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Lectures on Symplectic and Contact Homology

Frédéric Bourgeois

Abstract. We shall give the geometric definition of several holomorphic curve in-
variants for symplectic and contact manifolds, such as contact homology, symplectic
homology and some of their variants. We shall then explain the relationship between
these theories, leading to a common algebraic framework. These relations can also be
used to translate structural results from one of these invariants to the other ones. This
can be illustrated with the effect of some geometric operations on these invariants,

such as Legendrian surgery.
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1. Symplectic and contact homology

1.1. Symplectic and contact manifolds

Let X be a smooth manifold of dimension 2n. A 2-form ω on X is called symplectic
if it is closed (i.e., dω = 0) and nondegenerate (i.e., ω∧n 6= 0 everywhere). The pair (X,ω)
is called a symplectic manifold.

Let Y be a smooth manifold of dimension 2n− 1. A hyperplane distribution ξ on Y is
called a contact structure if, for any 1-form α such that ξ = kerα on some open subset
U ⊂ Y , we have α ∧ dα∧(n−1) 6= 0 on U . The pair (Y, ξ) is called a contact manifold.
A 1-form α such that ξ = kerα on Y is called a contact form.
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To any contact form α on Y , one can associate a vector field Rα called the Reeb
vector field and characterized by

{
ı(Rα)dα = 0,
α(Rα) = 1.

This vector field strongly depends on the choice of a contact form for a given contact
structure.

Even though the above defintions are apparently very different, contact manifolds can
be thought of as the odd dimensional counterpart of symplectic manifolds. Observe
indeed that, if α is a contact form on (Y, ξ), then dα restricts to a symplectic form on ξ.
This symplectic form depends on the choice of α only up to a nonvanishing factor. We
now describe two constructions illustrating the interplay between contact and symplectic
geometry.

Given a contact manifold (Y, ξ), we can construct a symplectic manifold called the
symplectization of (Y, ξ). It is the manifold R× Y , equipped with the symplectic form
d(etα), where t is the coordinate on the R factor and α is a contact form for ξ. This
symplectic manifold does not depend on the choice of α.

On the other hand, let Y be a hypersurface in a symplectic manifold (X,ω). A vector
field v on X is called Liouville if Lvω = ω. The hypersurface Y is said to be of contact
type if there exists a Liouville vector field v on X defined near Y and transverse to Y . In
that case, the 1-form α = ı(v)ω restricts to a contact form on Y . In particular, if Y = ∂X
is of contact type with a transverse Liouville vector field v pointing outside X, we say that
(X,ω) has a convex boundary. If v is pointing inwards, we say that (X,ω) has a concave
boundary. If a symplectic manifold (X,ω) has a boundary ∂X = ∂+X ∪ ∂−X such that
Y+ = ∂+X is convex and Y− = ∂−X is concave, we say that (X,ω) is a symplectic
cobordism from Y+ to Y−.

If (X,ω) has a convex boundary, we can complete X to a manifold X̂ given by
X ∪∂X≃{0}×Y R+ × Y equipped with the symplectic form ω̂ given by ω on X and by

d(etα) on R+ × Y .

1.2. Complex structures

Many symplectic and contact invariants can be constructed using a compatible (almost)
complex structure. In particular, these allow to define pseudo-holomorphic curves, which
were introduced in symplectic geometry by Gromov [14].

On a smooth manifold X of dimension 2n, an almost complex structure is an
endomorphism J : TX → TX such that J2 = −I. An almost complex structure J on a
symplectic manifold (X,ω) is said to be compatible with ω if

ω(Jv, Jw) = ω(v, w) and ω(v, Jv) > 0

for any v, w ∈ TX with v 6= 0.
It is a well-known fact that the set of compatible almost complex structures on a

symplectic manifold (X,ω) is nonempty and contractible. Therefore, the tangent bundle
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TX can be considered as a complex vector bundle up to homotopy. In particular, we can
define its first Chern class c1(X,ω) ∈ H2(X,Z).

We say that an almost complex structure J on X is integrable if (X, J) is a complex
manifold, or more explicitly if X admits an atlas with complex coordinates in which J is
represented by i and with biholomorphic coordinate changes.

On a contact manifold (Y, ξ), a complex structure J is an endomorphism J : ξ → ξ
such that J2 = −I. Such a complex structure J is said to be compatible with dα if

dα(Jv, Jw) = dα(v, w) and dα(v, Jv) > 0

for any v, w ∈ ξ with v 6= 0.
Similarly, the set of compatible almost complex structures on a contact manifold (Y, ξ)

is nonempty and contractible, so that the first Chern class c1(ξ) ∈ H2(Y,Z) can be
defined.

A compatible complex structure J on (Y, ξ) can be extended to a compatible almost
complex structure on the symplectization (R × Y, d(etα)) by J ∂

∂t
= Rα. Like the Reeb

vector field, this extension strongly depends on the choice of a contact form α for ξ.

Example 1.1. We now introduce our main class of examples for these lectures. A Stein
manifold is a complex manifold (X, J) admitting a proper, complex embedding in CN

for some N > 0.
A smooth function φ : X → R is called exhausting if it is proper and bounded

from below. It is called strictly plurisubharmonic if the 2-form −ddCφ is symplectic,
where dCφ = dφ ◦ J . These notions allow to formulate an intrinsic characterization of
Stein manifolds due to Grauert [13]: a Stein manifold is a complex manifold (X, J) which
admits an exhausting, strictly plurisubharmonic function φ. In particular, Stein manifolds
are symplectic and admit a Liouville vector field which is transverse to the regular level
sets of φ.

Note that since the above conditions on φ are open, we can assume that it is Morse.
It then follows from the above definition that the critical points of φ have index at most
n = 1

2 dimX. Eliashberg [10] used this to give a topological characterization of Stein
manifolds: an open smooth manifold X of dimension 2n > 4 with an almost complex
structure J and an exhausting Morse function φ with critical points of index at most
n admits a Stein structure. More precisely, J is homotopic through almost complex
structures to an integrable complex structure J ′ such that φ is strictly plurisubharmonic.

