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On real determinantal quartics

Alex Degtyarev and Ilia Itenberg

Abstract. We describe all possible arrangements of the ten nodes of a generic real
determinantal quartic surface in P3 with nonempty spectrahedral region.

1. Introduction

1.1. Motivation

It is a common understanding that, thanks to the global Torelli theorem for
K3-surfaces [16] and surjectivity of the period map [13], any reasonable question concern-
ing the topology of singular or real K3-surfaces can be reduced to a certain arithmetic
problem; many examples, treating the two subjects separately, are found in the literature.
However, there are but a few papers where objects that are both real and singular are
considered; one can mention [11] and [14], which deal, respectively, with real sextics with
a single node in P2 and real quartic surfaces with a single node in P3.

In the present paper, we make an attempt to advance this line of research, consider-
ing real quartic surfaces with several nodes. Special attention is paid to degenerations
of nonsingular quartics, which are used to control the topology of the resulting singular
surfaces. Since the classical problem of enumerating all equivariant equisingular defor-
mation types seems rather hopeless (one would expect thousands of classes), we confine
ourselves to a very special example arising from convex algebraic geometry. Namely, we
describe arrangements of the ten nodes of a generic determinantal quartic with nonempty
spectrahedral region, see next subsection for details.

1.2. Principal results

Consider a generic dimension 3 real linear system V of quadrics in P3. Singular quadrics
form a surface X ⊂ V ∼= P3 of degree 4, which is called a transversal determinantal

quartic (see Section 4 for details and precise definitions). In other words, we consider

a quartic surface X ⊂ P3 given by an equation of the form det
∑3

i=0 xiq̄i = 0, where
[x0 : x1 : x2 : x3] are homogeneous coordinates in P3 and q̄0, q̄1, q̄2, q̄3 are certain fixed
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nonzero symmetric (4 × 4)-matrices. Generically, such a surface is known to have ten
nodes.

Whenever present, quadrics given by definite quadratic forms constitute a single con-
nected component of the complement VRrXR; this component is called the spectrahedral
region of V . This construction is a special case of a more general framework, see [20] and
[17] for details. The study of the shapes of various spectrahedra is a major problem of
convex algebraic geometry.

A transversal determinantal quartic has ten nodes, and the original question posed to
us by B. Sturmfels was whether all ten can be located in the boundary of the spectra-
hedral region. (The best known example, constructed explicitly, had eight nodes in the
boundary.) We answer this question in the affirmative; moreover, we describe all possible
arrangements of the nodes with respect to the components of the complement VR rXR.

Theorem 1.1. Let X ⊂ P3 be a transversal real determinantal quartic with nonempty

spectrahedral region R. Then X has an even number m > 0 of real nodes in the boundary

of R and an even number n > 0 of real nodes disjoint from R, so that 2 6 m + n 6 10.
Any pair of even numbers m,n > 0, 2 6 m+ n 6 10, is realized by a quartic as above.

This theorem is proved in Subsection 5.3.

Remark 1.1. It is worth emphasizing that any transversal real determinantal quartic
with nonempty spectrahedral region has at least two real nodes. Note that a similar,
and even stronger, statement holds for transversal real determinantal cubics in P3, which
are discriminants of linear systems of plane conics: such a cubic (which is necessarily a
Cayley cubic) has nonempty spectrahedral region if and only if at least one of its four
nodes is real.

It would be interesting to find explicit matrix representations of transversal real deter-
minantal quartics for all values of m and n allowed by Theorem 1.1.

1.3. Contents of the paper

To prove Theorem 1.1, we analyze the equisingular stratification of the space of complex
quartics in P3, Section 2, and identify the stratum that is formed, up to codimension one
subset, by the transversal determinantal quartics, Section 4. Then we describe the sets of
cycles that can vanish under certain special nodal degenerations of a real quartic surface,
see Section 3. Finally, in Section 5, we show that each transversal real determinantal
quartic is obtained by a degeneration of a nonsingular quartic with two nested spheres
(the so called hyperbolic quartic), and use previously known arithmetical computations
in order to construct/prohibit various degenerations of the latter.

2. Singular quartics in P3

The principal result of this section is Theorem 2.1, which enumerates the equisingular
strata of the space of quartics in P3.
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2.1. Integral lattices

A lattice is a finitely generated free abelian group L supplied with a symmetric bilinear
form b : L ⊗ L → Z. We abbreviate b(x, y) = x · y and b(x, x) = x2. A lattice L is even

if x2 = 0 mod 2 for all x ∈ L. As the transition matrix between two integral bases has
determinant ±1, the determinant detL ∈ Z (i.e., the determinant of the Gram matrix of b
in any basis of L) is well defined. A lattice L is called nondegenerate if the determinant
detL 6= 0; it is called unimodular if detL = ±1.

Given a lattice L, the bilinear form can be extended to L ⊗ Q by linearity. If L is
nondegenerate, the dual group L∨ = Hom(L,Z) can be identified with the subgroup

{

x ∈ L⊗Q
∣

∣ x · y ∈ Z for all x ∈ L
}

.

In particular, L itself can be identified with a subgroup of L∨.
The group of isometries of a lattice L is denoted by AutL. Given a vector a ∈ L,

a2 6= 0, the reflection against (the hyperplane orthogonal to) a is the automorphism
ra : L → L, x 7→ x − 2(x · a)a/a2, provided that it is well defined, i.e., takes integral
vectors to integral vectors. The reflection is always well defined if a2 = ±1 or ±2; if
a2 = ±4, the reflection ra is well defined if and only if a = 0 mod 2L∨.

A nondegenerate lattice L is called elliptic or hyperbolic if its positive inertia index
equals 0 or 1, respectively. To any hyperbolic lattice H one can associate a hyperbolic
space P(C) := C/R∗, where C = CH := {x ∈ H ⊗ R |x2 > 0} is the positive cone of H.
In particular, given a lattice L and an isometric involution c : L → L with hyperbolic
invariant sublattice Lc

+ = {x ∈ L | c(x) = x}, one can define the space P(Cc
+). Any

subgroup G ⊂ AutH generated by (some) reflections ra : H → H defined by vectors
a ∈ H with a2 < 0 admits a polyhedral fundamental domain PG ⊂ P(C): it is the closure
of (any) connected component of the space P(C) with all mirrors of G removed.

