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Linear ordinary differential equations

and Schubert calculus

Boris Shapiro and Michael Shapiro

Abstract. In this short survey we recall some basic results and relations between
the qualitative theory of linear ordinary differential equations with real time and the

reality problems in Schubert calculus. We formulate a few relevant conjectures.

1. Introduction

Questions asking under what conditions a given enumerative problem in geometry
with all real initial data has all real solutions have a long history and appear often
in engineering applications. (Below we refer to these as the questions about the total
reality of the corresponding enumerative problem.) The most basic and classical of these
questions is undoubtedly when a univariate polynomial with real coefficients has all roots
real. It goes back to the times of R. Descartes and I. Newton and is very important in
connection with the stability problems in control theory developed by (among others)
J. C. Maxwell, C. Runge, M. W. Kutta, M. G. Krein.

Another natural test field for questions in total reality is Schubert calculus. In the early
80’s W. Fulton revived the interest in these issues by asking whether each enumerative
problem in Schubert calculus admits real initial data under which all its solutions will be
real. At the same time V. I. Arnold and his school were developing a completely different
area, namely, they were studying various generalizations of the classical Sturm theory
about the properties of the zeroes of solutions to second order linear ordinary differential
equations with real time. It turned out that a natural qualitative theory of linear ordinary
differential equations of order greater than 2 is closely related to Schubert calculus.

The purpose of this short note is to review a connection (partially proven and par-
tially conjectural) between the qualitative theory of linear ode of order greater than 2,
transversality, and total reality in Schubert calculus.
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2. Sturm theory, disconjugate ODE, and transversality

2.1. Linear ordinary differential equations and curves in vector spaces

Consider a linear homogeneous differential equation (l.o.d.e.) of order n

Ln[y] = y(n) + a1(x)y
(n−1) + . . .+ an(x)y = 0, (2.1)

defined on a given interval I where ai(x) ∈ C0[I].
Denote by V the n-dimensional vector space of solutions of (2.1) considered on I.

An arbitrary point x ∈ I defines the linear evaluation functional on V by assigning to
a solution f ∈ V its value f(x) at x. The image of this evaluation map is a curve
ℓ : I → V ∗ uniquely associated to the original l.o.d.e. Choosing a basis y1, . . . , yn
in V we, therefore, identify V ∗ with R

n. The latter curve will then have the form
ℓ(x) = (y1(x), . . . , yn(x)) ∈ R

n in the standard coordinates. Since the Wronskian de-
terminant does not vanish on I the curve ℓ is non-degenerate, i.e., it has a non-degenerate
osculating frame {ℓ(x), ℓ′(x), . . . , ℓ(n−1)(x)} for all x ∈ I.

Note that any solution f of (2.1) is interpreted as a vector in V which, in its turn,
defines the corresponding hyperplane Hf ⊂ V ∗. The zeros of f correspond to the inter-
sections of ℓ with Hf . The number of zeros of f on I equals the number of intersection
points in ℓ ∩Hf (counting multiplicities).

For each 1 ≤ k ≤ n − 1 the curve ℓ induces its osculating Grassmann curve

ℓGk(n) : I → Gk(n) in the Grassmannian Gk(n) of k-dimensional subspaces of Rn. Anal-
ogously, one obtains from ℓ its osculating flag curve ℓF : I → Fl(n) in the variety Fl(n)
of complete flags in R

n. Namely, for each point x the corresponding element ℓGk(n)(x)
is the k-dimensional osculating subspace to ℓ at the point x, i.e., the subspace spanned
by ℓ(x), ℓ′(x), . . . , ℓ(k−1)(x). Analogously, the complete flag ℓF (x) is formed by these
subspaces, i.e., it is given by:

(
span〈ℓ(x)〉 ⊂ span〈ℓ(x), ℓ′(x)〉 ⊂ . . . ⊂ span〈ℓ(x), ℓ′(x), . . . , ℓ(n−2)(x)〉 ⊂ R

n
)
.

Definition 2.1. Two compete flags F• and G• (in the same linear space) are called
transversal if all their corresponding subspaces are in general position w.r.t. each other,
i.e., for all i and j, 1 ≤ i, j ≤ n one has

dim(Fi ∩Gj) = max(i+ j − n, 0),

which is the minimal possible value.

Remark 2.1. Flags F• and G• are transversal if and only if dim(Fi ∩Gn−i) = 0 for all
i, 1 ≤ i ≤ n.

