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Degree one cohomology with twisted coefficients of

the mapping class group

Jørgen Ellegaard Andersen and Rasmus Villemoes

Abstract. Let Γ be the mapping class group of an oriented surface Σ of genus g with
r boundary components. We prove that the first cohomology group of the mapping
class group H1(Γ, O(MSL2(C))∗) is non-trivial, where the coefficient module is the

dual of the space of algebraic functions on the SL2(C) moduli space over Σ.

1. Introduction

Let Γ = Γg,r denote the mapping class group of a compact surface Σ = Σg,r with genus
g and r boundary components. There is an action of Γ on the moduli space MG of flat
G-connections over Σ. The vector space O(MG) ⊆ Fun(MG,C) of regular functions on
the moduli space is naturally a Γ-module.

Presently, we consider the special case of G = SL2(C), and we simply write M for
MSL2(C). In this case, there is an isomorphism of Γ-modules

ν : B(Σ) → O(M), (1)

where the source denotes the complex vector space freely spanned by the set of multicurves
on Σ, i.e., isotopy classes of a closed 1-submanifold. We usually think of this as a finite
collection of pairwise non-intersecting, non-trivial, unoriented simple loops on Σ. Note
that we explicitly allow a multicurve to contain isotopic connected components, and that
it may also contain components parallel to a boundary component of Σ. Letting B = B(Σ)
denote the set of multicurves on Σ, B = B(Σ) is simply the complex vector space spanned
by B. There is a natural algebra structure on this space; for details on this see [1] and [2].
The isomorphism ν is given on a single simple loop γ by ν(γ) = −f~γ , where ~γ is any of
the two oriented versions of γ, and f~γ is the function which to a gauge equivalence class
[A] of flat connections associates the trace of the holonomy of A along ~γ.

We may think of B as the set of maps B → C which vanish except for a finite number of
multicurves. This is naturally embedded in the larger module of all maps B̂ = Map(B,C);
this is clearly the same as the algebraic dual O(M)∗ of O(M). The action of Γ splits
B into orbits. Let S denote a set of representatives of these orbits, and for D ∈ S,
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Twisted cohomology of mapping class groups

let M̂D (respectively MD) denote the space of all maps from the orbit through D to C

(respectively, the maps ΓD → C which vanish for all but a finite number of multicurves

in the orbit). With this notation, we obtain splittings of B and B̂ as Γ-modules

O(M) ∼= B ∼=
⊕

D∈S

MD

O(M)∗ ∼= B̂ ∼=
∏

D∈S

M̂D (2)

which induce decompositions in cohomology

H∗(Γ,B) ∼=
⊕

D∈S

H∗(Γ,MD) (3)

H∗(Γ, B̂) ∼=
∏

D∈S

H∗(Γ, M̂D). (4)

The isomorphism (3) depends on the well-known fact that Γ is finitely generated (see

e.g. [3]). A cocycle u : Γ → O(M)∗ = B̂ = Map(B,C) may also be thought as a map
u : Γ ×B → C by simply putting u(γ)(E) = u(γ,E).

Theorem 1.1. A cocycle u : Γ → O(M)∗ = B̂ = Map(B,C) is a coboundary if and only
if for each D ∈ S, the restriction of u to ΓD × {D} is identically 0, where ΓD denotes the
stabilizer of the multicurve D in Γ.

We will use this theorem to arrive at the main result:

Theorem 1.2. For every g, r ≥ 0, the cohomology group H1(Γg,r,O(M)∗) is a direct

product of summands H1(Γ, M̂D), each of which is finite-dimensional. Here D runs over
a set of representatives of multicurves on Σ.

In particular, we obtain by explicit examples

Corollary 1.3. Whenever Γg,r is non-trivial (i.e., when (g, r) is not (0, 0) or (0, 1)),
H1(Γg,r,O(M)∗) is non-trivial.

The motivation to study the cohomology of the mapping class group with these coef-
ficients came from [4], particularly Proposition 6, where integrability of certain cocycles
turns out to be an obstruction to finding a Γ-invariant equivalence between two equiva-
lent star products on the moduli space. The motivation for studying that problem comes
from the expectation that the star products discussed in [4] are equivalent to the star
product which is constructed in [1] and which is the same as the ones induced on the
SL2(C)-moduli space from the constructions given in [5] and [6]. For the first results in
this direction please see [7].

The main result of this paper, Theorem 1.2, should be compared to the following
vanishing results also due to the authors of this paper. The first of these concerns the
same moduli space as considered in this paper, with coefficients in the space of algebraic
functions.
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Theorem 1.4. For g ≥ 2 and r ≥ 0, the cohomology group H1(Γ,O(MSL2(C))) vanishes.