All lattices considered in the paper are even. A root in an even lattice is a vector of
square (−2). A root system is an elliptic lattice generated by roots. We use the standard
notation Ap, p > 1, Dq, q > 4, E6, E7, E8 for the irreducible root systems of the same
name. Let U = Zu1 ⊕ Zu2, u

2
1 = u2

2 = 0, u1 · u2 = 1; this lattice is called the hyperbolic

plane, and any basis (u1, u2) as above is called a standard basis for U. Given a lattice L
and an integer d, the notation L(d) stands for the lattice obtained from L by multiplying
the values of the bilinear form by d.

2.2. Singular homological types

Definition 2.1. A set of (simple) singularities is a pair (Σ, σ), where Σ is a root system
and σ is a collection of roots of Σ constituting a Weyl chamber of Σ. An isometry Σ1 → Σ2

of two sets of singularities (Σi, σi), i = 1, 2, is admissible if it takes σ1 to σ2.

Remark 2.1. Any Weyl chamber of a root system Σ can be taken to any other Weyl
chamber by an element of the Weyl group of Σ, which extends to any larger lattice
containing Σ. For this reason, when speaking about the isomorphism classification of sets
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of singularities, configurations, and singular homological types (see below), the subset σ
in Definition 2.1 can be, and often is disregarded.

Definition 2.2. A configuration (extending a given set of singularities (Σ, σ)) is a finite

index extension S̃ ⊃ S := Σ⊕ Zh, h2 = 4, satisfying the following conditions:

(1) each root r ∈ S̃ ∩ (Σ⊗Q) belongs to Σ;

(2) S̃ does not contain an element u with u2 = 0 and u · h = 2.

An admissible isometry of two configurations S̃i ⊃ Si = Σi ⊕Zhi, i = 1, 2, is an isometry
S̃1 → S̃2 taking h1 to h2 and inducing an admissible isometry Σ1 → Σ2.

Definition 2.3. A singular homological type (extending a set of singularities (Σ, σ)) is
an extension of the orthogonal direct sum S := Σ⊕Zh, h2 = 4, to a lattice L isomorphic
to 2E8 ⊕ 3U, such that the primitive hull S̃ of S in L is a configuration. (The singular

homological type is also said to extend the configuration S̃ ⊃ S.) An isomorphism between
two singular homological types Li ⊃ Si ⊃ σi ∪ {hi}, i = 1, 2, is an isometry L1 → L2

taking h1 to h2 and σ1 to σ2 (as a set).

A singular homological type is uniquely determined by the collection H = (L, h, σ);
then Σ = ΣH is the sublattice spanned by σ, and S = SH = Σ⊕ Zh.

Given a singular homological type H, the orthogonal complement S⊥
H

is a nondegen-
erate lattice of positive inertia index 2. Hence, the orthogonal projection of any positive
definite 2-subspace ω1 ⊂ S⊥

H
⊗ R to any other such subspace ω2 is an isomorphism of

vector spaces; it can be used to compare orientations of ω1 and ω2. Thus, a choice of an
orientation of a positive definite 2-subspace in S⊥

H
⊗ R defines a coherent orientation of

any other.

Definition 2.4. An orientation of a singular homological type H = (L, h, σ) is a choice
of coherent orientations of positive definite 2-subspaces of S⊥

H
⊗ R. Oriented singular

homological types (Hi, oi), i = 1, 2, are isomorphic if there is an isomorphism H1 → H2

taking o1 to o2. A singular homological type H is called symmetric if (H, o) ∼= (H,−o),
i.e., it H admits an automorphism reversing orientation.

2.3. Classification of singular quartics

Let X ⊂ P3 be a quartic surface with simple singularities only. Denote by X̃ → X
the minimal resolution of singularities of X; it is a minimal K3-surface. Introduce the
following objects:

• LX = H2(X̃) = H2(X̃), regarded as a lattice via the intersection form (we always
identify homology and cohomology via the Poincaré duality);

• σX ⊂ LX , the set of the classes of the exceptional divisors contracted by the
blow-up map X̃ → X;

• hX ∈ LX , the class of the pull-back of a generic plane section of X;
• ωX ⊂ LX ⊗ R, the oriented 2-subspace spanned by the real and imaginary parts
of the class of a holomorphic 2-form on X̃ (the period of X̃).
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Note that ωX is positive definite. According to [18, 21], a triple H = (L, h, σ) has the
form (LX , hX , σX) for a quartic X ∈ P3 as above if and only if it is a singular homological
type in the sense of Definition 2.3. If this is the case, the above orientation of ωX defines
an orientation of H.

The following theorem is quite expectable; however, we could not find an explicit
statement in the literature. The surjectivity part is contained in [21].

Theorem 2.1. The map sending a quartic surface X ⊂ P3 with simple singularities to the

pair consisting of its singular homological type HX = (LX , hX , σX) and the orientation

of the space ωX establishes a one-to-one correspondence between the set of equisingular

deformation classes of quartics with a given set of simple singularities (Σ, σ) and the set

of isomorphism classes of oriented abstract singular homological types extending (Σ, σ).

Proof. Proof of this theorem repeats, almost literally, the proof of a similar theorem for
plane sextic curves, see [5]. It is based on Beauville’s construction [1] of a fine period
space of marked polarized K3-surfaces. We omit the details. �

The equisingular stratum of the space of quartic surfaces in P3 corresponding to an
oriented singular homological type (H, o) will be denoted by M(H, o). If H is symmetric,
we abbreviate this notation to M(H). As part of the proof of Theorem 2.1, one obtains an
explicit description of the moduli space of quartics, which results in the following formula
for its dimension

dimM(H, o)/PGL(4,C) = 19− rkΣH (1)

(similar to the corresponding formula for plane sextics). Note that rkΣH = #σ equals
the total Milnor number µ(X) of X.

Remark 2.2. The equisingular deformation classification of quartic surfaces with isolated
singularities and at least one non-simple singular point is found in [3, 4]. With a few
exceptions, the deformation class of such a quartic is also determined by its (appropriately
defined) singular homological type.

