy] and z ∈ ]xy[, we have

∡̃
κ(x p

y) > ∡̃
κ(x p

z),

or equivalently,

|p̃z̃| > |pz|, ➍

where [p̃x̃ỹ] = △̃κ(pxy), z̃ ∈ ]x̃ỹ[, |x̃z̃| = |xz|.
We also use Reshetnyak’s majorization theorem [12]. Suppose α̃ is a simple closed

curve of finite length in M
2[κ], and D ⊂ M

2[κ] is a closed region bounded by α̃. If X
is a metric space, a length-nonincreasing map F : D → X is called majorizing if it is
length-preserving on α̃. In this case, we say that D majorizes the curve α = F ◦ α̃ under
the map F .

2.5. Reshetnyak’s majorization theorem. Any closed curve α of length < 2·̟κ in
U ∈ CAT⌈κ⌉ is majorized by a convex region in M

2[κ].

Ultralimit of metric spaces. Given a metric space X , its ultrapower (i.e., ultralimit
of constant sequence Xn = X ) will be denoted as X Ñ; here Ñ denotes a fixed nonprinciple
ultrafilter. For definitions and properties of ultrapowers, we refer to a paper of Kleiner
and Leeb [8, 2.4].

We use the following facts about ultrapowers which easily follow from the definitions
(see [1] for details):

⋄ X ∈ CAT⌈κ⌉ ⇐⇒ X Ñ ∈ CAT⌈κ⌉.
⋄ X ∈ CBB⌊κ⌋ ⇐⇒ X Ñ ∈ CBB⌊κ⌋.
⋄ X is intrinsic if and only if X Ñ is geodesic.

Note that if X is proper (namely, bounded closed sets are compact), then X and X Ñ

coincide. Thus a reader interested only in proper spaces may ignore everything related
to ultrapower in this article.

3. Short map extension definitions.

Theorems 3.1 and 3.2 give characterizations of CBB⌊κ⌋ and CAT⌈κ⌉. Very similar
theorems were proved by Lang and Shroeder in [9].

3.1. Theorem. Let L be a complete intrinsic space. Then L ∈ CBB⌊κ⌋ if and only if
for any 3-point set V3 and any 4-point set V4 ⊃ V3 in L, any short map f : V3 → M

2[κ]
can be extended to a short map F : V4 → M

2[κ] (so f = F |V3
).

3.2. Theorem. Let U be a metric space in which any pair of points at distance < ̟κ

are joined by a unique geodesic. Then U ∈ CAT⌈κ⌉ if and only if for any 3-point set V3

and 4-point set V4 ⊃ V3 in M
2[κ], where the perimeter of V3 is < 2·̟κ, any short map

f : V3 → U can be extended to a short map F : V4 → U .
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The proof of the “only if” part of Theorem 3.1 can be obtained as a corollary of
Kirszbraun’s theorem (5.1). But we present another proof, based on more elementary
ideas. The “only if” part of Theorem 3.2 does not follow directly from Kirszbraun’s
theorem, since the desired extension is in U , not just the completion of U .

In the proof of Theorem 3.1, we use the following lemma in the geometry of model
planes. Here we say that two triangles with a common vertex do not overlap if their
convex hulls intersect only at the common vertex.

3.3. Overlap lemma. Let [x̃1x̃2x̃3] be a triangle in M
2[κ]. Let p̃1, p̃2, p̃3 be points such

that, for any permutation {i, j, k} of {1, 2, 3}, we have

(i) |p̃ix̃k| = |p̃j x̃k|,
(ii) p̃i and x̃i lie in the same closed halfspace determined by [x̃j x̃k],

(iii) ∡[x̃i x̃j

p̃k ] + ∡[x̃i p̃
j

x̃k ] < π.

Set ∡p̃i = ∡[p̃i x̃
k

x̃j ]. It follows that:

a) If ∡p̃1 + ∡p̃2 + ∡p̃3 6 2·π and triangles [p̃3x̃1x̃2], [p̃2x̃3x̃1] do not overlap, then

∡p̃1 > ∡p̃2 + ∡p̃3.

b) No pair of triangles [p̃ix̃j x̃k] overlap if and only if

∡p̃1 + ∡p̃2 + ∡p̃3 > 2·π.

p̃1p̃2

p̃3

x̃1

x̃2

x̃3

Remark. If κ 6 0, the “only if” part of (b) can be proved without using
condition (i). This follows immediately from the formula that relates the
sum of angles for the hexagon [p̃1x̃2p̃3x̃1p̃2x̃3] and its area:

∡p̃1 − ∡x̃2 + ∡p̃3 − ∡x̃1 + ∡p̃2 − ∡x̃3 = 2·π− κ·area.

In the case κ > 0, condition (i) is essential. An example for κ > 0 can
be constructed by perturbing the degenerate spherical configuration on the picture.

Proof. Rotate the triangle [p̃3x̃1x̃2] around x̃1 to make [x̃1p̃3] coincide with [x̃1p̃2]. Let ẋ2

denote the image of x̃2 after rotation. By (ii) and (iii), the triangles [p̃3x̃1x̃2] and [p̃2x̃3x̃1]

do not overlap if and only if ∡[x̃1 x̃3

ẋ2 ] < ∡[x̃1 x̃3

x̃2 ], and hence if and only if |ẋ2x̃3| < |x̃2x̃3|.
This inequality holds if and only if

∡p̃1 > ∡[p̃2 x̃3

ẋ2 ]

= min{∡p̃3 + ∡p̃2, 2·π− (∡p̃3 + ∡p̃2)},
➊

since in the inequality, the corresponding hinges have the same pairs of sidelengths. (The
two pictures show that both possibilities for the minimum can occur.)