This result is proved in [8].
In another paper [9], we considered the abelian moduli space of a surface with at most

one boundary component, i.e., the space

MU(1) = Hom(π1Σ,U(1)) ∼= U(1)2g

of flat U(1)-connections on Σ. The mapping class group acts by measure-preserving
diffeomorphisms of MU(1), so both C∞(MU(1)) and L2(MU(1)) are Γ-modules. When
the genus is at least 3, we obtained these results:

Theorem 1.5. The cohomology group H1(Γ, L2(MU(1))) vanishes.

Theorem 1.6. The cohomology group H1(Γ, C∞(MU(1))) vanishes.

Also in [9] we derived a general result which applies to any unitary representation of
the mapping class group.

Theorem 1.7. Assume g ≥ 3. Let Γ → U(V ) be a unitary representation of Γ on a real
or complex Hilbert space V . For a simple closed curve γ on Σ, let Vγ = V τγ denote the
closed subspace fixed under the twist τγ and let pγ : V → Vγ be the orthogonal projection.
Then, for any cocycle u : Γ → V , we have pγu(τγ) = 0.

This result should be understood in light of the observation that if u is the coboundary
of some element v ∈ V , then u(τγ) = (1 − τγ)v is killed by pγ . Hence this necessary
condition for the vanishing of H1(Γ, V ) is always satisfied whenever g ≥ 3.

This paper is organized as follows. In Section 2 we develop some of the basic prop-
erties of group cohomology which are needed in the calculations, ending with a proof
of Theorem 1.1. In Section 3, we develop an algorithm to compute H1(Γ, M̂D) for any
multicurve, which enables us to prove Theorem 1.2. This is used in Section 4 to give
a generic example of a multicurve for which the cohomology is non-zero, hence proving
Corollary 1.3.

2. Group cohomological background

If Γ is a group and A is a Γ-module, a cocycle is a map u : Γ → A satisfying the cocycle
condition

u(gh) = u(g) + gu(h) (5)

for all g, h ∈ Γ. A coboundary is a cocycle of the form g 7→ a − ga = δa(g) for some
a ∈ A. The cohomology group H1(Γ, A) is the space of cocycles modulo the space of
coboundaries.

Theorem 2.1 (Shapiro’s Lemma). Let H be a subgroup of Γ and A a left H-module.
Then there are isomorphisms

H∗(H,A) ∼= H∗(Γ, IndΓ
H A) (6)

H∗(H,A) ∼= H∗(Γ,CoindΓ
H A). (7)

66



Twisted cohomology of mapping class groups

This is Proposition III.6.2 in [10]. Here IndΓ
H is the so-called induced module ZΓ⊗ZHA,

where ZΓ is considered as a right H-module via the right action of H on Γ, and the left
Γ-module structure is given by g · (g′ ⊗ a) = gg′ ⊗ a for g, g′ ∈ Γ, a ∈ A. Similarly,

CoindΓ
H A is the co-induced module HomZH(ZΓ, A) of H-equivariant maps from the left

H-module ZΓ to A. The left action of Γ is defined by

(g · f)(g′) = f(g′g)

for g, g′ ∈ Γ, f ∈ HomZH(ZΓ, A).

Remark 2.1. If the action of H on A is trivial, there is a canonical bijection between
HomZH(ZΓ, A) and Map(H\Γ, A) given by f 7→ (Hg 7→ f(g)); equipping the latter with
the Γ-action (g · f)(Hg′) = f(Hg′g) this becomes an isomorphism of Γ-modules. The
usual bijection between the sets of left and right cosets given by Hg 7→ g−1H induces a
bijection Map(H\Γ, A) → Map(Γ/H,A), and the latter also carries a natural left Γ-action
making this a Γ-isomorphism, namely (g · f)(g′H) = f(g−1g′H).

We summarize the special case of Shapiro’s Lemma we will need in a corollary:

Corollary 2.2. Let A be an abelian group, and Γ a group which acts transitively on
a set R. Consider the Γ-module Map(R,A) of all maps R → A with action given by
(g · f)(r) = f(g−1r). Let D ∈ R be any element, and ΓD ⊆ Γ the stabilizer subgroup of
D. Then there is an isomorphism

H∗(Γ,Map(R,A)) ∼= H∗(ΓD, A) (8)

where A is considered as a trivial ΓD-module.