A Stein manifold (X, J, φ) is called subcritical if the critical points of φ have index
strictly less than n = 1

2 dimX.

1.3. Floer homology

Let (X,ω) be a closed symplectic manifold of dimension 2n. In this context, a smooth
function H : S1 ×X → R will be called a (time-dependent) Hamiltonian function.
For any θ ∈ S1, we write Hθ = H|{θ}×X .
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To any (time-dependent) Hamiltonian function H, one can associate a (time-depen-
dent) vector field Xθ

H , called Hamiltonian vector field and characterized by

ı(Xθ
H)ω = dHθ.

A closed curve γ : S1 = R/Z → X is called a 1-periodic orbit of Xθ
H if

γ̇(θ) = Xθ
H(γ(θ)),

for all θ ∈ S1. In local coordinates, the above differential equation coincides with Hamil-
ton’s equations for classical mechanics.

We say that a 1-period orbit γ of Xθ
H is nondegenerate if the graph of the time 1

flow ϕ1
H : X → X of Xθ

H in X × X is transverse to the diagonal ∆ ⊂ X × X at point
(γ(0), γ(0)). In that case, after choosing a symplectic trivialization of TX along γ, one
associates to γ an integer µCZ(γ) called the Conley-Zehnder index of γ. See [19] for
a definition of this index.

The Novikov ring Λω of (X,ω) over Z is a completion of the group ring Z[H2(X,Z)];
it consists of elements ∑

A∈H2(X,Z)

λAe
A

such that the number of nonzero coefficients λA with ω(A) < C is finite for any C ∈ R.
The ring Λω is graded by |eA| = −2〈c1(X,ω), A〉.

Let H : S1 ×X → R be a generic Hamiltonian, so that all 1-periodic orbits of Xθ
H are

nondegenerate. For each such contractible orbit γ, we choose a spanning disk Dγ and use
it to induce a symplectic trivialization of TX along γ. We define a module FH(X,ω)
freely generated over Λω by the contractible 1-periodic orbits of Xθ

H . This module is
graded by the Conley-Zehnder index : |γ| = µCZ(γ).

This module will be equipped with a differential in order to imitate the Morse complex
for the action functional

AH : C∞
contr(S

1, X) → R : γ 7→ −

∫

D2

σ∗ω −

∫

S1

H(θ, γ(θ)) dθ,

where σ : D2 → X is a smooth homotopy between σ∂D2 = γ and a constant loop
in X. This action functional is well-defined if (X,ω) is symplectically aspherical, i.e.,
〈[ω], π2(X)〉 = 0. The critical points of AH are exactly the contractible 1-periodic orbits
of Xθ

H .
To define gradient trajectories in Morse theory, we need to choose a Riemannian metric

on the domain of the Morse function. In this case, such a metric will be induced by a (time
dependent) compatible almost complex structure Jθ, θ ∈ S1, on (X,ω). The equation for
gradient trajectories u : R× S1 → X for AH can then be written formally as:

∂u

∂s
+ Jθ(u)

(
∂u

∂θ
−Xθ

H(u)

)
= 0, (1)
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with asymptotic conditions

lim
s→−∞

u(s, θ) = γ−(θ), lim
s→∞

u(s, θ) = γ+(θ), (2)

for some contractible 1-period orbits γ−, γ+ of Xθ
H .

These equations form a well-defined elliptic problem, but unlike in Morse theory these
do not define a flow. Note that it is not necessary to have a flow in order to define a
differential complex. Indeed, the construction of Floer homology is based on the moduli
spaces of Floer trajectories MA(γ−, γ+) consisting of solutions u of (1) and (2), such
that the homology class of the sphere obtained by attaching the image of u with the
capping disks Dγ−

and Dγ+
coincides with A ∈ H2(X,Z).

If (X,ω) is aspherical, we can find a generic Jθ so that MA(γ−, γ+) is a smooth
manifold of dimension |γ−| − |γ+| − |eA|. This manifold has an R-action defined by
(τ · u)(s, θ) = u(s+ τ, θ). This collection of moduli spaces can be equipped with coherent
orientations, i.e. orientations which are compatible with the operation of gluing Floer
trajectories. When the quotient MA(γ−, γ+)/R has dimension zero, it consists of finitely
many rigid Floer trajectories, each equipped with a sign. We denote by #MA(γ−, γ+)/R
the algebraic count of these trajectories.

We define a differential dFH : FH∗(X,ω) → FH∗−1(X,ω) by

dFHγ− =
∑

γ+,A

#MA(γ−, γ+)/Re
Aγ+.

Note that the above sum can be infinite, because ∪ω(A)≤CM
A(γ−, γ+)/R is compact for

all C < ∞. However, the union of moduli space MA(γ−, γ+)/R over all homology classes
A ∈ H2(X,Z) may be noncompact. This is why a partial completion is required in the
definition of the ring Λω.

Then dFH ◦ dFH = 0 and the homology FH(X,ω) = H(FH(X,ω), dFH) is independent
of H and J . It is called the Floer homology of (X,ω). Moroever,

FH∗(X,ω) ≃ H∗+n(X,Λω)

by comparing the Floer and the Morse complexes for appropriate Hamiltonian functions
H.

This theory was originally developed by Floer [12] in order to prove a homological
version of the Arnold conjecture, stating that the number of contractible 1-periodic or-
bits for a time-dependent Hamiltonian on a closed symplectic manifold (X,ω) is bounded
below by the sum of the Betti numbers of X.

1.4. Symplectic homology

Let (X,ω) be a symplectic manifold with convex boundary Y = ∂X. We shall apply

the construction of Floer homology on the completed manifold (X̂, ω̂). Since this manifold
is not compact, it is necessary to specify the behavior of H and J on R+ × Y .

We first choose H : S1 × X̂ → R so that

(i) H < 0 is a C2-small Morse function on X;

5



BOURGEOIS

(ii) H(θ, t, p) = h(t) is strictly increasing on R+×Y , such that h′′(t)−h′(t) > 0 and,
for t large enough, h(t) = aet + b,

with a > 0 is generic, so that Xθ
H has no 1-periodic orbit outside a compact set.