Definition 2.2. A k-dimensional vector subspace W k ⊂ R
n is transversal to a flag F• if

it is in general position with all subspaces Fr of F•, i.e. dim(W k∩Fr) = max(k+r−n, 0).

Remark 2.2. Clearly, W k is transversal to F• if and only if it is transversal to Fn−k.

80



Linear ordinary differential equations and Schubert calculus

Definition 2.3. The train TrFF• (resp., Grassmann train TrGk(n)F•) of a flag F• in R
n

is the set of all flags G• (resp. all k-dimensional subspaces W k ∈ Gk(n)) such that G•

(resp. W k) and F• are not transversal. We can say train in either case when the situation
is clear from the context.

Example 2.3. Fix any complete flag F• in V ∗ whose hyperplane Hf is dual to the
line spanned by a solution f of (2.1). Then all moments xi of non-transversality of the
curve ℓG1(n) with F• are exactly the zeros f(xi) = 0. More generally, all moments of non-
transversality of the ℓGk(n) or ℓF with F• correspond to intersections of the corresponding
osculating Grassmann or flag curve with the corresponding train of flag F•. One can easily
identify these moments of non-transversality with the zeros of the Wronskians of k-tuples
of solutions of (2.1), see [12].

2.2. Sturm separation theorem

The classical Sturm separation theorem describes the relative position of the roots of
two distinct solutions to a linear homogeneous second order differential equation. Namely,
the following statement holds.

Theorem 2.1. Let y1 and y2 be two non-trivial real solutions of a second order ODE

y′′ + p(x)y′ + q(x)y = 0 (2.2)

where p(x) and q(x) are continuous real-valued functions on I that are not multiples of
each other. Denote by #1 (resp. #2) the number of zeros of y1 (resp. of y2) on I. Then
between each pair of successive real roots of y1 there is a root of y2 and |#1 −#2| ≤ 1.

V.I.Arnold generalized the above Sturm theorem to linear Hamiltonian systems with
m degrees of freedom having a positive definite time-dependent Hamiltonian (see [1]).
The role of zeros in this theory is played by the moments of non-transversality of the
Grassmann curve in the Lagrangian Grassmannian to a fixed Lagrangian subspace. (They
can also be interpreted as the zeros of certain Wronskians.)

However, at the moment no proven generalization of the Sturm separation theorem in
the case of usual higher order l.o.d.e. is known.

Remark 2.4. Notice that by results of Kondratiev [7] for general l.o.d.e. of order greater
than 2 no separation theorem can be obtained in terms of zeros of individual solutions.

Note also that we can interpret the zeros of solution f as non-transversality moments
between curve ℓG1(n) and some fixed flag F• containing hyperplane Hf (see Example 2.3).

Our hope is to obtain a generalization of Sturm separation theorem for higher order
l.o.d.e. in terms of the total number of non-transversality moments between ℓF and some
fixed flag F•.

Below we formulate a conjectural generalization of Sturm separation theorem and give
some motivation for its validity using the notion of a disconjugate l.o.d.e.
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2.3. Disconjugate ODE

Definition 2.4. A l.o.d.e. of order n

z(n) + p1(x)z
(n−1) + . . .+ pn(x)z = 0 (2.3)

with real-valued continuous coefficients pi(x) is called disconjugate on an interval I if any
of its nontrivial solutions has at most (n− 1) zeros on I counting multiplicities.

Example 2.5. The space of solutions of z(n) = 0 consists of all polynomials in x of degree
less than n, and, therefore, any solution has at most n− 1 zeroes counting multiplicities
on an arbitrary real interval I (as well as on an arbitrary subset of C).

Remark 2.6. Any l.o.d.e. of order n has a nontrivial solution with at least (n − 1)
zeros. (For example, consider the nontrivial solution of the initial value problem given by
z(x0) = z′(x0) = . . . = z(n−2)(x0) = 0, z(n−1)(x0) = 1.) Further, any l.o.d.e. with
continuous pi(x) is locally disconjugate, i.e. for any x0 ∈ I there exists its neighborhood
such that the above equation is disconjugate in this neighborhood, see e.g. [8].

Recalling the correspondence between nth order l.o.d.e. and non-degenerate curves in
R

n we obtain a geometric interpretation of disconjugacy.