Proof. The bijection Γ/ΓD → R given by gΓD 7→ gD clearly induces an isomorphism of
Γ-modules Map(Γ/ΓD, A) → Map(R,A). Then from Shapiro’s Lemma and the isomor-
phisms mentioned in the above remark we have a sequence of isomorphisms

H∗(ΓD, A) ∼= H∗(Γ,HomZΓD
(ZΓ, A))

∼= H∗(Γ,Map(ΓD\Γ, A))

∼= H∗(Γ,Map(Γ/ΓD, A))

∼= H∗(Γ,Map(R,A)).

�

Note that the Γ-module Map(R,A) can also be considered as the set of all formal
A-linear combinations of elements from R (that is, the sum

∑
r∈R mrr corresponds to the

map r 7→ mr).
Specializing to the case ∗ = 1, we have

Corollary 2.3. With assumptions as in Corollary 2.2 above, we have an isomorphism

H1(Γ,Map(R,A)) ∼= H1(ΓD, A) = Hom(ΓD, A). (9)
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We now describe this isomorphism explicitly. First note that a map u : Γ → Map(R,A)
can be considered as a map u : Γ × R → A by the adjoint formula u(g)(r) = u(g, r). In
this context, the cocycle condition (5) reads

u(g1g2, r) = u(g1, r) + u(g2, g
−1
1 r). (10)

We wish to derive necessary and sufficient conditions for a cocycle u to be a coboundary
δf . For the rest of this section, fix an element D ∈ R and let ΓD ⊆ Γ denote the stabilizer
subgroup of D.

Lemma 2.4. A cocycle u : Γ × R → A is a coboundary if and only if, for every pair
g1, g2 ∈ Γ with g1g

−1
2 ∈ ΓD, u satisfies the condition

u(g1,D) = u(g2,D). (11)

Proof. First we prove the necessity of the condition. Suppose that u = δf for some
f : R → A. Since the action is transitive, it is easy to see that the kernel of the map
δ : C0(Γ,Map(R,A)) → C1(Γ,Map(R,A)) is the set of constant maps R → A. Thus we
may without loss of generality assume that f(D) = 0. Recall that u = δf means that for
every g ∈ Γ, r ∈ R we have u(g, r) = f(r) − f(g−1r). In particular,

f(g−1D) = −u(g,D). (12)

Now if g1g
−1
2 ∈ ΓD, we have g−1

1 D = g−1
2 D, and thus −u(g1,D) = f(g−1

1 D) = f(g−1
2 D) =

−u(g2,D) as desired.
Now suppose that u satisfies (11) whenever g1g

−1
2 D = D. We need to construct a map

f : R → A. For r ∈ R, choose g ∈ Γ so that g−1D = r, and define f using (12), i.e.,
f(r) = f(g−1D) = −u(g,D). By assumption, this is a well-defined map (independent of
the chosen g), and we only need to check that u = δf . Let h ∈ Γ and r ∈ R be arbitrary.
To calculate (δf)(h, r), we may choose any g ∈ Γ with g−1D = r, and we obtain

(δf)(h, r) = f(r) − f(h−1r) = f(g−1D) − f((gh)−1D)

= −u(g,D) + u(gh,D) = u(h, g−1D) = u(h, r)

by the cocycle condition (10). �

Lemma 2.5. The restriction of u to ΓD × {D} is a group homomorphism ũ : ΓD → A.

Proof. Let g, h ∈ ΓD. Then

ũ(gh) = u(gh,D) = u(g,D) + u(h, g−1D)

= u(g,D) + u(h,D) = ũ(g) + ũ(h) (13)

as claimed. �

Since A is abelian, ũ factors through the abelianization (ΓD)ab of ΓD, and we have
thus established a map

ϕ : Z1(Γ,Map(R,A)) → Hom(ΓD, A) = Hom((ΓD)ab, A).
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The latter group may be thought of as the cohomology group H1((ΓD)ab, A) with trivial
action of (ΓD)ab on A.

Theorem 2.6. The map ϕ factors to an isomorphism

H1(Γ,Map(R,A)) → H1((ΓD)ab, A),

which is also denoted ϕ.

Before we begin the proof, we need an observation: For any cocycle u and any g ∈ Γ,
h ∈ ΓD we have

u(ghg−1, gD) = u(g, gD) + u(hg−1,D)

= u(g, gD) + u(h,D) + u(g−1,D)

= u(h,D)

using h−1D = D and the fact that 0 = u(1) = u(g−1 · g) = u(g−1) + g−1.u(g).