We then require that

Jθξ = ξ, Jθ
∂

∂t
= Rα, and Jθ is independent of t,

when t ∈ R+ is large enough.
In this context, the homology of the Floer complex is denoted by SH(H, J). This

graded module is in fact independent of J , but it does depend on H through the asymp-
totic slope a > 0.

In order to remove this dependence we use a direct limit and define the symplectic
homology of (X,ω) by

SH(X,ω) = lim
−→

H

SH(H),

where the direct limit uses monotonicity morphisms σ : SH(H1) → SH(H2) for H1 < H2,
counting solutions of the Floer equation with an s-dependent Hamiltonian interpolating
between H1 and H2.

To understand how SH(H) depends on the slope a > 0, consider the 1-periodic orbits
of Xθ

H . These fall in two categories:

(i) the orbits in X are critical points of H;
(ii) all orbits contained in R+ × Y correspond to closed Reeb orbits on Y , because

Xθ
H = −e−th′(t)Rα. We therefore obtain all closed Reeb orbits with period in

[0, a].

These two types of generators for the complex SH(X,ω) of symplectic homology are
distinguished by the values of the action functional AH : there exists ε > 0 such that

(i) if AH(γ) < ε, then γ is a critical point of H in X. These generators therefore
form a subcomplex SH−(X,ω) ⊂ SH(X,ω).

(ii) if AH(γ) > ε, then γ corresponds to a closed Reeb orbit on Y . These orbits
generate the quotient complex SH+(X,ω) = SH(X,ω)/SH−(X,ω).

It turns out that the complex (SH−(X,ω), ∂) coincides with the Morse complex of H on
X, so that

SH−
∗ (X,ω) ≃ H∗+n(X, ∂X; Λω).

Therefore, the short exact sequences of complexes induces in homology the exact triangle

SH∗(X,ω) // SH+
∗ (X,ω)

[−1]wwooo
oo
oo
oo
oo

H∗+n(X,ω)

ggOOOOOOOOOOO

For more details about the definition and the properties of symplectic homology, see [18].
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Example 1.2. Let ω0 be the standard symplectic structure on the ball X = B2n. Then

SH(B2n, ω0) = 0.

To see this, if r denotes the radial coordinate, we have et = r2 on X̂ = R2n, so that we
can choose the Hamiltonian H of the form Ar2 − B on R2n, with very large A,B > 0.
For generic A > 0, we obtain a single 1-periodic orbit γ which is constant at the origin
r = 0. Since this generator satisfies |γ| → ∞ as r → ∞, the direct limit over H (i.e., as
A → ∞) gives a vanishing symplectic homology in each degree.

In fact, it was proved by Cieliebak [7] that symplectic homology remains zero for any
subcritical Stein manifold (X,ω). Inserting this result in the exact triangle, we obtain
SH+

∗ (X,ω) ≃ H∗+n−1(X, ∂X; Λω).

1.5. Contact homology

Contact homology is a holomorphic curves invariant for a contact manifold (Y, ξ). It
is a small part of a much more general framework for holomorphic curves invariants of
contact manifolds and of symplectic manifolds with convex and concave boundaries. This
framework is called Symplectic Field Theory and was introduced by Eliashberg, Givental
and Hofer [11]. In fact, the specific invariant we are going to consider in these lectures is
often called linearized contact homology, but since we are not going to consider other
variants of contact homology in these notes, we will simply write contact homology.

Let us make a tentative definition of it based on the above constructions, noting that
the complex SH+ is generated by closed Reeb orbits in Y . Ignoring the symplectic filling
(X,ω), let us concentrate on the symplectization (R× Y, d(etα)) and set H = 0.

Tentative definition. We define a complex generated by closed Reeb orbits (of any
period). The differential counts holomorphic cylinders, i.e. maps F = (a, f) from R× S1

to R× Y satisfying df ◦ j = J ◦ dF , such that

lim
s→±∞

a(s, θ) = ±∞, lim
s→∞

f(s, θ) = γ+(T+θ), lim
s→−∞

f(s, θ) = γ−(T−θ),

for some parametrizations γ+ and γ− of closed Reeb orbits with periods T+ and T−.
The collection of such holomorphic cylinders, modulo biholomorphisms of the domain, is
called moduli space of holomorphic cylinders.

This tentative definition has the following two problems :

(i) We need to exclude “bad orbits” in order to guarantee that the moduli spaces
of holomorphic curves are orientable [3]. For any closed Reeb orbit γ, we denote
by γ1 the underlying simple orbit, i.e., the orbit with the same image and the
minimal period. We say that the orbit γ is good if µCZ(γ) − µCZ(γ1) is even,
otherwise we say that γ is bad.

(ii) The moduli spaces of holomorphic cylinders are compactified by adding configu-
rations of holomorphic curves that are more general than cylinders. For instance,
a 1-parameter family of holomorphic cylinders may degenerate in a rigid pair-of-
pants with two negative punctures, attached to a rigid holomorphic plane and a
vertical cylinder. In order to take these more general degenerations into account,
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we have to replace the above moduli spaces of holomorphic cylinders with mod-
uli spaces of capped holomorphic curves. These moduli spaces MA

c (γ+, γ−)
consist of tuples of maps (F+, F1, . . . , Fk), modulo biholomorphisms of their do-
mains. The map

F+ = (a+, f+) : R× S1 \ {y1, . . . , yk} → R× Y

satisfies dF+ ◦ j = J ◦ dF+ and

lim
s→±∞

a+(s, θ) = ±∞, lim
z→yi

a(z) = −∞,

lim
s→∞

f+(s, θ) = γ+(T+θ), lim
s→−∞

f+(s, θ) = γ−(T−θ),

lim
ρ→0

f+(yi + ρe2πiϑ) = γi(Tiϑ),

for some parametrizations γ+, γ−, γ1, . . . , γk of closed Reeb orbits with periods
T+, T−, T1, . . . , Tk. For i = 1, . . . , k, the maps

Fi : CP
1 \ {∞} → X̂

satisfy dFi ◦ j = J ◦ dFi. Moreover, a neighborhood U∞ of ∞ ∈ CP 1 is mapped
by Fi to R+×Y , so that we can write Fi|U∞

= (ai, fi). These components satisfy

lim
|z|→∞

ai(z) = ∞, lim
ρ→∞

fi(ρe
2πiϑ) = γi(Tiϑ).