3. Real quartics

In this section, we analyze the position of the vanishing cycles of a degeneration
of a nonsingular quartic with respect to its period domain. The principal results are
Theorems 3.2 and 3.3.

3.1. Real homological types

Given an isometric involution c : L → L on a lattice L, the (±1)-eigenlattices of c
will be denoted by Lc

± = {x ∈ L | c(x) = ±x} ⊂ L. If L is nondegenerate, Lc
± are the

orthogonal complements of each other.
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Definition 3.1. A real homological type is a triple (L, h, c), where L is a lattice isomorphic
to 2E8 ⊕ 3U, h ∈ L is a vector of square 4, and c : L → L is an isometric involution such
that

• the sublattice Lc
+ is hyperbolic, and

• one has h ∈ Lc
−.

An isomorphism between two real homological types (Li, hi, ci), i = 1, 2, is an isometry
ϕ : L1 → L2 such that ϕ(h1) = h2 and ϕ ◦ c1 = c2 ◦ ϕ.

Definition 3.2. Let (L, h, c) be a real homological type. Consider vectors e ∈ Lc
+ of the

following three kinds:

(1) e2 = −2, i.e., e is a root;
(2) e2 = −4 and e = h mod 2L;
(3) e2 = −4, e 6= h mod 2L, and e is decomposable, i.e., e = r′− r′′ for a pair of roots

r′, r′′ ∈ L such that r′ · r′′ = r′ · h = r′′ · h = 0 and r′′ = −c(r′).

A fundamental tower of (L, h, c) is a triple S ⊂ P ⊂ P̄ ⊂ P(Cc
+) of fundamental domains

of the subgroups of AutLc
+ generated by the reflections defined by all vectors of Lc

+ of
type (1)–(3), (1)–(2), and (1), respectively. (Recall that Cc

+ ⊂ Lc
+ ⊗ R is the positive

cone, see Subsection 2.1.)

Note that, in cases (2) and (3), the conditions imposed imply e = 0 mod 2(Lc
+)

∨,
i.e., e does define a reflection re : L

c
+ → Lc

+. Moreover, one can easily see that this
reflection extends to an automorphism of the homological type. As a consequence, any
two fundamental towers are related by an automorphism of the homological type (in fact,
by a sequence of reflections).

Definition 3.3. A real homological type (L, h, c) equipped with a distinguished funda-
mental tower S ⊂ P ⊂ P̄ is called a period lattice, and the polyhedra P and P̄ are
called the period domains (more precisely, the period domain of real quartics and that of
abstract real K3-surfaces, respectively).

As explained in Subsection 2.1, the facets of the polyhedra in Definition 3.2 are (parts
of) some of the mirrors (walls) of the respective groups, i.e., hyperplanes orthogonal to
vectors of corresponding types. We refer to the type of the vector as the type of the
corresponding wall.

Remark 3.1. The polyhedra P and P̄ have a certain geometric meaning (see Subsec-
tion 3.2 below), whereas S does not. However, in many examples, S is much easier to
compute and, on the other hand, a choice of S determines the other two polyhedra: P is
paved by the copies of S obtained from S by iterated reflections against (the consecutive
images of) the walls of type 3.2(3), and, similarly, P̄ is paved by the copies of P obtained
by iterated reflections against the walls of type 3.2(2).

3.2. Invariant periods

A quartic X ⊂ P3 is called real if it is invariant under the complex conjugation invo-
lution conj : P3 → P3. The involution conj restricts to X and, if X is singular, lifts to
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the minimal resolution X̃ of singularities of X, turning both into real K3-surfaces. A
nonsingular real quartic X ⊂ P3 gives rise to a real homological type (LX , hX , cX), where
cX : LX → LX is the involution induced by conj.

Two nonsingular real quartics X,Y ⊂ P3 are said to be coarse deformation equivalent

if X is equivariantly deformation equivalent to either Y or the quartic Y ′ obtained from Y
by an orientation reversing automorphism of P3. A coarse deformation class consists of
one or two components of the space of nonsingular real quartics; in the former case, the
quartics are called amphichiral, in the latter case, chiral. The following statement is found
in [15].

Theorem 3.1. Two nonsingular real quartics X,Y ⊂ P3 are coarse deformation equiva-

lent if and only if the corresponding real homological types (LX , hX , cX) and (LY , hY , cY )
are isomorphic. �

A complete classification of nonsingular real quartics in P3 up to equivariant deforma-
tion, addressing in particular the chirality problem, and an interpretation of the result in
topological terms are found in [12].

Given a real quartic X ⊂ P3 or, more generally, a real K3-surface (X, conj), a holo-
morphic 2-form ΩX on X can be normalized (uniquely up to a nonzero real factor) so
that conj∗ ΩX = Ω̄X ; such a form is called real. The real part (ωX)+ of the class of a real
form ΩX belongs to (LX)cX+ ⊗R and defines a point [(ωX)+] in the associated hyperbolic
space; this point is called the invariant period of X.

Fix a period lattice (L, h, c;S ⊂ P ⊂ P̄) with the real homological type (L, h, c)
isomorphic to that of X. A marking of X is a particular choice of an isomorphism
ϕ : (LX , hX , cX) → (L, h, c). A marking ϕ is called proper if ϕ[(ωX)+] ∈ P. In fact, if X
is nonsingular, the image ϕ[(ωX)+] under a proper marking belongs to the interior IntP,
see, e.g., [15]. It follows that any two proper markings differ by a symmetry of P.

3.3. Degenerations

A degeneration is a smooth family Xt ⊂ P3, t ∈ [0, 1], of real quartics such that all
quartics Xt, t ∈ (0, 1] are nonsingular. For simplicity, we confine ourselves to the case
when X0 has simple nodes only as singularities. Recall that the homology groups H2(Xt)
of the nonsingular members of the family are canonically identified via the Gauss-Manin
connection, and this common group contains a set of vanishing cycles (defined up to sign),
one for each node of X0.

The Gauss-Manin connection can be extended to identify the homology of X1 with the
homology of the minimal resolution X̃0 of X0, taking (up to sign) the vanishing cycles to
the classes of the exceptional divisors contracted in X0.