Proof of Theorem 2.6. To prove that ϕ does induce a map on cohomology, we need to
show that the restriction of a cobundary δf to ΓD × {D} is identically 0. But this is
trivial since

δ̃f(h) = (δf)(h,D) = f(D) − f(h−1D) = 0

for h ∈ ΓD.
Next, assume that the cocycle u restricts to the zero homomorphism ΓD → A. Then

for any two elements g1, g2 ∈ Γ with g1g
−1
2 ∈ ΓD we have

0 = u(g1g
−1
2 ,D)

= u(g1,D) + u(g−1
2 , g−1

1 D)

= u(g1,D) + u(g−1
2 )(g−1

1 D)

= u(g1,D) − g−1
2 .u(g2)(g−1

1 D)

= u(g1,D) − u(g2)(g2g
−1
1 D)

= u(g1,D) − u(g2,D)

since g2g
−1
1 = (g1g

−1
2 )−1 ∈ ΓD, and by Lemma 2.4 we see that u is a coboundary. This

shows that ϕ is injective.
Now, for surjectivity, let u : ΓD → A be any homomorphism. We need to extend u

to all of Γ × R in such a way that it becomes a cocycle. To produce this extension,
we first assume that an extension exists, and use this to write a formula for a cocycle
cohomologous to the given extension. Then we prove that this formula actually defines a
cocycle.

Choose a collection {hi}i∈I of representatives for the set ΓD\Γ of right cosets of ΓD,
and let 1 ∈ Γ represent the coset ΓD. Recall that the map ΓD\Γ → Γ/ΓD given by
ΓDx 7→ x−1ΓD is a bijection between the set of right cosets and the set of left cosets of
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ΓD. In particular, {h−1
i }i∈I is a collection of representatives of the set of left cosets. We

also have a bijection Γ/ΓD → R given by xΓD 7→ xD.
Now, define f : ΓD → A by f(h−1

i D) = u(hi,D) for i ∈ I. Then since u(1,D) = 0, we

have (δf)(hi)(D) = f(D) − f(h−1
i D) = −u(hi,D). Thus, by adding the coboundary of f

to the given extension u, we obtain a cohomologous cocycle (again denoted u) satisfying
u(hi,D) = 0 for i ∈ I. Furthermore, (the new) u is uniquely determined by its cohomology
class and this requirement.

The cocycle condition implies that

u(ghi,D) = u(g,D) + u(hi, g
−1D) = u(g,D) (14)

for i ∈ I and g ∈ ΓD. Since every x ∈ Γ admits a unique factorization as x = ghi for
some i ∈ I and g ∈ ΓD, this formula extends u to all of Γ × {D}.

Now consider any x ∈ Γ and E ∈ R. There is a unique j ∈ I with h−1
j D = E,

and we have ΓE = h−1
j ΓDhj . Furthermore, the collection {h−1

j hihj}i∈I is a collection of

representatives for the set ΓE\Γ of right cosets of ΓE . This means that we may factorize
x uniquely as (h−1

j g0hj)(h−1
j hihj) for some g0 ∈ ΓD and i ∈ I. Now we calculate

u(x,E) = u(h−1
j g0hj · h−1

j hihj , h
−1
j D) (15)

= u(h−1
j g0hj , h

−1
j D) + u(h−1

j hihj , h
−1
j g−1

0 hjh
−1
j D) (16)

By the observation preceding this proof (with g = h−1
j and h = g0), the first term is equal

to the known quantity u(g0,D). For the second term, we apply the cocycle condition a
few more times:

u(h−1
j hihj , h

−1
j D) = u(h−1

j , h−1
j D) + u(hihj ,D)

= −u(hj ,D) + u(hihj ,D)

= u(hihj ,D)

which is also known since u is known on Γ × {D}. Thus our formula for the extension of
u to all of Γ ×R reads

u(x,E) = u(g0,D) + u(hihj ,D) (17)

where j ∈ I is the unique index such that h−1
j D = E, i ∈ I is the unique index so

that x belongs to the right coset of ΓE represented by h−1
j hihj , and g0 = hjgh

−1
j is the

unique element in ΓD such that x = g(h−1
j hihj) = (h−1

j g0hj)(h−1
j hihj). The second term

above is defined by (14); thus one must find the k ∈ I such that hihj is an element
of the right coset of ΓD represented by hk, say hihj = g1hk for g1 ∈ ΓD, and then
u(hihj ,D) = u(g1,D). It remains to check that (17) defines a cocycle.

Let x, y ∈ Γ and E ∈ R be arbitrary. As above, there is a unique j ∈ I with h−1
j D = E.