For each i = 1, . . . , k we fix a conformal identification of CP 1 \ {∞} ≃ C with
Tyi

R×S1 ≃ C which is compatible with the limits of f+ and fi along γi. Note that
the number of possible conformal identifications is the multiplicity of the orbit γi.
We finally require that the homology class of the surface obtained by attaching
the images of F+, F1, . . . , Fk with the capping disks Dγ−

and Dγ+
coincides with

A ∈ H2(X,Z).

The above definition of capped holomorphic curves is a particular case of the more
general concept of holomorphic building [2], which is very natural in Symplectic Field
Theory.

In favorable circumstances, there exists generic J such that MA
c (γ+, γ−) is a smooth

manifold of dimension µCZ(γ+)−µCZ(γ−)+2〈c1(X,ω), A〉. Note that unlike in symplectic
homology, there are no simple assumptions to guarantee the existence of such a generic
J . If such J does not exist, then one has to use other types of perturbations, such as in
the theory polyfolds developed by Hofer, Wysocki and Zehnder [15, 16, 17].

Taking the above difficulties into account, we can modify the tentative definition of
contact homology.

Actual definition. We define the contact complex as the module CH(Y, α) freely
generated over Λω by all good closed orbits of the Reeb field Rα. The grading of a
generator γ is defined by |γ| = µCZ(γ) + n− 3.
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We define a differential dCH : CH∗(Y, α) → CH∗−1(Y, α) by

dCHγ+ =
∑

γ−,A

#MA
c (γ+, γ−)/R eAγ−. (3)

The homology H(CH(Y, α), dCH) of this chain complex is independent of J and of
the contact form α for ξ. It is denoted by CH(X,ω) and called linearized contact
homology of (Y, ξ), with respect to the filling (X,ω). In some cases, the resulting
invariant depends only on the contact manifold (Y, ξ) and not on the choice of a symplectic
filling. It is then usual to denote this invariant by CH(Y, ξ).

Example 1.3. The symplectic manifold (X,ω) = (B2n, ω0) has convex boundary (Y, ξ) =
(S2n−1, ξ0 = kerα0) with α0 = 1

2

∑n
i=1(xidyi− yidxi)|S2n−1 . The perturbed contact form

α̃ = 1
2

∑n
i=1 ai(xidyi − yidxi)|S2n−1 with ai > 0 defines a contact structure diffeomorphic

to ξ0. If the coefficients a1, . . . , an are linearly independent over Q, then the images of
the simple closed orbits γj , j = 1, . . . , n of the Reeb field Rα̃ are given by

{(x1, y1, . . . , xn, yn) ∈ S2n−1 ⊂ R2n | xi = yi = 0, i 6= j}.

The grading of γj and their multiples is always even, so that dCH = 0 independently of
the symplectic filling. We obtain

CHk(S
2n−1, ξ0) =

{
Z if k ≥ 2n− 2 is even,
0 otherwise.

More generally, we can compute contact homology for the convex boundary (Y, ξ) of a
subcritical Stein manifold (X,ω).

Theorem 1.1 (M.-L. Yau [21]). Let (X,ω) be a subcritical Stein manifold such that

c1(X,ω) = 0. Then

CHk(X,ω) =
⊕

m≥0

Hk−2m+2(X, ∂X; Λω).

2. Relation between symplectic and contact homology

2.1. Exact triangles

Both invariants SH+(X,ω) and CH(X,ω) are based on solutions of a Cauchy-Riemann
type equation, with asymptotes corresponding to closed Reeb orbits in Y . The examples
show that these two invariants are not isomorphic. There are indeed a number of differ-
ences in their definitions:

(i) The differential for SH counts objects in X̂, while the differential for CH counts
objects living mainly in R× Y .

However, by “stretching the neck” of X̂ along {0}×Y , we split off a copy of R×Y
in which the objects counted by the differential will mainly live in.

(ii) The symplectic complex uses a Hamiltonian function H, while H = 0 for the
contact complex.
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But we can define maps between these complexes, counting solutions of the Floer
equation with a Hamiltonian function interpolating between H and 0 in R× Y .

(iii) Unlike SH, the complex CH is generated by closed orbits with multiplicities.
But in fact, the multiples γ(1), γ(2), . . . of a closed Reeb orbit are realized as
1-periodic orbits of Xθ

H , for increasing values of t.
(iv) The bad orbits are excluded from CH, but not from SH.

But a bad orbit gives rise to a pair of generators in SH; these cancel in homology,
if we use Novikov coefficients over Q.

(v) A 1-periodic orbit of Xθ
H has a fixed starting point, corresponding to θ = 0, while

there is no favorite basepoint on a closed Reeb orbit.
This leads to an important difference between the complexes SH and CH, since
any closed Reeb orbit gives rise to a pair of generators in SH. Intuitively, CH
looks like a version of SH modulo an S1-action.

The relation between SH+(X,ω) and CH(X,ω) is decribed by the following result.

Theorem 2.1 (Bourgeois, Oancea [4]). Let (X,ω) be a symplectically aspherical manifold

with convex boundary (Y, ξ) such that there exists a regular J to define contact homology.

Then there is an exact triangle with coefficients in Λω ⊗Z Q:

CH(X,ω)
[−2] // CH(X,ω)

[4−n]xxppp
pp
pp
pp
pp

SH+(X,ω)

[n−3]

ggNNNNNNNNNNN

Note that the above exact triangle is analogous the the Gysin exact sequence for a
circle bundle S1 →֒ V → B:

H(B)
[−2] // H(B)

[+1]{{vv
vv
vv
vv
v

H(V )

[0]

ccHHHHHHHHH

Since H(B) ≃ HS1

(V ), this analogy motivates the construction of an S1-equivariant
version of symplectic homology. To that end, let us first recall the Borel construction of
S1-equivariant homology.