93



ALEXANDER, KAPOVITCH and PETRUNIN

p̃3

p̃1p̃2

x̃1 x̃2

ẋ2

x̃3

p̃1

p̃2

p̃3

x̃1 x̃2

ẋ2

x̃3

If ∡p̃1 + ∡p̃2 + ∡p̃3 6 2·π, then ➊ implies ∡p̃1 > ∡p̃2 + ∡p̃3. That proves (a).

“Only if” part of (b). Suppose no two triangles overlap and ∡p̃2 + ∡p̃2 + ∡p̃3 6 2·π. By
(a), for {i, j, k} = {1, 2, 3} we have

∡p̃i > ∡p̃j + ∡p̃k.

Adding these three inequalities gives a contradiction:

∡p̃1 + ∡p̃2 + ∡p̃3 > 2·(∡p̃1 + ∡p̃2 + ∡p̃3).

“If” part of (b). Suppose triangles [p̃3x̃1x̃2] and [p̃2x̃3x̃1] overlap and

∡p̃1 + ∡p̃2 + ∡p̃3 > 2·π. ➋

By the former, ➊ fails. By ➋, ∡p̃2 + ∡p̃3 > π. Therefore

∡p̃1 6 2·π− (∡p̃2 + ∡p̃3),

which contradicts ➋. �

Proof of 3.1; “if” part. Assume L is geodesic. Let x1, x2, x3 ∈ L be such that the model
triangle [x̃1x̃2x̃3] = △̃κ(x1x2x3) is defined. Choose p ∈ ]x1x2[ . Let V3 = {x1, x2, x3}
and V4 = {x1, x2, x3, p}, and set f(xi) = x̃i. Then a short extension of f to V4 gives
point-on-side comparison (see page 91).

In the case when L is not geodesic, pass to its ultrapower LÑ. Note that if L satisfies
the conditions of Theorem 3.1 then so does LÑ. Also, recall that LÑ is geodesic. Thus,
from above, LÑ ∈ CBB⌊κ⌋. Hence L ∈ CBB⌊κ⌋.
“Only if” part. Assume the contrary; i.e., x1, x2, x3, p ∈ L, and x̃1, x̃2, x̃3 ∈ M

2[κ] are
such that |x̃ix̃j | 6 |xixj | for all i, j and there is no point p̃ ∈ M

2[κ] such that |p̃x̃i| 6 |pxi|
for all i.
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We claim that in this case all comparison triangles △̃κ(pxixj) are defined. That is

always true if κ 6 0. If κ > 0, and say △̃κ(px1x2) is undefined, then

|px1| + |px2| > 2·̟κ − |x1x2| >
> 2·̟κ − |x̃1x̃2| >
> |x̃1x̃3| + |x̃2x̃3|.

Thus one can take p̃ on [x̃1x̃3] or [x̃2x̃3].
For each i ∈ {1, 2, 3}, consider a point p̃i ∈ M

2[κ] such that |p̃ix̃i| is minimal among
points satisfying |p̃ix̃j | 6 |pxj | for all j 6= i. Clearly, every p̃i is inside the triangle [x̃1x̃2x̃3]
(that is, in Conv(x̃1, x̃2, x̃3)), and |p̃ix̃i| > |pxi| for each i. It follows that

(i) |p̃ix̃j | = |pxj | for i 6= j;
(ii) no pair of triangles from [p̃1x̃2x̃3], [p̃2x̃3x̃1], [p̃3x̃1x̃2] overlap in [x̃1x̃2x̃3].
As follows from Lemma 3.3b, in this case

∡[p̃1 x̃2

x̃3 ] + ∡[p̃2 x̃3

x̃1 ] + ∡[p̃3 x̃1

x̃2 ] > 2·π.
Thus we arrive at a contradiction, since |x̃ix̃j | 6 |xixj | implies that

∡[p̃k x̃i

x̃j ] 6 ∡̃
κ(p xi

xj)

if (i, j, k) is a permutation of (1, 2, 3). �

In the proof of Theorem 3.2, we use the following lemma in the geometry of model
planes:

3.4. Lemma. Let x1, x2, x3, y1, y2, y3 ∈ M[κ] be points such that |xixj | > |yiyj | for all
i, j. Then there is a short map Φ: M[κ] → M[κ] such that Φ(xi) = yi for all i; moreover,
one can choose Φ so that

ImΦ ⊂ Conv(y1, y2, y3).

We only give an idea of the proof of this lemma; alternatively, one can get the result
as a corollary of Kirszbraun’s theorem (5.1)

Idea of the proof. The map Φ can be constructed as a composition of the following folding
maps: Given a halfspace H in M[κ], consider the map M[κ] → H, which is the identity on
H and reflects all points outside of H into H. This map is a path isometry, in particular,
it is short.

One can get the last part of the lemma by composing the above map with foldings
along the sides of the triangle [y1y2y3] and passing to a partial limit. �

Proof of 3.2; “if” part. The point-on-side comparison (1) follows by taking V3 = {x̃, ỹ, p̃}
and V4 = {x̃, ỹ, p̃, z̃} where z ∈ ]xy[. It is only necessary to observe that F (z̃) = z by
uniqueness of [xy].