Let us try to calculate the right-hand side of the cocycle condition given by u(xy,E) =
u(x,E) + u(y, x−1E). We must choose i ∈ I and g1 ∈ ΓD such that

x = (h−1
j g1hj)(h−1

j hihj) (18)
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and next we choose k ∈ I and g2 ∈ ΓD such that hihj = g2hk. Then

u(x,E) = u(g1,D) + u(g2,D) = u(g1g2,D)

Now, the element x−1E of R is the same as

x−1E = h−1
j h−1

i g−1
1 hjE = h−1

j h−1
i D = (hihj)−1D = (g2hk)−1D = h−1

k D

so in the calculation of u(y, x−1E) it is hk which plays the role as hj in the recipe. This
recipe then requires us to find g3 ∈ ΓD and ℓ ∈ I such that

y = (h−1
k g3hk)(h−1

k hℓhk), (19)

and g4 ∈ ΓD and m ∈ I such that hℓhk = g4hm. Then

u(y, x−1E) = u(g3,D) + u(g4,D) = u(g3g4,D).

Multiplying x and y using the expressions (18) and (19) and the relations defining the
various h’es we obtain

xy = (h−1
j g1hihj)(h−1

k g3hℓhk)

= h−1
j g1g2g3g4hm (20)

On the other hand, the recipe requires us to choose g ∈ ΓD and n ∈ I such that

xy = h−1
j ghjh

−1
j hnhj , (21)

and g′ ∈ ΓD and p ∈ I such that hnhj = g′hp. Then u(xy,E) = u(g,D) + u(g′,D).
Comparing (20) and (21) we see that g1g2g3g4hm = ghnhj , showing that (by uniqueness
of g′ and p) hp = hm and

g′ = g−1g1g2g3g4 (22)

Finally we conclude that

u(xy,E) = u(g,D) + u(g′,D)

= u(g1g2g3g4,D)

= u(g1g2,D) + u(g3g4,D)

= u(x,E) + u(y, x−1E)

showing that the given recipe in fact defines a cocycle u : Γ × R → A. The proof is
complete. �

Proof of Theorem 1.1. By the splitting (4), a cocycle u : Γ → B̂ is the same as a collection

of cocycles uD : Γ → M̂D for D ∈ S. In fact, thinking of u as a map Γ × B → C, uD is
simply the restriction of u to Γ × (ΓD). Specializing Theorem 2.6 to the case A = C and
R = ΓD, we see that each uD is a coboundary if and only if uD restricted to ΓD × {D}
is zero. �
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In Section 3 below, we are going to need a theorem linking the low-dimensional coho-
mology groups of the groups appearing in a short exact sequence. Again quoting from
[10] (Corollary VII.6.4)

Theorem 2.7. Let 1 → A → B → C → 1 be a short exact sequence of groups, and M a
B-module. Then there is an exact sequence of cohomology groups

0 → H1(C,MA) → H1(B,M) → H1(A,M)B → H2(C,MA). (23)

Here we regard M as an A-module via restriction of scalars, and then clearly C ∼= B/A
acts on the submodule MA invariant under A, making sense of H∗(C,MA). Since A is
normal in B, conjugation defines an action on A by automorphisms, so there is an induced
action on cohomology c∗

b : H∗(A,M) → H∗(A,M), where cb is the map a 7→ bab−1. One
may show that A acts trivially on H1(A,M), so there is an induced action of C, and we
have H1(A,M)B = H1(A,M)C .

We need a special case of the above.

Corollary 2.8. If C is a finite group and M = C as a trivial B-module, both H1(C,C)
and H2(C,C) are trivial, so we have an isomorphism

Hom(B,C) = H1(B,C) ∼= H1(A,C)B = Hom(A,C)B . (24)

In other words, the space of homomorphisms B → C is isomorphic to the space of
homomorphisms f : A → C satisfying

(bf)(a) = f(bab−1) = f(a) (25)

for all a ∈ A, b ∈ B.

2.1. Abelianization

If M is a trivial Γ-module, a cocycle Γ → M is the same as a group homomorphism,
and all coboundaries vanish identically. Hence, in this situation we have

H1(Γ,M) = Hom(Γ,M) = Hom(Γab,M), (26)

where Γab = H1(Γ,Z) is the abelianization of Γ. In the case where M is torsion free, we
further have

Hom(Γab,M) = Hom(Γab ⊗ Q,M) = Hom(H1(Γ,Q),M). (27)

The abelianizations of mapping class groups are all known. Abstractly, they are given
as follows:

Theorem 2.9. Let Γg,r denote the mapping class group of a surface of genus g with r
boundary components.