At each real node of X0, the difference of the local Euler characteristics of the real parts
of X0 and X1 is ±1; according to this difference, the node is called positive or negative,
respectively. Negative are the nodes whose vanishing cycles are cX1

-invariant. Below, we
are interested in the non-positive nodal degenerations, i.e., such that each node of X0 is
either not real or real and negative.
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Definition 3.4. Let (L, h, c;S ⊂ P ⊂ P̄) be a period lattice. A collection of roots
ri, s

′
j , s

′′
j ∈ L, i = 1, . . . , k, j = 1, . . . l, is called an admissible system of cycles if it

satisfies the following conditions:

(1) all roots are orthogonal to each other and to h;
(2) the primitive hull in L of the sublattice spanned by ri, s

′
j , s

′′
j contains no roots

other than ±ri, ±s′j , ±s′′j , cf. 2.2(1);
(3) each root ri, i = 1, . . . , k, belongs to Lc

+ and defines a facet of P, which is
necessarily of type 3.2(1);

(4) for each j = 1, . . . , l, one has c(s′j) = −s′′j and the decomposable invariant vector
s′j − s′′j defines a type 3.2(3) facet of S.

Theorem 3.2. Let (L, h, c;S ⊂ P ⊂ P̄) be a period lattice, and let Xt be a non-positive

nodal degeneration with the real homological type of the nonsingular surface X := X1

isomorphic to (L, h, c). Then X admits a proper marking that takes the set of vanishing

cycles of Xt to an admissible system of cycles.

Theorem 3.3. Given a period lattice (L, h, c;S ⊂ P ⊂ P̄) and an admissible system of

cycles σ = {ri, s
′
j , s

′′
j }, i = 1, . . . , k, j = 1, . . . , l, there exists a nonsingular real quartic

X and a proper marking ϕ : (LX , hX , cX) → (L, h, c) which identifies σ with the set of

vanishing cycles of a certain non-positive nodal degeneration of X.

Proof of Theorem 3.2. Clearly, the vanishing cycles are orthogonal to each other and to h,
i.e., satisfy 3.4(1), as they are geometrically disjoint and can be chosen disjoint from a
hyperplane section.

Denote by ri ∈ LX , i = 1, . . . , k, the vanishing cycles corresponding to the real nodes
of X0, and by s′j , s

′′
j ∈ LX , j = 1, . . . , l, those corresponding to the pairs of complex

conjugate nodes; the latter are oriented so that cX(s′j) = −s′′j .

Let X̃0 be the minimal resolution of singularities of X0. Recall that, using the Gauss-
Manin connection, we identify the homology of X and X̃0. Let ω̃ ∈ LX ⊗ C be the class
realized by a real holomorphic 2-form on X̃0, and let [ω̃+] ∈ PX be its invariant part

(the invariant period of X̃0). Note that [ω̃+] does belong to PX as it is the limit of

invariant periods of Xt, which are all in IntPX . One has Pic X̃0 = ω̃⊥ ∩ LX . Denote
Pich X̃0 = (hX)⊥, the orthogonal complement of hX in Pic X̃0. Up to sign, any root

in Pich X̃0 is represented by a unique (−2)-curve contracted in X0, and these are all

(−2)-curves contracted. It follows that the roots of Pich X̃0 are precisely the vanish-
ing cycles; in particular, this implies condition 3.4(2). Thus, the maximal root system

in Pich X̃0 is (k + 2l)A1, and all its roots define a common face of all its Weyl cham-
bers. Passing to the cX -invariant part, one easily concludes that the invariant vanishing
cycles ri, i = 1, . . . , k, define a common face of all P-like fundamental polyhedra contain-
ing [ω̃+], in particular, of PX , whereas the decomposable vectors s′j − s′′j , j = 1, . . . , l,
define a common face of all S-like polyhedra containing [ω̃+]; for the latter, one can
take any polyhedron S′ containing [ω̃+] and contained in PX . Due to Theorem 2.1 and

117



DEGTYAREV and ITENBERG

condition 2.2(2) in the definition, one has s′j − s′′j 6= h mod 2L; hence the wall defined by
this vector is of type 3.2(3).

It remains to consider any proper marking of X1 and, if necessary, adjust it by a
symmetry of P to make sure that the polyhedron S′ constructed above is taken to the
preselected polyhedron S. �

Proof of Theorem 3.3. Let fP and fS be the intersections of the facets defined in items
3.4(3) and (4), respectively. Notice that fP and fS are nonempty faces of P and S,
respectively (since the facets intersected are mutually orthogonal). One has fP ⊥ fS
and, since the symmetry about fS preserves P, it also preserves fP. It follows that the
subspace supporting fS intersects fP at at least one interior point. Let [ω̃+] be such a
point, and let [ω̃−] ⊂ P(Cc

−h) be a point in the intersection of the hyperplanes defined by
the skew-invariant vectors s′j + s′′j , j = 1, . . . , l, in the hyperbolic space associated with
the orthogonal complement Lc

−h of h in Lc
−. (Since all hyperplanes are orthogonal to each

other, they obviously intersect.) Due to 3.4(2), the pair ([ω̃+], [ω̃−]) can be chosen generic
in the sense that [ω̃+] and [ω̃−] are not simultaneously orthogonal to any root of L which
is orthogonal to h and does not belong to ±σ.

Let U ⊂ P(Cc
−h) be a sufficiently small neighborhood of [ω̃−]. Consider a generic path

([(ω+)t], [(ω−)t]) ∈ IntP × U , t ∈ (0, 1], converging to the point ([ω̃+], [ω̃−]). According
to [15], it gives rise to a family Xt of properly marked nonsingular real quartics. (Strictly
speaking, the path used should avoid a certain codimension 2 subset, see loc. cit. for
the technical details.) This family can be chosen to converge to a singular quartic X0

(cf., e.g., [19] for a detailed proof for the similar case of plane sextic, i.e., polarization of
square 2), and the limit quarticX0 is necessarily real. As in the previous proof, considering

the Picard group Pich X̃0 and using the fact that the pair ([ω̃+], [ω̃+]) is generic, one
concludes that the irreducible (−2)-curves contracted in X0 are precisely those realizing
the elements of σ (here, condition 3.4(2) is crucial, which implies that (L, h, σ) is a singular
homological type); hence, these elements are the vanishing cycles. �

Remark 3.2. Note that, if negative nodes are present, the real structure does not change
continuously on the desingularized family X̃t of abstract K3-surfaces; in fact, the real
homological type of the limit surface X̃0, defined in the obvious way, is not even isomorphic
to that of Xt, t > 0. However, the real structure does change continuously on the quartics.