“Only if” part. Let V3 = {x̃1, x̃2, x̃3} and V4 = {x̃1, x̃2, x̃3, p̃}.
Set yi = f(x̃i) for all i; we need to find a point q ∈ U such that |yiq| 6 |x̃ip̃| for all i.
Consider the model triangle [ỹ1ỹ2ỹ3] = △̃κ(y1y2y3). Set D = Conv(ỹ1, ỹ2, ỹ3).
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Note that |ỹiỹj | = |yiyj | 6 |x̃ix̃j | for all i, j. Applying Lemma 3.4, we get a short map
Φ: M[κ] → D such that Φ: x̃i 7→ ỹi.

Further, from Reshetnyak majorization (2.5), there is a short map F : D → U such
that ỹi 7→ yi for all i.

Thus one can take q = F ◦ Φ(p̃). �

4. (1+n)-point comparison

The following theorem gives a more sensitive analog of (1+3)-point comparison. In a
bit more analytic form it was discovered by Sturm in [13].

4.1. (1+n)-point comparison. Let L ∈ CBB⌊κ⌋. Then for any array of points
p, x1, . . . , xn ∈ L there is a model array p̃, x̃1, . . . , x̃n ∈ M

n[κ] such that
a) |p̃x̃i| = |pxi| for all i.
b) |x̃ix̃j | > |xixj | for all i, j.

Proof. It is enough to show that given ε > 0 there is a configuration p̃, x̃1, . . . , x̃n in
M

n[κ] such that |x̃ix̃j | > |xixj | and
∣

∣|p̃x̃i| − |pxi|
∣

∣ 6 ε. Then one can pass to a limit
configuration for ε→ 0+.

According to 2.1, there is a point p′ such that |p′p| 6 ε and Tp′ contains a subcone E
isometric to a Euclidean space which contains all vectors log[p′xi]. Passing to a subspace
if necessary, we can assume that dimE 6 n.

Mark a point p̃ ∈ M
n[κ] and choose an isometric embedding ı : E → Tp̃M

n[κ]. Set

x̃i = expp̃ ◦ı ◦ log[p′xi].

Thus |p̃x̃i| = |p′xi| and therefore
∣

∣|p̃x̃i| − |pxi|
∣

∣ 6 |pp′| 6 ε.
From the hinge comparison, we have

∡̃
κ(p̃ x̃i

x̃j) = ∡[p̃ x̃i

x̃j ] = ∡[p′ x
i

xj ] > ∡̃
κ(p′ x

i

xj),

thus
|x̃ix̃j | > |xixj |. �

5. Kirszbraun’s theorem

A slightly weaker version of the following theorem was proved by Lang and Schroeder
in [9]. The Conjecture 7.4 (if true) gives an equivalent condition for the existence of a
short extension; roughly it states that example 5.2 is the only obstacle.

5.1. Kirszbraun’s theorem. Let L ∈ CBB⌊κ⌋, U ∈ CAT⌈κ⌉, Q ⊂ L be an arbitrary
subset and f : Q → U be a short map. Assume that there is z ∈ U such that f(Q) is in

B[z, ̟κ

2 ]. Then f : Q → U can be extended to a short map F : L → U (that is, there is a
short map F : L → U such that F |Q = f .)

The condition f(Q) ⊂ B[z, ̟κ

2 ] trivially holds for any κ 6 0 since in this case ̟κ = ∞.
The following example shows that this condition is needed for κ > 0.
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5.2. Example. Let Sm+ be a closed m-dimensional unit hemisphere. Denote its boundary,

which is isometric to S
m−1, by ∂Sm+ . Clearly, Sm+ ∈ CBB⌊1⌋ and ∂Sm+ ∈ CAT⌈1⌉ but the

identity map ∂Sm+ → ∂Sm+ cannot be extended to a short map S
m
+ → ∂Sm+ (there is no

place for the pole).
There is also a direct generalization of this example to a hemisphere in a Hilbert space

of arbitrary cardinal dimension.

First we prove this theorem in the case κ 6 0 (5.4). In the proof of the more complicated
case κ > 0, we use the case κ = 0. The following lemma is the main ingredient in the
proof.

5.3. Finite+one lemma. Let κ 6 0, L ∈ CBB⌊κ⌋, and U ∈ CAT⌈κ⌉. Moreover, let
x1, x2, . . . , xn ∈ L and y1, y2, . . . , yn ∈ U be such that |xixj | > |yiyj | for all i, j.

Then for any p ∈ L, there is a q ∈ U such that |yiq| 6 |xip| for each i.

Proof. It is sufficient to prove the lemma only for κ = 0 and −1. The proofs of these two
cases are identical, only the formulas differ. In the proof, we assume κ = 0 and provide
the formulas for κ = −1 in the footnotes.

From (1+n)-point comparison (4.1), there is a model configuration p̃, x̃1, x̃2, . . . , x̃n in
M

n[κ] such that |p̃x̃i| = |pxi| and |x̃ix̃j | > |xixj | for all i, j.
For each i, consider functions f i : U → R and f̃ i : Mn[κ] → R defined as follows1:

f i(y) = 1
2 ·|y

iy|2, f̃ i(x̃) = 1
2 ·|x̃

ix̃|2. (A)0

Set f = (f1, f2, . . . , fn) : U → R
n and f̃ = (f̃1, f̃2, . . . , f̃n) : Mn[κ] → R

n.
Recall that SupSet (superset in R

n) is defined in A.1. Note that it is sufficient to prove

that f̃(p̃) ∈ SupSetf(U).
Clearly, (f i)′′ > 1. Thus, by the theorem on barycentric simplex (A.2b), the set

SupSetf(U) ⊂ R
n is convex.