(a) If g ≥ 3, both H1(Γg,r,Z) and H1(Γg,r,Q) are trivial.
(b) For any r, we have H1(Γ2,r,Z) ∼= Z/10Z, so H1(Γ2,r,Q) = 0.
(c) The group H1(Γ1,0,Z) is cyclic of order 12, whereas for r ≥ 1, H1(Γ1,r,Z) ∼= Zr.
(d) For g = 0, H1(Γ0,r,Z) is a free abelian group of rank

(
r
2

)
= r(r − 1)/2, so

H1(Γ0,r,Q) is a rational vector space of the same dimension.
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See [11] or [12] for easy proofs of (a), (b) and (c). We will need explicit generators in
the genus 1 and 0 cases.

Proposition 2.10. Consider a torus Σ1,r with boundary components δ1, . . . , δr for some
r ≥ 1. Let t be a Dehn twist in any non-separating curve, and let dj denote the Dehn
twist along δj. Then in H1(Γ1,r,Z), we have the relation

12t = d1 + · · · + dr. (28)

The homology classes of d1, . . . , dr constitute a basis for H1(Γ1,r,Q).

Proof. For r ≤ 2, this follows from the chain relation (also known as the two-holed torus
relation). On Figure 1, we have obtained Σ1,r from Σ1,r−1 by gluing a pair of pants on
to the boundary component δ of Σ1,r−1 (note that the left-hand part of the surface can
contain any number of boundary components). The lantern relation applied to the seven

α

β

δ
δ′

δ′′

η

ε

Σ1,r

Figure 1. Gluing a pair of pants to an r − 1-holed torus.

curves α, β, δ′, δ′′, δ, ε, and η yields

τατβτδ′τδ′′ = τδτετη.

Since α, β, ε and η are non-separating in Σ1,r, the twists in these curves represent the
same element in H1(Γ1,r,Z), so we obtain d′ + d′′ = d, where d, d′, d′′ are the homology
classes of τδ, τδ′ and τδ′′ , respectively.

The last claim follows from the fact that Γ1,r is generated by twists in two non-
separating curves intersecting in a single point along with the twists in the boundary
components. Hence, H1(Γ1,r,Q) is generated by the homology classes of t and d1, . . . , dr,
and (28) shows that t may be omitted. �

It is somewhat more involved to give a symmetric description of H1(Γ0,r,Z). We first
recall why this group is free abelian of rank

r(r − 1)

2
= r − 1 +

(r − 1)(r − 2)

2
.

Let PBn denote the pure braid group on n strands.
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Proposition 2.11. There is an exact sequence

0 → Zr−1 → Γ0,r → PBr−1 → 1 (29)

This sequence splits.

Proof. Think of Γ0,r as the mapping class group of a disc with r − 1 holes. Gluing a
disc with a marked point to each of the “inner” boundary components gives a map to the
(pure) mapping class group Γr−1

0,1 of a disc with r − 1 marked points; the kernel of this

map is the free abelian group generated by the twists in the boundary components (see
[11], Proposition 3.19), and Γr−1

0,1 is isomorphic to PBr−1 ([11], chapter 9).
Gluing a disc to all of the inner boundary components except the j’th gives a homo-

morphism from Γ0,r to the mapping class group of a cylinder. The latter is infinite cyclic,
generated by the Dehn twist in the j’th boundary component. This describes the j’th
component of the splitting Γ0,r → Zr−1. �

Since Γr−1
0,1 is generated by twists τij in curves γij , 1 ≤ i < j ≤ r − 1 encircling

the i’th and j’th puncture and all relations are commutation relations (again, see [11],
chapter 9), we conclude that H1(Γ0,r,Z) is freely generated by the homology classes of
the Dehn twists in r − 1 of the boundary components, along with Dehn twists along(

r−1
2

)
= (r − 1)(r − 2)/2 curves separating two of these boundary components from the

rest of the surface.
Unfortunately, this way of viewing H1(Γ0,r,Z) singles out one of the boundary compo-

nents as “special”, which makes it inappropriate for our purposes.

Theorem 2.12. Let A denote the (rank r+ r(r− 1)/2) free abelian group on generators
gi, 1 ≤ i ≤ r and gij, 1 ≤ i < j ≤ r. Then H1(Γ0,r,Z) is isomorphic to the quotient of A
by the subgroup R generated by the r + 1 relations

gk + (r − 3)
∑

i6=k

gi =
∑

i<j
i,j 6=k

gij , k = 1, . . . , r (30)

(r − 2)
∑

i

gi =
∑

i<j

gij . (31)

The isomorphism is induced by the map ψ sending gi to the homology class of the Dehn
twist in the i’th boundary component, and gij to the homology class of the Dehn twist in a
curve which bounds a pair of pants together with the i’th and j’th boundary components.