4. Complex determinantal quartics

The goal of this section is Theorem 4.8, which identifies the equisingular stratum
containing transversal determinantal quartics.

4.1. Notation

Let Qu(n) ∼= PN(n) be the space of quadrics in Pn; here N(n) = 1
2n(n + 3). Let,

further, Qur(n) ⊂ Qu(n), 0 6 r 6 n, be the space of quadrics of corank r. The closure
∆(n) of Qu1(n) is called the discriminant hypersurface; it has degree n+ 1.
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The singular locus of a quadric Q of corank r > 0 is an (r − 1)-subspace of Pn.
Sending Q to its singular locus, one obtains a locally trivial fibration

Qur(n) → Gr(n+ 1, r); (2)

its fiber is Qu0(n − r). (We let Qu(0) = Qu0(0) = pt.) Thus, Qur(n) is a smooth
quasi-projective variety and dimQur(n) = N(n)− 1

2r(r − 1).

Definition 4.1. A geometric hyperplane is a hyperplane

Hp :=
{

Q ∈ Qu(n)
∣

∣ Q ∋ p
}

consisting of all quadrics passing through a fixed point p ∈ Pn.

For each point p ∈ Pn, fibration (2) restricts to a locally trivial fibration

Qur(n)rHp → Gr(n+ 1, r)rGr(n, r − 1) (3)

with fiber Qu0(n− r)rHp. Here, the difference in the right hand side is the space of all
(r − 1)-planes in Pn not passing through p.

Since, in this paper, we are mainly concerned with quadrics in P3, we abbreviate the
notation as follows: let Qu = Qu(3), ∆ = ∆(3), and let ∆′ and ∆′′ be the closures of
Qu2(3) and Qu3(3), respectively. Let also ∆◦ = Qu1(3) = ∆r∆′. One has

dimQu = 9, dim∆ = dim∆◦ = 8, dim∆′ = 6, dim∆′′ = 3.

Recall also that deg∆ = 4 and deg∆′ = 10 (see [10]).
Let V be a subspace of Qu of dimension 3. Unless V ∈ ∆, the intersection ∆V := V ∩∆

is a quartic in V . Any quartic X ∈ P3 such that the pair (P3, X) is isomorphic to (V,∆V )
above is called a determinantal quartic.

A 3-space V is called transversal if it is transversal to the strata ∆◦, ∆′r∆′′, and ∆′′.
Any determinantal quartic X ⊂ P3 isomorphic to ∆V ⊂ V is also called transversal. If
V is transversal, the singular locus Sing∆V coincides with V ∩ ∆′ and consists of ten
type A1 points. Conversely, if Sing∆V consists of ten type A1 points, V is transversal.

For a 3-space V ⊂ Qu as above, we denote ∆◦
V = ∆V r∆′.

4.2. Some fundamental groups

Observe that the set Sing∆(n) = Qu>2(n) of singular points of ∆(n) has codimension 3
in Qu(n). Hence a generic plane section of ∆(n) is a nonsingular plane curve of degree
n+ 1 and, due to Zariski’s hyperplane section theorem [22], one has π1(Qu0(n)) = Zn+1.
A generic plane section of the union ∆(n) ∪ Hp is a transversal union of a nonsingular
curve and a line; hence, π1(Qu0(n)rHp) = Z.

Proposition 4.1. One has π1(∆
◦) = 0.
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Proof. The Serre exact sequence of a fibration (2) takes the form

π2(P
3) −−−−→ π1(Qu0(2)) −−−−→ π1(∆

◦) −−−−→ π1(P
3).

∥

∥

∥

∥

∥

∥

∥

∥

∥

Z Z3 0

From this sequence, one concludes that π1(∆
◦) = H1(∆

◦) is a quotient of Z3 and, more-
over, the inclusion homomorphism H1(U r∆′) → H1(∆

◦) is onto, where U is a regular
neighborhood in ∆ of a point Q ∈ ∆′. A normal 3-plane section of ∆′ in ∆ is a type A1

singularity and Ur∆′ is homotopy equivalent to its link. Hence, one has H1(Ur∆′) = Z2

and the statement follows. �

Proposition 4.2. One has π1(∆
◦ rHp) = Z2 (for any point p ∈ P3).

Proof. Similar to the previous proof, using fibration (3) instead of (2), one concludes that
the abelian group π1(∆

◦rHp) = H1(∆
◦rHp) is a quotient of the group H1(Ur∆′) = Z2,

where U is a regular neighborhood in ∆ of a point in ∆′. Thus, it remains to show that
∆◦ rHp admits a nontrivial double covering.

Let Q ∈ ∆◦, Q 6∋ p. Denote by q the (only) singular point of Q. Then, there are exactly
two planes passing through the line (pq) and tangent to Q along a whole generatrix: the
original quadric Q and the two planes are the cones, with the vertex at q, over the section
of Q by a generic plane α ∋ p and the two tangents to this section passing through p.
Clearly, the space of all pairs

(Q, {tangent plane as above})

is a double covering of ∆◦ rHp. This covering is nontrivial: for example, in the family

Qt =
{

(x1 − x3)
2 + x2

1 − e2πitx2
2 = 0

}

, t ∈ [0, 1],

the two tangents x1 = ±eπitx2 are interchanged. (In particular, it follows that the path
Qt, t ∈ [0, 1], is a non-contractible loop in ∆◦ rH(0:0:0:1).) �

Remark 4.1. Similar to Propositions 4.1 and 4.2, one can easily show that all funda-
mental groups π1(Qur(n)) and π1(Qur(n)rHp) are cyclic.