Arguing by contradiction, let us assume that f̃(p̃) 6∈ SupSetf(U).
Then there exists a supporting hyperplane α1x1 + . . .αnxn = c to SupSetf(U), sepa-

rating it from f̃(p̃). Just as in the proof of Theorem A.2 we have that all αi > 0. So by
rescaling we can assume that (α1,α2, . . . ,αn) ∈ ∆n−1 and

∑

i

αi ·f̃ i(p̃) < inf

{

∑

i

αi ·f i(q)

∣

∣

∣

∣

∣

q ∈ U
}

.

The latter contradicts the following claim.

1In case κ = −1,

f i(y) = cosh |yiy|, f̃ i(x̃) = cosh |x̃ix̃|. (A)−
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I. Claim. Given α = (α1,α2, . . . ,αn) ∈ ∆n−1, set

h =
∑

i

αi ·f i, h : U → R, z = argminh ∈ U ,

h̃ =
∑

i

αi ·f̃ i, h̃ : Mn[κ] → R, z̃ = argmin h̃ ∈ M
n[κ].

Then h(z) 6 h̃(z̃).

Proof of the claim. Note that dzh > 0. Thus, for each i, we have2

0 6 (dzh)(dir[zy
i]) =

= −
∑

j

αj ·|zyj | · cos∡[z yi

yj ] 6

6 −
∑

j

αj ·|zyj | · cos ∡̃0(z yi

yj) =

= − 1
2·|zyi| ·

∑

j

αj ·
[

|zyi|2 + |zyj |2 − |yiyj |2
]

.

(B)0

In particular3,

∑

i

αi ·





∑

j

αj ·
[

|zyi|2 + |zyj |2 − |yiyj |2
]



 6 0, (C)0

or4

2·h(z) 6
∑

i,j

αi ·αj ·|yiyj |2. (D)0

2In case κ = −1, the same calculations give

0 6 . . . 6 − 1

sinh |zyi|
·
∑

j

αj ·
[

cosh |zyi| · cosh |zyj | − cosh |yiyj |
]

. (B)−

3In case κ = −1, the same calculations give

∑

i

αi ·





∑

j

αj ·
[

cosh |zyi| · cosh |zyj | − cosh |yiyj |
]



 6 0. (C)−

4In case κ = −1,

(h(z))2 6
∑

i,j

αi ·αj · cosh |yiyj |. (D)−
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Note that if U iso
== M

n[κ], then all inequalities in (B,C,D) are sharp. Thus the same
argument as above, repeated for x̃1, x̃2, . . . , x̃n ∈ M

n[κ] gives5

2·h̃(z̃) =
∑

i,j

αi ·αj ·|x̃ix̃j |2. (E)0

Note that

|x̃ix̃j | > |xixj | > |yiyj |
for all i, j. Thus, (D) and (E) imply the claim. �

5.4. Kirszbraun’s theorem for nonpositive bound. Let κ 6 0, L ∈ CBB⌊κ⌋, U is
in CAT⌈κ⌉, Q is an arbitrary subset of L and f : Q → U be a short map. Then there
is a short extension F : L → U of f ; that is, there is a short map F : L → U such that
F |Q = f .

Remark. If U is proper, then in the following proof Helly’s theorem (B.1) is not needed.
Everything follows directly from compactness of closed balls in U .
Proof of 5.4. By Zorn’s lemma, we can assume that Q ⊂ L is a maximal set; i.e., f : Q →
→ U does not admit a short extension to any larger set Q′ ⊃ Q.

Let us argue by contradiction. Assume that Q 6= L; choose p ∈ L\Q. Then
⋂

x∈Q

B[f(x), |px|] = ∅.

Since κ 6 0, the balls are convex; thus, by Helly’s theorem (B.1), one can choose a
point array x1, x2, . . . , xn ∈ Q such that

n
⋂

i=1

B[yi, |xip|] = ∅, ➊

where yi = f(xi). Finally note that ➊ contradicts the Finite+one lemma (5.3). �

Proof of Kirszbraun’s theorem (5.1). The case κ 6 0 is already proved in 5.4. Thus it
remains to prove the theorem only in case κ > 0. After rescaling we may assume that
κ = 1 and therefore ̟κ = π.

Since B[z,π/2] ∈ CAT⌈κ⌉ (2.4, 2.2), we can assume U = B[z,π/2]. In particular, any
two points of U at distance < π are joined by a geodesic, and diamU 6 π. If |xy| = π for
some x, y ∈ U , then the concatenation of [xz] and [zy] forms a geodesic [xy]. Hence U is
geodesic.

Further, we can also assume that diamL 6 π. Otherwise L is one-dimensional; in this
case the result follows since U is geodesic.

5In the case κ = −1,

(h̃(z̃))2 =
∑

i,j

αi ·αj · cosh |x̃ix̃j |. (E)−
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Assume the theorem is false. Then there is a set Q ⊂ L, a short map f : Q → U and
p ∈ L\Q such that

⋂

x∈Q

B[f(x), |xp|] = ∅. ➋

We are going to apply 5.4 for κ = 0 to the Euclidean cones L̊ = ConeL and
Ů = ConeU . Note that

⋄ Ů ∈ CAT⌈0⌉,
⋄ since diamL 6 π we have L̊ ∈ CBB⌊0⌋.

Further, we view the spaces L and U as unit spheres in L̊ and Ů respectively. In the cones
L̊ and Ů , we use “|∗|” for distance to the vertex, say o, and “·” for cone multiplication.

We also use short-cuts ∡(x, y)
def
== ∡[o x

y ] and

〈x, y〉 def
== |x|·|y|· cos∡[o x

y ] =

= 1
2

(

|x|2 + |y|2 − |xy|2
)

.