Proof. By the description of H1(Γ0,r,Z) given above, it is clear that ψ is surjective. To
prove that ψ descends to a map on the quotient, we must prove that the relations (30)
and (31) hold in H1(Γ0,r,Z). The former immediate follows from the generalized lantern
relation [13]. Thus, in H1(Γ0,r+1,Z) one has

τr+1 + (r − 2)
∑

i<r+1

τi =
∑

i<j<r+1

τij ,
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and by the epimorphism Γ0,r+1 → Γ0,r induced by gluing a disc to the last boundary
component we see that also (31) holds in H1(Γ0,r,Z).

Since, by the remarks following Proposition 2.11, H1(Γ0,r,Z) is free abelian on the
homology classes of the twists τi, 1 ≤ i < r and τij , 1 ≤ i < j < r, there is a map
H1(Γ0,r,Z) → A given by τi 7→ gi and τij 7→ gij . We now prove that the composition of
this map with the projection A → A/R is surjective. This amounts to proving that in
A/R, the equivalence classes represented by gr and gkr, k < r, can be written entirely in
terms of gi, i < r, and gij , 1 ≤ i < j ≤ r − 1.

Using (30) for k = r, this is obvious for gr. Subtracting (30) from (31), we get

(r − 3)gk +
∑

i6=k

gi =
∑

i<k

gik +
∑

k<j<r

gkj + gkr,

from which we see that each gkr can also be expressed using only g1, . . . , gr−1 and gij ,
1 ≤ i < j < r (although gr occurs on the left-hand side, it can be eliminated by the
above). Hence, ψ is invertible. �

3. Computing cohomology

Fix a multicurve D. The purpose of this section is to describe an algorithm to compute
Hom(ΓD,C), the space of homomorphisms from the stabilizer of D to C. We may with-
out loss of generality assume that D does not have components parallel to a boundary
component of Σ, since any mapping class preserves each boundary component. We also
assume that D is not the empty multicurve (in which case ΓD = Γ, so Hom(ΓD,C) is
easily computed using Theorem 2.9). We first deal with a simple case.

Lemma 3.1. If Σ is a closed torus, D consists of parallel copies of a single (non-
separating) curve δ. The stabilizer of D is the infinite cyclic group generated by the
Dehn twist τδ. Hence, Hom(ΓD,C) is one-dimensional, spanned by the map τδ 7→ 1. �

From now on, we will assume that Σ is not a closed torus.
Let d denote the number of distinct isotopy classes of loops occuring in D, and let ∆

denote the d-component multicurve consisting of one copy of each of these loops. Clearly
ΓD is a subgroup of Γ∆ of finite index.

Let Q denote the wreath product C2 ≀ Sd of the cyclic group C2 = {±1} by the
symmetric group Sd; in other words, the semi-direct product Cd

2 ⋊ Sd, where Sd acts on
Cd

2 by permutation of factors. If we fix an enumeration of the components of ∆ and an
orientation of each component, we obtain a homomorphism Θ: Γ∆ → Q as follows: Write
∆ = δ1 ∪ · · · ∪ δd. Then an element ϕ ∈ Γ∆ permutes the components of ∆, so there is
σ ∈ Sd with ϕ(δk) = δσ(k) (as unoriented curves) for all k. The k’th sign is +1 if the
orientation of ϕ(δk) matches the orientation of δσ(k), and −1 otherwise. Let K denote
the kernel of Θ, i.e., the subgroup of Γ which fixes each component and the orientation
of each component, and put PD = Θ(ΓD), P∆ = Θ(Γ∆). These images depend on the
topological types of the multicurves D and ∆.
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We let Σ′ denote the (possibly non-connected) subsurface of Σ obtained by removing
a tubular neighbourhood of ∆. The mapping class group Γ′ of Σ′ is the direct product of
the mapping class groups of the connected components of Σ′. There is a homomorphism
η : Γ′ → Γ given by extending a diffeomorphism of Σ′ by the identity. Theorem 3.18
of [11] yields:

Proposition 3.2. Assume Σ is not a closed torus. Then the kernel of η is the rank d
free abelian group

ker η = 〈τα1
τ−1

β1
, . . . , ταd

τ−1
βd

〉, (32)

where αk, βk are the two boundary components of Σ′ isotopic (in Σ) to δk.