Corollary 4.3. Let p ∈ P3. Then, for a generic transversal 3-plane V ⊂ Qu, one has

π1(∆
◦
V ) = 0 and π1(∆

◦
V rHp) = Z2.

Proof. The statement follows from Propositions 4.1 and 4.2 and Zariski type hyperplane
section theorem for quasi-projective varieties (see [9, 7, 8] or recent survey [2], Theo-
rem 5.1). �

4.3. The determinantal stratum

In this subsection, we identify the stratum in the space of quartics formed by the
transversal determinantal ones.
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Lemma 4.4. Any transversal determinantal quartic has a quadruple of non-coplanar

singular points.

We postpone the proof of this technical statement till Subsection 4.4.

Lemma 4.5. The space of quintuples (V ;Q1, Q2, Q3, Q4), where V ⊂ Qu is a transversal

3-space and Q1, Q2, Q3, Q4 are four non-coplanar singular points of ∆V , is an irreducible

quasi-projective variety of dimension 24.

Proof. The statement is a tautology, as the 3-subspace V ⊂ Qu is uniquely determined
by a quadruple of its non-coplanar points Q1, Q2, Q3, Q4. Thus, the space in question is
a Zariski open subset of the irreducible variety (∆′ r∆′′)4. �

Since dimPGL(4,C) = 15, dimension of the moduli space of determinantal quartics is
24−15 = 9, and, comparing the dimensions, see (1), one arrives at the following corollary.

Corollary 4.6. Transversal determinantal quartics X ⊂ P3 form a Zariski open subset

of a single equisingular stratum of the space of quartics. �

We denote by Mdet the equisingular stratum containing transversal determinantal
quartics. The corresponding configuration and singular homological type are denoted
by S̃det and Hdet, respectively; they extend the set of singularities Σdet := 10A1. Let
a1, . . . , a10 ∈ Σdet be generators of the A1 summands.

Lemma 4.7. The extension S̃det ⊃ Sdet := Σdet ⊕Zh is obtained from Sdet by adjoining

the element 1
2 (a1 + . . .+ a10 + h). One has S̃det

∼= U⊕E8(2)⊕ [−4].

Proof. The requirement that S̃ should be an even integral lattice implies that S̃det is
generated in Sdet ⊗Q by Sdet and several elements of the form

(1) 1
2 (a1 + . . .+ a4),

(2) 1
2 (a1 + . . .+ a8),

(3) 1
2 (a1 + a2 + h),

(4) 1
2 (a1 + . . .+ a6 + h),

(5) 1
2 (a1 + . . .+ a10 + h).

(up to reordering of the basis elements ai).
Case (1) is impossible as the only nontrivial finite index extension of 4A1 is D4, which

contradicts to 2.2(1).

Consider case (2), i.e., assume that S̃det contains a := 1
2 (a1+. . .+a8). If S̃det contained

another element a′ of the same form, then, up to a further reordering, one would have
a′ = 1

2 (a1 + . . .+ a6 + a9 + a10), and the difference a′ − a would be as in case (1). Hence,
a is the only element of S̃det mod Sdet of this form, and each surface in the stratum has
eight distinguished singular points. This contradicts Lemma 4.5.

Case (3) contradicts to 2.2(2).
Since cases (1) and (2) have been eliminated, S̃det mod Sdet may contain at most one

element as in (4) or (5). In case (4), each surface in the stratum would have six distin-
guished singular points, which would contradict Lemma 4.5. Thus, either S̃det = Sdet or

121



DEGTYAREV and ITENBERG

S̃det ⊃ Sdet is the index 2 extension generated by the (only) element (5). Pick a point
p ∈ P3 and a sufficiently generic transversal quartic ∆V , so that Hp ∩ ∆V is nonsingu-

lar. Since S̃det is the primitive hull of Sdet in L ∼= H2(∆̃V ), from the Poincaré–Lefschetz

duality it follows that H1(∆
◦
V rHp) = Ext(S̃det/Sdet,Z). Due to Corollary 4.3, one has

[S̃det : Sdet] = 2, and the first statement follows. The isomorphism class of S̃det is given
by a simple computation of the discriminant group and Nikulin’s uniqueness theorem [15],
Theorem 1.14.2. �

Remark 4.2. Alternatively, case (2) in the proof of Lemma 4.7 can also be eliminated
using Corollary 4.3, and case (4) can be eliminated using a refinement of this corollary
stating that the group π1(∆

◦
V rHp) is generated by the group of the link of any of the

singular points.

Theorem 4.8. The configuration S̃det given by Lemma 4.7 extends to a unique, up

to isomorphism, singular homological type Hdet, which is symmetric. Thus, one has

Mdet = M(Hdet).

Proof. The uniqueness of a primitive embedding S̃det →֒ L of the lattice S̃det given by
Lemma 4.7 follows from [15], Theorem 1.14.4. One has S̃⊥

det
∼= U⊕ E8(2) ⊕ [4]. Clearly,

S̃⊥
det has a vector of square 2, and the reflection against the hyperplane orthogonal to such

a vector is an orientation reversing automorphism. �

Remark 4.3. Alternatively, the fact that Hdet is symmetric follows from the obvious
existence of real determinantal quartics.

4.4. Proof of Lemma 4.4

We prove a stronger statement: a plane W ⊂ V cannot contain more than six singular
points of a transversal determinantal quartic ∆V ⊂ V .

Assume that seven singular points Q1, . . . , Q7 of ∆V belong to a single plane W ⊂ V .
Since ∆V is irreducible, the intersection ∆W := ∆V ∩W is a curve, which is of degree 4.
Furthermore, each point Q1, . . . , Q7 is singular for ∆W .

Since a reduced plane quartic has at most six singular points, ∆W must have multiple
components.

Lemma 4.9. A pencil U ⊂ Qu not contained entirely in ∆′ intersects ∆′ at at most three

points.

Proof. First, assume that U has a base point singular for all quadrics. Projecting from this
point, one obtains a pencil of plane conics, singular conics corresponding to the elements
of the intersection U ∩∆′, and the statement follows from the fact that deg∆(2) = 3.