Borel construction. Let M be a smooth manifold with an S1-action. Let ES1 be a
contractible topological space with a free S1-action. Such a topological space is unique up
to homotopy equivalence. We denote by M×S1 ES1 the quotient of the product M×ES1

by the diagonal S1-action. Note that the latter is free, since the action on the second

factor is free. The S1-equivariant homology ofM is defined byHS1

(M) = H(M×S1ES1).
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It is related to the ordinary homology of M by the exact triangle

HS1

(M)
[−2] // HS1

(M)

[+1]zzttt
tt
tt
tt
t

H(M)

[0]

ddJJJJJJJJJJ

Let us now adapt this classical construction to symplectic homology, following a sketch
by Viterbo [20].

Symplectic construction. The sphere S2N+1 with the Hopf S1-action can be
viewed as a finite dimensional approximation of ES1, because we have the S1-equivariant
inclusions . . . →֒ S2N+1 →֒ S2N+3 →֒ . . . →֒ S∞ = ES1.

We need the following geometric data:

(i) A family of compatible almost complex structures Jλ
θ , θ ∈ S1, λ ∈ S2N+1, such

that Jτ ·λ
θ+τ = Jλ

θ for all τ ∈ S1.

(ii) A smooth function H : S1 × X̂ × S2N+1 → R such that H(θ, t, p, λ) = aet + b(λ)
for t sufficiently large on R+ × Y , for some function b : S2N+1 → R, and
H(θ + τ, x, τ · λ) = H(θ, x, λ) for any τ ∈ S1.

We then define a parametrized version of the action functional AH from

C∞
contr(S

1, X̂)× S2N+1 to R by

AH(γ, λ) = −

∫

D2

σ∗ω −

∫

S1

H(θ, γ(θ), λ) dθ.

It follows from the assumptions of H and J that AH is invariant under the S1-action
defined by τ · (γ, λ) = (γ(·+ τ), τ · λ).

In analogy with symplectic homology, we define the S
1-equivariant symplectic

complex SHS1,N (X,ω) as the module freely generated over Λω by the circles τ · (γ, λ)
of critical points of AH . These consist of a 1-periodic orbit γ of Xθ

Hλ
and of λ ∈ S2N+1

such that
∫
S1

∂H
∂λ

(θ, γ(θ), λ) dθ = 0.

The differential ∂ : SHS1,N
∗ (X,ω) → SHS1,N

∗−1 (X,ω) counts rigid solutions (modulo

the S1-action) of {
∂u
∂s

+ Jθ
λ(s)(u)

(
∂u
∂θ

−Xθ
Hλ(s)

(u)
)

= 0,

λ̇−
∫
S1

∂H
∂λ

(θ, u(s, θ), λ) dθ = 0,

such that
lim

s→±∞
(u(s, θ), λ(s)) = (γ±(θ), λ±).

The homology H(SHS1,N (X,ω), ∂) of this complex is independent of J and is denoted

by SHS1,N (H). In order to obtain an S1-equivariant symplectic invariant, we use a double
direct limit to define the S

1-equivariant symplectic homology of (X,ω) by

SHS1

(X,ω) = lim
−→

N

lim
−→

H

SHS1,N (H),

11
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where the first direct limit uses morphisms SHS1,N (X,ω) → SHS1,N+1(X,ω) induced by
the inclusions S2N+1 →֒ S2N+3.

The construction of this invariant and its relation to the ordinary symplectic homology
are provided by the following result.

Theorem 2.2 (Bourgeois, Oancea [5]). Let (X,ω) be a symplectically aspherical manifold

with convex boundary. Then its S1-equivariant symplectic homology SHS1

(X,ω) is well-

defined as a symplectic invariant and it fits into the exact triangle with coefficients in

Λω ⊗Z Q:

SHS1

(X,ω)
[−2] // SHS1

(X,ω)

[+1]xxppp
pp
pp
pp
pp

SH(X,ω)

[0]

ffNNNNNNNNNNN

Like in ordinary symplectic homology, one can define a subcomplex SHS1,N,−(X,ω)
with generators having action less than a small ǫ > 0. This gives rise to an exact trian-

gle involving SHS1

(X,ω), SHS1,+(X,ω) and SHS1,−(X,ω) ≃ H(X, ∂X; Λω) ⊗H(BS1),
where BS1 = ES1/BS1. Combining with the above theorem, we obtain an exact triangle
of exact triangles with coefficients in Λω ⊗Z Q:

SHS1 //

,,ZZZZZZ
ZZZZ

ZZZZ
ZZZZ

ZZZZ
ZZZZ

ZZZZ
ZZZZ

ZZZZ
ZZZ SHS1

wwooo
oo
oo
oo
oo
oo
o

,,XXXXX
XXXX

XXXX
XXXX

XXXX
XXXX

XXXX
XXX

SH

ggOOOOOOOOOOOOOO

,,YYYYY
YYYY

YYYY
YYYY

YYYY
YYYY

YYYY
YYYY

YYYY
Y SHS1,+ //

rreeeeeee
eeee

eeee
eeee

eeee
eeee

eeee
eeee

eee
SHS1,+

{{vv
vv
vv
vv
vv

ssfffff
ffff

ffff
ffff

fff
fff

fff
fff

HS1

(X, ∂X) //

OO

HS1

(X, ∂X)

wwppp
pp
pp
pp
pp
p

OO

SH+

ccHHHHHHHHHH

rreeeeee
eeee

eeee
eeee

eeee
eeee

eeee
eeee

e

H(X, ∂X)

ggNNNNNNNNNNNN

OO

The S1-equivariant version of symplectic homology and its Gysin triangle relating it to
the ordinary symplectic homology can lead to a better understanding of contact homology
CH(X,ω) and its relation to symplectic homology SH+(X,ω). This is the object of the
following result.