It is clear that the image of η is precisely the group K. The various groups mentioned
above are related by the exact sequences

1 K

=

ΓD⊆
Θ

PD⊆

1

1 K Γ∆
Θ

P∆ 1

(33)

and

1 Zd Γ′ K 1. (34)

Using these, together with Theorem 2.7 and Corollary 2.8, we see that one may compute
Hom(Γ∆,C) as follows:

Proposition 3.3. As above, let Σ′ denote the surface obtained by removing a tubular
neighbourhood of ∆. For each boundary component γ of Σ′, pick a generator gγ , and for
each pair of boundary components α, β belonging to a genus 0 component of Σ′, pick a
generator gα,β. Then Hom(Γ∆,C) is isomorphic to the complex vector space spanned by
the gγ and gα,β’s, modulo the following relations:

(a) If γ is a boundary component of Σ′ belonging to a component of genus at least 2,
then gγ = 0.

(b) If γ1 and γ2 are boundary components of Σ′ arising from the same component of
∆, we have gγ1

= gγ2
.

(c) For each genus 0 component of Σ′, the associated generators must satisfy (30)
and (31).

(d) If δ1 and δ2 are Γ∆-related components of ∆ (i.e., there is an element of Γ∆

sending δ1 to δ2), the generators arising from the boundary components induced
by δ1 and δ2 are identified.

(e) If S1 and S2 are genus 0 components of Σ′, and if there is ϕ ∈ Γ∆ with ϕ(S1) = S2,
then for each pair α, β of boundary components of S1, we have gα,β = gϕ(α),ϕ(β).

Proof. A homomorphism from Γ′ to C is the same as a collection of homomorphisms from
the mapping class groups of the connected components of Σ′ to C. By Theorem 2.9, there
are no non-trivial homomorphisms from surfaces of genus 2 or more, and the homomor-
phisms from the genus 0 and 1 components are exactly described by the generators gγ ,
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gα,β and the condition (c). Homomorphisms from K to C are, by (34) and 3.2, in bijection

with homomorphisms from Γ′ to C which vanish on elements of the form ταk
τ−1

βk
. Hence,

Hom(K,C) is described by the given generators and relations (a), (b) and (c). Finally,
(d) and (e) comes from Corollary 2.8. �

The same algorithm describes Hom(ΓD,C), except that fewer identifications of gen-
erators take place in steps (d) and (e) (since, in addition to the topological type, the
multiplicities of the involved components of ∆ must match up).

Proof of Theorem 1.2. It is immediate from the isomorphism (2) and the splitting (4)
that

H1(Γ,O(M)∗) ∼=
∏

D

H1(Γ, M̂D). (35)

By Corollary 2.3, we have H1(Γ, M̂D) = H1(Γ,Map(ΓD,C)) ∼= Hom(ΓD,C). Finally, it
is clear by the above algorithm that the latter vector space has finite dimension. �

4. An example

Let Σ be a surface of genus g ≥ 2 with r boundary components σ1, . . . , σr. Let ∆ be a
multicurve consisting of g− 1 simple closed curves δ1, . . . , δg−1 such that the complement
of (a tubular neighborhood of) ∆ is a connected surface Σ′ of genus 1. By Theorem 2.9,
H1(Γ′,Q) is generated by the homology classes of the twists in the r + 2g − 2 boundary
components. Hence we see that a basis for Hom(K,C) is given by the r+ g − 1 elements

[τδi
] 7→ 1 i = 1, . . . , g − 1

[τσj
] 7→ 1 j = 1, . . . , r.

Clearly Γ∆ acts transitively on the set of components of ∆, so in Γ∆, all the twists τδj

are conjugate. This implies that Hom(Γ∆,C) has dimension r + 1.
This proves Corollary 1.3 in most cases. In the case of a closed torus, we saw above

(Lemma 3.1) that any non-empty multicurve contributes a one-dimensional summand.
For a torus with r boundary components, the stabilizer of the empty multicurve (or any
multicurve consisting of copies of the boundary components) is the entire mapping class
group, which thus contributes an r-dimensional summand by Theorem 2.9.

For a surface of genus 0, the same argument gives a contribution to H1(Γ,O(M)∗) of
dimension r(r−1)/2. In fact, for any multicurve D in a surface of genus 0, it is clear that
no element of ΓD may permute the components of D (since every mapping class preserves
each of the original boundary components, the connected components of the complement
of D cannot be permuted). Hence K = ΓD in the notation above, and we see that the
dimension of Hom(ΓD,C) is given by

∑

S

rS(rS − 1)

2
− #D
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where the sum runs over the connected components of the complement of (a tubular
neighborhood of) D, rS is the number of boundary components of S, and #D is the
number of components of D.
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