Now, assume that U does not have a singular base point. Let P1, P2 ∈ U ∩ ∆′ be
two distinct members of U of corank at least 2; they generate U . Since P1 and P2

have no common singular points, one has P1 = {x0x1 = 0} and P2 = {x2x3 = 0} in
appropriate homogeneous coordinates, and it is immediate that P1 and P2 are the only
singular members of U . �
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Lemma 4.9 rules out the possibility that ∆W contains a double line: at most two
double lines in ∆W would contain at most six quadrics in ∆′.

The remaining possibility is that ∆W is a double conic. In this case ∆W has no linear
components; in particular, no two quadrics P1, P2 ∈ ∆W have a common singular point.
The quadric Q1 splits into two distinct planes α1, α2. The linear system W restricts to
a pencil of conics in α1 containing at least six distinct singular members, namely, the
restrictions of Q2, . . . , Q7. (If the restrictions of two distinct quadrics Qi, Qj coincided,
Qi and Qj would have a common singular point.) Since deg∆(2) = 3 < 6, all members of
the restricted pencil are singular. Hence, the vertex of each quadric P ∈ ∆W r∆′ belongs
to α1. The same argument shows that the vertex of P also belongs to α2, i.e., P and Q1

have a common singular point. This contradiction concludes the proof of Lemma 4.4. �

Remark 4.4. Using the surjectivity of the period map and the Riemann–Roch theorem
forK3-surfaces, one can easily show that the stratumMdet does contain a quartic with all
ten singular points coplanar (lying in a curve of degree two). In particular, determinantal
quartics form a proper subset of Mdet.

5. Real determinantal quartics

In this section, we discuss the topology of a determinantal quartic with nonempty
spectrahedral domain and prove Theorem 1.1.

5.1. Geometric real structures

We always consider the space Qu(n) with its geometric real structure, i.e., the one
induced by the complex conjugation conj : Pn → Pn. All real quadratic forms constitute
a linear space RN(n)+1, and one has a double covering SN(n) → Qu(n)R, where SN(n) is
the unit sphere in RN(n)+1.

We reserve the notation¯for the lift from Qu(n)R to SN(n); in particular, one has real
discriminant hypersurfaces ∆̄(n) ⊂ SN(n) and ∆̄ ⊂ S9.

Recall that a real quadratic form q̄ has a well defined index ind q̄ (the negative inertia
index of q̄); one has 0 6 ind q̄ 6 n+ 1.

A real determinantal quartic is a real quartic X ⊂ P3 equivariantly isomorphic to
a quartic ∆V ⊂ V , where V ⊂ Qu is a 3-subspace real with respect to the geometric
real structure. Given such a quartic X, the spectrahedral region of X is the (only) con-
nected component of the complement P3

R
r XR constituted by the quadrics represented

by quadratic forms of index 0 (equivalently, those of maximal index 4).

Lemma 5.1. Let X ⊂ P3 be a real determinantal quartic. Then any real line meeting the

spectrahedral region of X intersects X at four real points (counted with multiplicities). In

other words, all intersection points are real.

Proof. Identify (P3, X) with a real pair (V,∆V ) and let W be the image of the line in
question. Consider the lift W̄ ⊂ S9. The index function ind: W̄ → Z is locally constant
on W̄ r ∆̄, and its increment δp at an intersection point p ∈ W̄ ∩ ∆̄ of multiplicity mp is
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subject to the conditions |δp| 6 mp, δp = mp mod 2. Any point Q in the spectrahedral
region of ∆V lifts to a pair q̄, −q̄ of quadratic forms, so that one has ind q̄ = 4, ind(−q̄) = 0.
Since the two indices differ by 4, the intersection W̄ ∩ ∆̄ must consist of at least eight
points (counted with multiplicities). �

Corollary 5.2. Let X ⊂ P3 be a real determinantal quartic with nonempty spectrahedral

region. Then X is a non-positive degeneration of a nonsingular real quartic X ′ ⊂ P3 with

the real part X ′
R
constituted by a nested pair of spheres. �

5.2. Preliminary computation

Consider the real homological type (L, h, c) corresponding to nonsingular real quartics
with two nested spheres; such quartics are amphichiral. According to [15], one has

Lc
+
∼= E8(2)⊕ 2A1 ⊕U, Lc

−
∼= E8(2)⊕ 2A1(−1). (4)

Fix standard bases e1, . . . , e8, v1, v2, and u1, u2 for E8(2), 2A1, and U, respectively, and
let e′1, . . . , e

′
8, v

′
1, v

′
2 be the ‘matching’ standard basis for Lc

−, so that the sum r + r′ of
two basis vectors r ∈ Lc

+, r
′ ∈ Lc

− of the same name is divisible by 2 in L. In view of [15],

h = v′1 + v′2, h = v1 + v2 mod 2L. (5)

Let S ⊂ P ⊂ P̄ be a fundamental tower of (L, h, c). The polyhedron S is finite;
its Coxeter scheme, computed in [14], is shown in Figure 1, and S can be chosen to be
bounded by the walls orthogonal to the vectors indicated in the figure. (In the figure,
walls of type 3.2(1) and (3) are represented by ◦ and •, respectively, and the only wall
of type 3.2(2) is represented by a circled bullet. Whenever the hyperplanes supporting
two walls intersect at an angle π/n, n > 2, the corresponding vertices are connected by
(n− 2) edges. Note that, in the case under consideration, any two walls do intersect.)

Clearly, P is paved by the (infinitely many) copies of S obtained by iterated reflections
against the walls of type 3.2(3) (vertices e1, . . . , e8, e12, and e13 in the figure), and P̄ is
the union of P and its image under the reflection against the only wall e9 of type 3.2(2);
see Definition 3.2 and Remark 3.1.

Let X ⊂ P3 be a properly marked nonsingular quartic of type (L, h, c).

Lemma 5.3. The classes realized in Lc
+ by the inner and outer spheres of XR are

sp
in

= e11 and sp
out

= e11 + e9, respectively.