In particular,
⋄ |xy|L = ∡(x, y) for any x, y ∈ L,
⋄ |xy|U = ∡(x, y) for any x, y ∈ U ,
⋄ for any y ∈ U , we have

∡(z, y) 6 π

2 . ➌

Set Q̊ = ConeQ ⊂ L̊ and let f̊ : Q̊ → Ů be the natural cone extension of f ; i.e., y = f(x)

⇒ t·y = f̊(t·x) for t > 0. Clearly f̊ is short.

Applying 5.4 for f̊ , we get a short extension map F̊ : L̊ → Ů . Set s = F̊ (p). Thus,

|sf̊(w)| 6 |pw| ➍

for any w ∈ Q̊. In particular, |s| 6 1. Applying ➍ for w = t·x and t → ∞ we get

Ů = ConeU

տ
U

z

s̄ αs

o

〈f(x), s〉 > cos∡(p, x) ➎

for any x ∈ Q.
Since U ∈ CAT⌈0⌉, the geodesics geod[s t·z] converge as

t → ∞ to a ray, say α : [0,∞) → Ů . From ➌, we have that
the function t 7→ 〈f(x),α(t)〉 is non-decreasing. Therefore,
from ➎, for the necessarily unique point s̄ on the ray α such
that |s̄| = 1 we also have

〈f(x), s̄〉 > cos∡(p, x)

or

∡(s̄, f(x)) 6 ∡(p, f(x))

for any x ∈ Q. The latter contradicts ➋. �
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6. (2n+2)-point comparison

Here we give a generalization of the (2+2)-point comparison to (2n+2) points. It
follows from the generalized Kirszbraun’s theorem.

First let us give a reformulation of (2+2)-point comparison.

6.1. Reformulation of (2+2)-point comparison. Let X be a metric space. A
quadruple p, q, x, y ∈ X satisfies (2+2)-point comparison if one of the following holds:

a) One of the triples (p, q, x) or (p, q, y) has perimeter > 2·̟κ.

b) If [p̃q̃x̃] = △̃κ(pqx) and [p̃q̃ỹ] = △̃κpqy, then

|x̃z̃| + |z̃ỹ| > |xy|,
for any z̃ ∈ [p̃q̃].

6.2. (2n+2)-point comparison. Let U ∈ CAT⌈κ⌉. Consider x, y ∈ U and an array of
pairs of points (p1, q1), (p2, q2), . . . , (pn, qn) in U , such that there is a model configuration
x̃, ỹ and array of pairs (p̃1, q̃1), (p̃2, q̃2), . . . , (p̃n, q̃n) in M

3[κ] with the following properties:

a) [x̃p̃1q̃1] = △̃κxp1q1 and [ỹp̃nq̃n] = △̃κypnqn;
b) The simplex p̃ip̃i+1q̃iq̃i+1 is a model simplex6 of pipi+1qiqi+1 for all i.

Then for any choice of n points z̃i ∈ [p̃iq̃i], we have

|x̃z̃1| + |z̃1z̃2| + . . .+ |z̃n−1 z̃n| + |z̃nỹ| > |xy|.

x̃

p̃1
p̃2

p̃3
p̃4

q̃1

q̃2

q̃3 q̃4

z̃1
z̃2

z̃3 z̃4 ỹ

To prove (2n+2)-point comparison, we need the following lemma, which is an easy
corollary from Kirszbraun’s theorem (5.1).

6.3. Lemma. Let L ∈ CBB⌊κ⌋, U ∈ CAT⌈κ⌉, and Q ⊂ B(p, ̟κ

2 ) ⊂ L. Then any short
map f : Q → U can be extended to a short map F : L → U .

Proof. Directly from Kirszbraun’s theorem (5.4 or 5.1), we obtain the case κ 6 0. Thus
it remains to prove the theorem only in the case κ > 0. After rescaling we may assume
that κ = 1 and therefore ̟κ = π.

It is enough to prove that there is a point z ∈ U such that |zf(x)| 6 π

2 for all x ∈ Q;
once it is proved, the statement follows from Kirszbraun’s theorem (5.1).

6i.e., perimeter of each triple in pi, pi+1, qi and qi+1 is < 2·π and |p̃iq̃i| = |piqi|, |p̃ip̃i+1| = |pipi+1|,

|q̃iq̃i+1| = |qiqi+1|, |p̃iq̃i+1| = |piqi+1| and |p̃i+1 q̃i| = |pi+1 qi|.
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Further we use the same notations as in the proof of 5.1.

Apply Kirszbraun’s theorem (5.4 or 5.1) for f̊ : Q̊ → Ů and set q = F̊ (p). Clearly,

〈f(x), q〉 > cos∡(p, x) > 0

for any x ∈ Q. In particular, we have |q| > 0. Thus, for z = 1
|q| ·q ∈ U , we get

|zf(x)|U = ∡(z, f(x)) 6 π

2 for all x ∈ Q. �

Proof of (2n+2)-point comparison. Direct application of 6.3 gives an array of short maps
f0, f1, . . . , fn : M3[κ] → U such that

(i) x̃
f0

7−→ x, p̃1
f0

7−→ p1 and q̃1
f0

7−→ q1;

(ii) p̃i
fi

7−→ pi, q̃i
fi

7−→ qi and p̃i+1 fi

7−→ pi+1, q̃i+1 fi

7−→ qi+1 for 1 6 i 6 n− 1;

(iii) p̃n
fn

7−→ pn, q̃n
fn

7−→ qn and ỹ
fn

7−→ y.