Theorem 2.3 (Bourgeois, Oancea [6]). Let (X,ω) be a symplectically aspherical manifold

with convex boundary (Y, ξ), such that there exists a regular J to define contact homology.

Then there is an isomorphism of exact triangles with coefficients in Λω ⊗Z Q:

12
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SHS1,+(X,ω)
[−2] //

≃ [n−3]

��

SHS1,+(X,ω)

[+1]wwooo
oo
oo
oo
oo
o

≃ [n−3]

��

SH+(X,ω)

ggOOOOOOOOOOOO

CH(X,ω)
[−2] // CH(X,ω)

[4−n]wwnnn
nn
nn
nn
nn

SH+(X,ω)

[n−3]

ggPPPPPPPPPPP

This result shows in particular that contact homology CH(X,ω) can always be replaced

with SHS1,+(X,ω). The disadvantage is that the latter invariant has a more complicated
definition, due to the S2N+1 factor from the Borel construction. The advantage is that we
can always find a regular J for this latter invariant on (X,ω) symplectically aspherical,
unlike for contact homology.

Example 2.1. Let (X,ω) be a subcritical Stein manifold with convex boundary (Y, ξ)
such that c1(X,ω) = 0. Since SH(X,ω) = 0, we infer that

SH+
k (X,ω) ≃ Hk+n−1(X, ∂X; Λω).

Similarly, we have SHS1

(X,ω) = 0, so that SHS1,+
k (X,ω) ≃ HS1

k+n−1(X, ∂X; Λω).

Since the S1-action on X is trivial, this implies that

CHk+n−3(X,ω) ≃ SHS1,+
k (X,ω) ≃

(
H(X, ∂X; Λω)⊗H(BS1)

)
k+n−1

.

In other words, we get

CHk(X,ω) ≃
⊕

m≥0

Hk−2m+2(X, ∂X; Λω)

as before.

2.2. Common algebraic formalism

The complexes SH and SH+ for symplectic homology admit an alternative definition
which is formulated in terms of generators for the contact complex CH. This common
algebraic formalism gives the possibility of a unified treatment of these three invariants.
More details about the complexes described in this section can be found in [1].

Let us start with the alternative definition of SH+. We define

̂
CH(X,ω) as the module

generated by all (good and bad) closed Reeb orbits in Y . We also define ĈH(X,ω) to bê
CH(X,ω)[1], i.e., the same as the above module but with grading shifted by 1. Given a

13



BOURGEOIS

generator γ of CH(Y, ξ), we denote by

̂
γ and γ̂ the corresponding generators in

̂
CH(X,ω)

and in ĈH(X,ω) respectively. The alternative SH
+ complex is given by

SH+(X,ω) =

̂
CH(X,ω)⊕ ĈH(X,ω).

We denote by d
̂

CH
:

̂
CH∗(X,ω) →

̂
CH∗−1(X,ω) the differential defined by equa-

tion (3) where the summation is now over all (good and bad) orbits, and similarly for

d
ĈH

: ĈH∗(X,ω) → ĈH∗−1(X,ω).

We define a linear map dM : ĈH∗(X,ω) →

̂
CH∗−1(X,ω) by

dM γ̂ =

{
0 if γ is good,
±2

̂
γ if γ is bad.

On each closed Reeb orbit γ in Y , we fix a point Pγ . We define moduli spaceŝ
M′

A

c (γ, γ
′) and

̂
M′′

A

c (γ, γ
′) as follows. The moduli space

̂
M′

A

c (γ, γ
′) consists of elements

(F+, F1, . . . , Fk) in MA
c (γ, γ

′) for which there exists θ0 ∈ S1 such that

lim
s→∞

f+(s, θ0) = Pγ and lim
s→−∞

f+(s, θ0) = Pγ′ .

The moduli space

̂
M′′

A

c (γ, γ
′) consists of pairs of elements

((F 1
+, F

1
1 , . . . , F

1
k1
), (F 2

+, F
2
1 , . . . , F

2
k2
)) ∈ MA1

c (γ, γ′′)/R×MA2
c (γ′′, γ′)

with A1 +A2 = A and for some closed Reeb orbit γ′′ such that the points

lim
s→−∞

f1
+(s, θ

1
0), lim

s→∞
f2
+(s, θ

2
0) and Pγ′′

lie on γ′′ in the cyclic order induced by the direction of the Reeb field, where θ10, θ
2
0 ∈ S1

are defined by

lim
s→∞

f1
+(s, θ

1
0) = Pγ and lim

s→−∞
f2
+(s, θ

2
0) = Pγ′ .

Finally, let

̂
M

A

c (γ, γ
′) =

̂
M′

A

c (γ, γ
′) ∪

̂
M′′

A

c (γ, γ
′). Under favorable circumstances as for

contact homology, and for a generic choice of the points Pγ , this moduli space is a smooth
manifold of dimension µCZ(γ)− µCZ(γ

′) + 2〈c1(X,ω), A〉 − 1.

We define a linear map δ :

̂
CH∗(X,ω) → ĈH∗−1(X,ω) by

δ

̂
γ =

∑

γ′,A

#

̂
M

A

c (γ, γ
′)/R eAγ̂′.

The differential dSH+ : SH+
∗ (X,ω) → SH+

∗−1(X,ω) is defined, with respect to the
above decomposition of SH+, by

dSH+ =

(
d
̂

CH
dM

δ d
ĈH

)
.

14
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With these definitions, the homology H(SH+(X,ω), dSH+) is isomorphic to the sym-
plectic homology SH+(X,ω) defined in section 1.4. The generators

̂
γ and γ̂ of SH+ cor-

respond to nondegenerate 1-periodic Hamiltonian orbits obtained from the closed Reeb
orbit γ by a time-dependent perturbation. The part dM of the differential is responsible
for the elimination of bad orbits over rational coefficients, as explained in section 2.1.
The differentials d

̂

CH
and d

ĈH
restricted to good orbits then coincide with the contact

homology differentials. Finally, the δ part of the differential induces the contact homology
endomorphism of degree −2 in the exact sequence in Theorem 2.1.