Proof. Let G be the graph obtained from the Coxeter scheme of P̄ by removing all but
simple edges. According to [6], Theorem 16.1.1, any vertex of G of valency > 2 is a class
realized by a spherical component of XR. Clearly, e11 and e11 + e9 (obtained from e11 by
reflection) are two such vertices. The outer sphere is definitely not contractible. Hence,
the vector e11, which defines a wall of P and thus can serve as a vanishing cycle, see
Theorem 3.3, represents the inner sphere. �

Denote by L0
+ ⊂ Lc

+ the sublattice spanned by e1, . . . , e8, e12, and e13.
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s1 s2 s3 s5 s6 s7

s13 s4 s8

c
10

hs
9

c
11

c
0

s
12

e0 = u1 − u2,

e9 = v1 − v2,

e10 = v2,

e11 = u2 − v1,

e12 = 2u2 + e∗8,

e13 = 2(u1 + u2)− v1 − v2 + e∗1,

e∗1 = −4e1 − 7e2 − 10e3 − 5e4 − 8e5 − 6e6 − 4e7 − 2e8,

e∗8 = −2e1 − 4e2 − 6e3 − 3e4 − 5e5 − 4e6 − 3e7 − 2e8.

Figure 1. The fundamental polyhedron S

Lemma 5.4. Each real vanishing cycle r ∈ Lc
+ of a non-positive nodal degeneration of X

is of one of the following three forms :

(1) e11 = sp
in

(the inner sphere shrinks to a point);
(2) e0 + d, d ∈ L0

+ (a common point of the two spheres);
(3) e10 + d, d ∈ L0

+ (a node in the outer sphere).

For each pair s′, s′′ of conjugate vanishing cycles, the invariant decomposable vector s′−s′′

belongs to L0
+.

Proof. Each real vanishing cycle is a wall of P of type 3.2(1), see Theorem 3.2. From the
description of P in terms of S and Figure 1 it follows that any such wall either is e11 or
is obtained from e0 or e10 by iterated reflections against the walls e1, . . . , e8, e12, and e13
(and their consecutive images). The geometry of the corresponding degeneration is easily
seen from comparing the vanishing cycle r against the classes of the spheres: one has
r = spin in case (1), r · spin = r · spout = 1 in case (2), and r · spin = 0, r · spout = 2 in
case (3).

For a pair s′, s′′ of conjugate vanishing cycles, the vector s′ − s′′ is either one of the
type 3.2(3) walls ofS or one of their consecutive images under reflections, see Theorem 3.2.

�

Lemma 5.5. The lattice Lc
− does not contain a quintuple ti, i = 1, . . . , 5, of pairwise

orthogonal vectors of square (−4) such that t1 + . . .+ t5 = h mod 2Lc
−.

Proof. In view of (4) and (5), the vector h is characteristic, i.e., a2 + a · h = 0 mod 4
for any a ∈ Lc

−. Hence, (h + 2a)2 = 4 mod 16 for any a ∈ Lc
−. On the other hand,

(t1 + . . .+ t5)
2 = −20 = −4 mod 16. �

125



DEGTYAREV and ITENBERG

5.3. Proof of Theorem 1.1

We keep the notation of Subsection 5.2. The assumption that the spectrahedral re-
gion R of X is nonempty rules out real vanishing cycles of type 5.4(1). Assume that X
has m vanishing cycles of type 5.4(2) and n vanishing cycles of type (3) (and 10−m− n
imaginary vanishing cycles split into conjugate pairs). Using Lemma 5.4 and the descrip-
tion of the vectors involved given in Figure 1, one can easily see that the parities of the
coefficients of v1 and v2 in the sum of all ten vanishing cycles differ by n mod 2. Due
to (5) and Lemma 4.7, n is even, and so is m.

If m = n = 0, then X has five pairs of complex conjugate vanishing cycles
s′j , s′′j = −c(s′j), j = 1, . . . , 5, and the skew-invariant vectors s′j + s′′j ∈ Lc

− form a
quintuple contradicting Lemma 5.5.

For the construction, relabel the nine vertices of type 3.2(3) in the edges of the Coxeter
scheme consecutively, i.e., let e13 = w1, ei = wi+1 for i = 1, 2, 3, ei = wi for i = 5, . . . , 8,
and e12 = w9. Pick a pair m, n of even integers as in the statement, let p be 5− 1

2 (m+n),
and consider the following vectors:

r′i = e0 + w9 + . . .+ w11−i, i = 1, . . . ,m (if m > 0),

r′′j = e10 + w1 + . . .+ wj−1, j = 1, . . . , n (if n > 0),

tk = wn+2k−1, k = 1, . . . , p (if p > 0).

It is straightforward to check that:

(1) each r′i is obtained by a sequence of reflections from the vertex e0, i.e., is as in
Lemma 5.4(2);

(2) each r′′j is obtained by a sequence of reflections from the vertex e10, i.e., is as in
Lemma 5.4(3);

(3) each tk is a wall of S of type 3.2(3);
(4) all vectors are pairwise orthogonal;
(5) all vectors are linearly independent in Lc

+/2L
c
+;

(6) the sum of all ten vectors equals h mod 2L.

Furthermore, assuming that p 6 4, one can easily find pairwise orthogonal vectors
t′1, . . . , t

′
p ∈ Lc

− such that t′2k = −4, t′k · h = 0, and t′k = tk mod 2L, k = 1, . . . , p. Indeed,
consider the vectors w′

1 = v′1 − v′2 + e′∗1 , w
′
3 = e′2, w′

5 = e′5, w
′
7 = e′7, w′

9 = e′∗8 . They are
orthogonal to h and have square (−4), and any sequence of up to four consecutive vectors
is orthogonal. (In fact, all five vectors are pairwise orthogonal except that w′

1 · w
′
9 6= 0.)

Now, one can take for t′k the ‘matching’ vectors w′
∗.

Finally, the set σ constituted by the ten vectors

r′1, . . . , r
′
m, r′′1 , . . . , r

′′
n,

1
2 (t

′
1 ± t1), . . . ,

1
2 (t

′
p ± tp)

is an admissible system of cycles, see Definition 3.4; due to Theorem 3.3, it can serve
as the set of vanishing cycles of a non-positive nodal degeneration of X. On the other
hand, the set σ satisfies Lemma 4.7; hence, according to Corollary 4.6 and Theorem 4.8, a
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generic degeneration ofX contracting these vanishing cycles is a transversal determinantal
quartic. �
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