For each i > 0, we have that f i−1|[p̃iq̃i] = f i|[p̃iq̃i], since both f i−1 and f i send [p̃iq̃i]

isometrically to a geodesic [piqi] in U which has to be unique. Thus the curves

f0([x̃z̃1]), f1([z̃1z̃2]), . . . , fn−1([z̃n−1z̃n]), fn([z̃nỹ])

can be joined in U into a curve connecting x to y with length at most

|x̃z̃1| + |z̃1z̃2| + . . .+ |z̃n−1 z̃n| + |z̃nỹ|. �

7. Comments and open problems

7.1. Open problem. Find a necessary and sufficient condition for a finite metric space
to be isometrically embeddable into some CBB⌊κ⌋ space.

A metric on a finite set {a1, a2, . . . , an}, can be described by the matrix with compo-
nents

sij = |aiaj |2,
which we will call the decrypting matrix . The set of decrypting matrices of all metrics
that admit an isometric embedding into a CBB⌊0⌋ space form a convex cone, as follows
from the fact that the product of CBB⌊0⌋ spaces is a CBB⌊0⌋ space. This convexity gives
hope that the cone admits an explicit description.

The set of metrics on {a1, a2, . . . , an} that can be embedded into a product of spheres
with different radii admits a simple description. Obviously, this gives a sufficient condition
for 7.1. This condition is not necessary. For instance, as follows from from a result of
Vilms, [16, 2.2], a sufficiently dense finite subset in a generic closed positively curved
manifold cannot be embedded into a product of spheres.

Theorem 4.1 gives a necessary condition for 7.1, but the condition is not sufficient.
One sees this in the following example constructed by Sergei Ivanov:
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a b

x

y

z

qExample. Consider the finite set F = {a, b, x, y, z, q} with
distances defined as follows:

(1) |ab| = 4;
(2) |ax| = |ay| = |az| = |bx| = |by| = |bz| = 2;
(3) |xy| = 2, |yz| = 1, |xz| = 3;
(4) |xq| = |qb| = 1 and thus |aq| = 3;

(5) ∡̃
0(x q

y) = ∡̃
0(x q

z) =
π

3 ; i.e. |qy| =
√
3 and |qz| =

√
7.

On the diagram the degenerate triangles are marked by solid lines. Note that if one
removes from F the point q then the remaining part can be embedded in a sphere of
intrinsic diameter 4 with poles at a and b and the points x, y, z on the equator. On the
other hand, if one removes the point a from the space and changes the distance |zb| then
it can be isometrically embedded into the plane.

It is straightforward to check that this finite set satisfies the conclusion of
Theorem 4.1 for κ = 0. However, if such a metric appeared as an inherited metric
on a subset {a, b, x, y, z, q} ⊂ L ∈ CBB⌊0⌋ then clearly

∡[x a
y] = ∡[y a

z ] = ∡[y b
z] =

π

3 ,

contradicting |bz| = 2.

The following problem was mentioned by Gromov in [3, 15(b)]

7.2. Open problem. Describe metrics on an n-point set which are embeddable into
CAT⌈κ⌉ spaces.

The set of metrics on {a1, a2, . . . , an} which can be embedded into a product of trees
and hyperbolic spaces admits a simple description using decrypting matrices defined
above. Obviously, this gives a sufficient condition for problem 7.2. This condition is
not necessary. The existence of a counterexample follows from the same result of Vilms
[16, 2.2]; it is sufficient to take a sufficiently dense finite subset in a ball in a generic
Hadamard space.

The (2n+2)-point comparison (6.2) gives a necessary condition for 7.2 and it is not
known whether it is sufficient.

7.3. Open problem. Let F be a finite metric space which satisfies (2n+2)-point com-
parison (6.2) for some fixed for κ and any choice of the point array.

Is it true that F admits an isometric embedding into a CAT⌈κ⌉ space?

The next conjecture (if true) would give the right generality for Kirszbraun’s theorem
(5.1). Roughly it states that the example 5.2 is the only obstacle for extending a short
map.

7.4. Conjecture. Assume L ∈ CBB⌊1⌋, U ∈ CAT⌈1⌉, Q ⊂ L is a proper subset, and
f : Q → U is a short map that does not admit a short extension to any bigger set Q′ ⊃ Q.
Then:

a) Q is isometric to a sphere in a Hilbert space (of finite or cardinal dimension).
Moreover, there is a point p ∈ L such that |pq| = π

2 for any q ∈ Q.
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b) The map f : Q → U is a global isometric embedding and there is no point p′ ∈ U
such that |p′q′| = π

2 for all q′ ∈ f(Q).

Appendix A. Barycentric simplex

The barycentric simplex was introduced by Kleiner in [7]; it is a construction that
works in a general metric space. Roughly, it gives a k-dimensional submanifold for a
given “nondegenerate” array of k + 1 strongly convex functions.

Let us denote by ∆k ⊂ R
k+1 the standard k-simplex ; i.e., x = (x0, x1, . . . , xn) ∈ ∆k if

∑k

i=0 xi = 1 and xi > 0 for all i.
Let X be a metric space and f = (f0, f1, . . . , fk) : X → R

k+1 be a function array.
Consider the map f△ : ∆k → X , defined by

f△(x) = argmin

k
∑

i=0

xi ·f i,

where argmin f denotes a point of minimum of f . The map f△ will be called a barycentric
simplex of f . In general, a barycentric simplex of a function array might be undefined
and need not be unique.

The name comes from the fact that if X is a Euclidean space and f i(x) = 1
2 ·|pix|2 for

some array of points p = (p0, p1, . . . , pk), then f△(x) is the barycenter of points pi with
weights xi.