We now give the alternative definition of SH. Let f̃ : X → R be a Morse function
such that f̃ |∂X is constant. Let (Morse(f̃), dMorse) be the Morse complex of f̃ . The
alternative SH complex is given by

SH(X,ω) = SH+(X,ω)⊕Morse(f̃)[−n].

Given a closed Reeb orbit γ and a critical point p of f̃ , we define a moduli space
M(γ, p) consisting of maps

F : CP 1 \ {∞} → X̂

satisfying dF ◦j = J ◦dF modulo biholomorphisms of the domain preserving 0. Moreover,
a neighborhood U∞ of ∞ ∈ CP 1 is mapped by F to R+ × Y , so that we can write
F |U∞

= (a, f). These components satisfy

lim
|z|→∞

a(z) = ∞, lim
ρ→∞

f(ρe2πiϑ) = γ(Tϑ),

for some parametrization of the closed Reeb orbit γ with period T . We also require that
F (0) belongs to the unstable manifold of p for the Morse function f̃ with respect to a

fixed Riemannian metric on X. The gradient trajectories of f̃ are extended to X̂ using
integral curves of ∂

∂t
on R+ × Y .

Let θ : SH+(X,ω) =

̂
CH(X,ω) ⊕ ĈH(X,ω) → Morse(f̃) be the linear map defined

by

θγ̂ = 0, θ

̂
γ =

{ ∑
p∈Crit(f̃) #M(γ, p) p if γ is good,

0 if γ is bad.

The differential dSH : SH∗(X,ω) → SH∗−1(X,ω) is defined, with respect to the
above decomposition of SH, by

dSH =

(
dSH+ 0
θ dMorse

)
.

With these definitions, the homology H(SH(X,ω), dSH) is isomorphic to the symplec-
tic homology SH(X,ω) defined in section 1.4.

3. Effect of Legendrian surgery

The common formalism described in the previous section can be used to describe
simultaneously the effect of a Legendrian surgery on Y (i.e., attaching a critical handle
to X) for the three invariants CH, SH and SH+.
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The Legendrian surgery operation is a particular case of the more general contact
surgery. The latter consists of attaching a handle to X along an isotropic sphere of (Y, ξ).
For an explicit model of the handles and the attaching procedure, see [22]. Legendrian
surgery corresponds to the critical case, i.e., an attachment along a Legendrian sphere Λ
in (Y, ξ). Subcritical Stein manifolds are the result of subcritical handle attachments to
the standard symplectic ball (B2n, ω0). As hinted at the end of section 1.4, symplectic
homology SH(X,ω) is not affected by subcritical handle attachments. On the other hand,
general Stein manifolds can be obtained from subcritical Stein manifolds by Legendrian
surgery along a collection of Legendrian spheres. As we will see in this section, the three
holomorphic curve invariants that we consider in these notes are deeply affected by such
an operation.

For simplicity, we will consider only the case of Legendrian surgery along a single
Legendrian sphere. In order to understand why the effect of Legendrian surgery differs
so much from the effect of subcritical surgeries, let us compare the Reeb dynamics on the
boundary of the corresponding handles:

(i) On the boundary Dk × S2n−k−1, k < n of a subcritical handle, we can find:
• Closed Reeb orbits foliating the sphere {0} × S2n−2k−1. These do not con-

tribute to symplectic homology, for the same reason as on S2n−1, like in
example 1.2.

• Reeb trajectories leaving the handle. After a perturbation of the isotropic
sphere to which the handle is attached, the return time of these trajectories
to the handle can be made arbitrarily long, by reducing the size of attaching
locus of the handle around the isotropic sphere. For this reason, closed Reeb
orbits that are only partially contained in the handle do not contribute to
SH, SH+ or CH.

(ii) On the boundary ST ∗Dn of a critical handle, the Reeb dynamics coincide with
the geodesic flow on the disk Dn. Therefore, we can find:

• No closed Reeb orbits in this critical handle, since all Reeb trajectories
project to a piece of line moving across Dn.

• Reeb trajectories leaving the handle. These can return to the handle after
a bounded time, since generically a Legendrian sphere Λ will admit Reeb
chords, i.e., integral curves of the Reeb field starting and ending on Λ. Since
geodesic segments can join any pair of points on ∂Dn ≃ Λ, one can easily
get convinced that the closed Reeb orbits that are created by a Legendrian
surgery along Λ are in bijective correspondence with cyclic tuples of Reeb
chords of Λ.

This last category of closed Reeb orbits should contribute to our holomorphic curve
invariants. Moreover, these orbits depend on the interactions of the Reeb dynamics with
the Legendrian sphere Λ. It is therefore to be expected that the effect of Legendrian
surgery will be described in terms of a holomorphic curve invariant of Λ, defined in the
same spirit as symplectic and contact homology.
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We define LH(Λ) as the noncommutative unital algebra freely generated over Λω⊗ZQ

by the Reeb chords of Λ. This algebra can be equipped with a differential dLH mapping
LH∗(Λ) to LH∗−1(Λ) satisfying the Leibniz rule and counting some holomorphic disks in
R× Y with boundary on R×Λ. The corresponding homology LH(Λ) = H(LH(Λ), dLH)
is an invariant of the Legendrian isotopy class of Λ. For a definition of this invariant for
Legendrian submanifolds, see [8, 9].

Cyclic version. We now define a variant of the complex (LH(Λ), dLH), which plays
an important role to describe the effect of Legendrian surgery on CH(X,ω). We denote
by LH+(Λ) = LH(Λ)/〈1〉 the module generated by words of Reeb chords for Λ. Let
P : LH+(Λ) → LH+(Λ) be the linear map defined by

P (c1 . . . ck) = (−1)|ck|(|c1|+...+|ck−1|)ckc1 . . . ck−1.

We define LHcyc(Λ) = LH+(Λ)/im(I−P ). It is the module generated by cyclic words of
Reeb chords for Λ. Note that, since 〈1〉 and im(I − P ) are subcomplexes, the differential
dLH induces a differential dcyc on LHcyc(Λ). The corresponding homology LHcyc(Λ) =
H(LHcyc(Λ), dcyc) is again an invariant of the Legendrian isotopy class of Λ.

Theorem 3.1 (Bourgeois, Ekholm, Eliashberg [1]). Let (X0, ω0) be a symplectic manifold

with convex boundary (Y0, ξ0) such that CH(Y0, ξ0) is defined. Let Λ be a Legendrian

sphere in (Y0, ξ0) and let (X,ω) be the result of a critical handle attachment on (X0, ω0)
along Λ. Then we have an exact triangle

CH(X,ω)
[0] // CH(X0, ω0)

[−1]wwppp
pp
pp
pp
pp

LHcyc(Λ)

[0]

ffMMMMMMMMMM

In the above Theorem, the map CH(X,ω) → CH(X0, ω0) counts rigid capped holo-
morphic curves in the symplectic cobordism X \X0. The map CH(X0, ω0) → LHcyc(Λ)
counts rigid capped holomorphic curves in the symplectization R×X0 with boundary on
R× Λ, that are asymptotic to a closed Reeb orbit at the convex end and to Reeb chords
of Λ at the concave end.

Noncyclic version. We now define another variant of the complex (LH(Λ), dLH),
which plays an important role to describe the effect of Legendrian surgery on SH+(X,ω).

We define a module LHHo,+(Λ) =

̂
LH

+
(Λ) ⊕ L̂H

+
(Λ), where

̂
LH

+
(Λ) = LH+(Λ) and

L̂H
+
(Λ) = LH+(Λ)[1]. If w = c1 . . . ck is a word of Reeb chords for Λ in LH+(Λ) we

denote by

̂
w =

̂
c1c2 . . . ck and by ŵ = ĉ1c2 . . . ck the corresponding generators in

̂
LH

+
(Λ)

and in L̂H
+
(Λ) respectively. In what follows, we will sometimes write a word with a

decoration (check or hat) which is not in the first position. As a convention, we identify
such a word with its cyclic permutation starting with the decorated chord, multiplied
with a sign as in the definition of P , where |c| = |

̂
c| = |ĉ| − 1.
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We denote by

̂
d :

̂
LH

+

∗ (X,ω) →

̂
LH

+

∗−1(X,ω) the differential defined bŷ
d

̂
w = (dLHw)

̂

.

Let S : LH(Λ) → L̂H
+
(Λ) be the linear map defined by S(1) = 0 and

S(c1 . . . ck) = ĉ1c2 . . . ck + . . .+ (−1)|c1|+|...+|ck−1|c1 . . . ck−1ĉk.

We denote by d̂ : L̂H
+

∗ (X,ω) → L̂H
+

∗−1(X,ω) the differential defined by

d̂(ĉw′) = S(dLHc)w′ + (−1)|c|+1ĉ(dLHw′).

We define a linear map α : L̂H
+

∗ (Λ) →

̂
LH

+

∗−1(Λ) by

α(ĉ1c2 . . . ck) =

̂
c1c2 . . . ck − c1 . . . ck−1

̂
ck.

The differential dHo,+ : LHHo,+
∗ (Λ) → LHHo,+

∗−1 (Λ) is defined, with respect to the

above decomposition of LHHo,+, by

dHo,+ =

( ̂
d α

0 d̂

)
.

Then dHo,+ ◦ dHo,+ = 0 and the homology LHHo,+(Λ) = H(LHHo,+(Λ), dHo,+) of the
corresponding complex is again an invariant of the Legendrian isotopy class of Λ.

Note that, with the above algebraic definitions, we have an exact triangle

LHcyc(Λ) // LHcyc(Λ)

xxppp
pp
pp
pp
p

LHHo,+(Λ)

ffNNNNNNNNNN

which is similar to the Connes exact triangle for cyclic and Hochschild homologies. The
analogy between the above exact triangle and the exact triangle in Theorem 2.1 motivates
the following result.

Theorem 3.2 (Bourgeois, Ekholm, Eliashberg [1]). Under the same assumptions as in

Theorem 3.1, we have an exact triangle

SH+(X,ω)
[0] // SH+(X0, ω0)

[−1]wwooo
oo
oo
oo
oo

LHHo,+(Λ)

[0]

ggNNNNNNNNNNN

Expanded version. We finally define another variant of the complex (LH(Λ), dLH),
which plays an important role to describe the effect of Legendrian surgery on SH(X,ω).
We define an expanded module LHHo(Λ) = LHHo,+(Λ)⊕ 〈τ〉. The unique generator for
the second summand formally represents the unique connected component of Λ.
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We define a linear map T : LHHo,+(Λ) → 〈τ〉 by

T (

̂
c) = #M(c)/R τ,

T (

̂
w) = 0 if w contains more than one letter,

T (ŵ) = 0.

In this definition, the moduli space M(c) consists of holomorphic disks in R × Y with
boundary on R×Λ, having one boundary puncture converging at the convex end of R×Y
to the Reeb chord c.

The differential dHo : LHHo
∗ (Λ) → LHHo

∗−1(Λ) is defined, with respect to the above

decomposition of LHHo, by

dHo =

(
dHo,+ 0
T 0

)
.

Then dHo ◦ dHo = 0 and the corresponding homology LHHo(Λ) = H(LHHo(Λ), dHo) is
again an invariant of the Legendrian isotopy class of Λ.

Theorem 3.3 (Bourgeois, Ekholm, Eliashberg [1]). Under the same assumptions as in

Theorem 3.1, we have an exact triangle

SH(X,ω)
[0] // SH(X0, ω0)

[−1]xxppp
pp
pp
pp
p

LHHo(Λ)

[0]

ffMMMMMMMMMM

In this last result, note that for a subcritical Stein manifold (X0, ω0), since we have
SH(X0, ω0) = 0, it follows that

SH(X,ω) ≃ LHHo(Λ).
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