A barycentric simplex f△ for the function array f i(x) = 1
2 ·|pix|2 will also be called a

barycentric simplex with vertices at {pi}.
It is clear from the definition that if f̂ is a subarray of f , then f̂△ coincides with the

restriction of f△ to the corresponding face of ∆k.
The following theorem shows that the barycentric simplex is defined for an array of

strongly convex functions on a complete geodesic space. In order to formulate the theorem,
we need to introduce a partial order < on R

k+1.

A.1. Definition. For two real arrays v, w ∈ R
k+1, v = (v0, v1, . . . , vk) and

w = (w0, w1, . . . , wk), we write v < w if vi > wi for each i.
Given a subset Q ⊂ R

k+1, define its superset

SupSetQ = {v ∈ R
k | ∃w ∈ Q such that v < w}.

A.2. Theorem on barycentric simplex. Assume X is a complete geodesic space and
f = (f0, f1, . . . , fk) : X → R

k is an array of strongly convex and locally Lipschitz func-
tions.

Then the barycentric simplex f△ : ∆k → X is uniquely defined and moreover:
a) f△ is Lipschitz.
b) The set SupSetf(X ) ⊂ R

k+1 is convex, and p ∈ f△(∆k) if and only if f(p) is in
∂ [SupSetf(X )]. In particular, f ◦f△(∆k) lies on a convex hypersurface in R

k+1.

c) The restriction f |f△(∆k) has C
1

2 -inverse.
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d) The set S = f△(∆k)\f△(∂∆k) is C
1

2 -homeomorphic to an open domain in R
k.

The set S described above will be called Kleiner’s spine of f . If S is nonempty, we
say the barycentric simplex f△ is nondegenerate.

We precede the proof of the theorem with the following lemma.

A.3. Lemma. Assume X is a complete geodesic metric space and let f : X → R be
a locally Lipschitz, strongly convex function. Then the minimum point p = argmin f is
uniquely defined.

Proof. Assume that x and y are distinct minimum points of f . Then for the midpoint z
of a geodesic [xy] we have

f(z) < f(x) = f(y),

a contradiction. It only remains to show existence.
Fix a point p ∈ X ; let £ ∈ R be a Lipschitz constant of f in a neighborhood of p.

Without loss of generality, we can assume that f is 1-convex. Consider the function
ϕ(t) = f ◦ geod[px](t). Clearly ϕ is 1-convex and ϕ+(0) > −£. Setting ℓ = |px|, we get

f(x) = ϕ(ℓ) >

> f(p)−£·ℓ+ 1
2 ·ℓ

2 >

> f(p)− 1
2 ·£

2.

In particular,

s
def
== inf{ f(x) | x ∈ X } > f(p)− 1

2 ·£
2.

If z is a midpoint of [xy] then

s 6 f(z) 6 1
2 ·f(x) + 1

2 ·f(y)− 1
8 ·|xy|

2. ➊

Choose a sequence of points pn ∈ X such that f(pn) → s. Applying ➊, for x = pn,
y = pm, we get that (pn) is a Cauchy sequence. Clearly, pn → argmin f . �

Proof of theorem A.2. Without loss of generality, we can assume that each f i is
1-convex. Thus, for any x ∈ ∆k, the convex combination

∑

xi ·f i : X → R is also
1-convex. Therefore, according to Lemma A.3, f△(x) is defined.

(a). Since ∆k is compact, it is sufficient to show that f△ is locally Lipschitz.
For x,y ∈ ∆k, set

fx =
∑

xi ·f i, fy =
∑

yi ·f i,

p = f△(x), q = f△(y).
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Let ℓ = |pq|2. Clearly the function ϕ(t) = fx ◦ geod[pq](t) takes its minimum at 0 and

ψ(t) = fy◦geod[pq](t) takes its minimum at ℓ. Thus ϕ+(0), ψ−(ℓ) > 07. From 1-convexity

of fy, we have ψ+(0) +ψ−(ℓ) + ℓ 6 0.
Let £ be a Lipschitz constant for all f i in a neighborhood Ω ∋ p. Then we have

ψ+(0) 6 ϕ+(0) +£·‖x− y‖
1
, where ‖x− y‖

1
=

∑k

i=0 |xi − yi|. That is, given x ∈ ∆k,
there is a constant £ such that

|f△(x) f△(y)| = ℓ 6 £·‖x− y‖
1

for any y ∈ ∆k. In particular, there is ε > 0 such that if ‖x − y‖
1
, ‖x − z‖

1
< ε, then

f△(y), f△(z) ∈ Ω. Thus, the same argument as above implies

|f△(y) f△(z)| = ℓ 6 £·‖y − z‖
1

for any y and z sufficiently close to x; i.e. f△ is locally Lipschitz.

(b). The “only if” part is trivial, let us prove the “if”-part.
Note that convexity of f i implies that for any two points p, q ∈ X and t ∈ [0, 1] we

have

(1− t)·f(p) + t·f(q) < f ◦ path[pq](t), ➋

where path[pq] is a geodesic path from p to q; i.e., path[pq](t) = geod[pq](
t

|pq| ).

From ➋, we have that SupSet[f(X )] is a convex subset of Rk+1. If

max
i

{f i(q)− f i(p)} > 0

for any q ∈ X , then f(p) lies in the boundary of SupSet[f(X )]. Take a supporting vector
x ∈ R

k+1 to SupSet[f(X )] at f(p). Thus x 6= 0 and
∑

i xi ·[wi − f i(p)] > 0 for any
w ∈ SupSet[f(X )]. In particular,

∑

i xi ·vi > 0 for any v = (v1, . . . , vk) with all vi > 0.
Hence xi > 0 for all i and x′ = x

‖x‖
1

∈ ∆k. Thus p = f△(x′).

(c). The restriction f |f△(∆k) is Lipschitz. Thus we only have to show that it has a

C
1

2 -inverse. Given v ∈ R
k+1, consider the function hv : X → R given by

hv(p) = max
i

{f i(p)− vi}.

Define a map Φ: Rk+1 → X by Φ(v) = argminhv.
Clearly hv is 1-convex. Thus, according to A.3, Φ(v) is uniquely defined for any

v ∈ R
k+1. From (b), for any p ∈ f△(∆k) we have Φ ◦ f(p) = p.

It remains to show that Φ is C
1

2 -continuous. Clearly,

|hv − hw| 6 ‖v −w‖
∞

def
== max

i
{|vi − wi|},

7Here ϕ± denotes “signed one sided derivative”; i.e.,

ϕ±(t0) = lim
t→t0±

ϕ(t)− ϕ(t0)

|t− t0|
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for any v,w ∈ R
k+1. Set p = Φ(v) and q = Φ(w). Since hv and hw are 1-convex,

hv(q) > hv(p) +
1
2 ·|pq|

2, hw(p) > hw(q) + 1
2 ·|pq|

2.

Therefore,
|pq|2 6 2·‖v −w‖

∞
.

Hence the result.

(d). Let S = ∂ SupSet(f(X )). Note that orthogonal projection to the hyperplane W
k in

R
k+1 defined by equation x0 + x1 + . . . + xn = 0 gives a bi-Lipschitz homeomorphism

S → W
k.

Clearly, f(f△(∆k)\f△(∂∆k)) is an open subset of S. Hence the result. �

Appendix B. Helly’s theorem

B.1. Helly’s theorem. Let U ∈ CAT⌈0⌉ and {Kα}α∈A be an arbitrary collection of
closed bounded convex subsets of U .

If
⋂

α∈A

Kα = ∅,

then there is an index array α1,α2, . . . ,αn ∈ A such that
n
⋂

i=1

Kαi
= ∅.

Remarks.
(i) In general, none of Kα might be compact. Thus the the statement is not com-

pletely trivial.
(ii) If U is a Hilbert space (not necessarily separable), then the above result is equiv-

alent to the statement that a convex bounded set which is closed in the ordinary
topology forms a compact set in the weak topology.
In fact, one can define the weak topology on an arbitrary metric space, by taking
exteriors of closed balls as its prebase. Then the result above implies for U in
CAT⌈0⌉, any closed bounded convex set in U is compact in the weak topology
(this is very similar to the definition given by Monod in [10]).

We present the proof of Lang and Shroeder from [9].

B.2. Lemma. Let U ∈ CAT⌈0⌉. Given a closed convex set K ⊂ U and a point p ∈ U\K,
there is unique point p∗ ∈ K such that |p∗p| = |Kp|.
Proof. Let us first prove uniqueness. Assume there are two points y′, y′′ ∈ K so that
|y′p| = |y′′p| = |Kp|. Take z to be the midpoint of [y′y′′]. Since K is convex, z ∈ K.
From comparison, we have that |zp| < |y′p| = |Kp|, a contradiction.

The proof of existence is analogous. Take a sequence of points yn ∈ K such that
|ynp| → |Kp|. It is enough to show that (yn) is a Cauchy sequence; thus one could take
p∗ = limn yn.
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Assume (yn) is not Cauchy, then for some fixed ε > 0, we can choose two subsequences
(y′n) and (y′′n) of (yn) such that |y′ny′′n| > ε for each n. Set zn to be the midpoint of [y′ny

′′
n];

from convexity we have zn ∈ K. From point-on-side comparison (see page 92), there is
δ > 0 such that |pzn| 6 max{|py′n|, |py′′n|} − δ. Thus

lim
n→∞

|pzn| < |Kx|,

a contradiction. �

Proof of B.1. Assume the contrary. Then for any finite set F ⊂ A,

KF
def
==

⋂

α∈F

Kα 6= ∅.

We construct a point z such that z ∈ Kα for each α ∈ A. Thus we arrive at a contradiction
since

⋂

α∈A

Kα = ∅.

Choose a point p ∈ U and set r = sup |KF p| where F runs over all finite subsets of
A. Let p∗F be the closest point on KF from p; according to Lemma B.2, p∗F exits and is
unique.

Take a nested sequence of finite subsets F1 ⊂ F2 ⊂ . . . of A, such that |KFn
p| → r.

Let us show that p∗Fn
is a Cauchy sequence. Indeed, if not then for some fixed ε > 0,

we can choose two subsequences (y′n) and (y′′n) of (p∗Fn
) such that |y′ny′′n| > ε. Set zn to

be midpoint of [y′ny
′′
n]. From point-on-side comparison (see page 92), there is δ > 0 such

that |pzn| 6 max{|py′n|, |py′′n|} − δ. Thus
lim

n→∞
|pzn| < r.

On the other hand, from convexity, each Fn contains all zk with sufficiently large k, a
contradiction.

Thus, p∗Fn
converges and we can set z = limn p

∗
Fn

. Clearly |pz| = r.
Repeat the above arguments for the sequence F ′

n = Fn ∪ {α}. As a result, we get
another point z′ such that |pz| = |pz′| = r and z, z′ ∈ KFn

for all n. Thus, if z 6= z′ the
midpoint ẑ of [zz′] would belong to all KFn

and from comparison we would have |pẑ| < r,
a contradiction.

Thus, z′ = z; in particular z ∈ Kα for each α ∈ A. �
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