{a l.o.d.e. of order n} ↔ {a non-degenerate curve in the n-dimensional space V ∗

(dual to the space of all solutions)}

with

{a disconjugate l.o.d.e.} ↔ {a space curve in V ∗ which intersects any hyperplane

in V ∗ at most n− 1 times (counting multiplicities)} .

Using this correspondence we will call a non-degenerate curve in R
n disconjugate if it

intersects any hyperplane in R
n at most n− 1 times (counting multiplicities).

The following two lemmas provide criteria of disconjugacy of linear ordinary differential
equations (or, equivalently, disconjugate curve) on interval I, compare to [8].

Notation: For a curve γ : I → R
n we denote by γGk(n) and γF the corresponding

osculating Grassmann and flag curves, respectively.

Lemma 2.2. (see [12]) A non-degenerate curve γ is disconjugate on I if and only if for
all t1 6= t2 ∈ I one has that γF (t1) is transverse to γF (t2).

Lemma 2.3. (see [12]) A non-degenerate curve γ is conjugate (i.e. not disconjugate)
if and only if for any complete flag G• there is some t ∈ I such that G• and γF (t) are
non-transversal.
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2.4. Conjectural multiplicative Sturm separation theorem

One can split the time interval I for any equation (2.1) into maximally disconjugate
subintervals. Instead of individual solutions one should compare different fundamental
solutions, i.e., count the number of moments of non-transverality of the flag curve to the
trains of two different complete flags. Lemmata 2.3 and 2.2 then give some estimate of
the number of non-transversalities on each of the disconjugate subintervals. This idea
leads to the following conjecture which is a generalization of Sturm separation theorem
to the case of higher order l.o.d.e.’s.

For a non-degenerate curve γ : I → R
n and any pair of fixed flags G• and Ĝ• we denote

by #F (resp. #̂F ) the number of moments of non-transversality between γF (t) and G•

(resp. Ĝ•).

Conjecture 2.4. Let γ be a non-degenerate curve in R
n, n ≥ 2. Then

#̂F ≤
n3 − n

6
(#F + 1) . (2.4)

Remark 2.7. Note that n3
−n
6 =

∑
k dimGk(n).

Kondratiev’s results show that one can not hope to get similar estimates to (2.4)
in terms of nontransversality moments for individual Grassmannians Gk(n). However,
Conjecture 2.4 would follow from Conjecture 2.5 below.

Definition 2.5. A curve in Gk(n) is called Grassmann convex if it intersects the train
of any flag at most dimGk(n) = k(n− k) times.

Conjecture 2.5. If γ is a non-degenerate disconjugate curve in R
n then its osculating

Grassmann curve γGk(n) ⊂ Gk(n) is Grassman convex.

Remark 2.8. Conjecture 2.5 is evident in R
3, proven in R

4 see [16], and open in R
n for

n ≥ 5.

2.5. Local geometry of osculating flag curves

Examples in low dimensions led us to the following conjectures on the local geometry
of osculating flag curves.

Recall that the train TrF• of any flag F• is an algebraic hypersurface in the space of
(complete) flags. If x ∈ TrF• then TrF• separates a sufficiently small open ball B in the
space of flags centered at x into a finite number of connected components.

Conjecture 2.6. Let γ be the germ of a non-degenerate curve in R
n and γF (0) ∈ TrF•.

Then the germ of the osculating flag curve γF crosses TrF• and goes from one connected
component of B \ TrF• to another one, i.e., for a sufficiently small δ > 0 flags γF (−δ)
and γF (δ) belong to different connected components of B \ TrF•.

Conjecture 2.7. If the osculating curve γF of a disconjugate non-degenerate curve γ

passes from any connected component C of B \TrF• to another component then it never
returns back to C.
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Remark 2.9. Conjectures 2.6 and 2.7 would imply a weaker version of Conjecture 2.4.

Conjecture 2.8. Let γ be a non-degenerate curve in R
n, n ≥ 2. Then, there is a positive

integer constant K(n) depending on n only such that

#̂F ≤ K(n) (#F + 1) . (2.5)

3. Transversality and M-varieties

In this section we discuss a relation between transversality and the so-called M-property
of intersections of Schubert varieties with the emphasis on intersections of trains of oscu-
lating flags to a non-degenerate curve γ. For the osculating flag γF (t) we call the time
moment t its reference point.

Note first that (the proof) of Lemma 2.2 implies that the trains TrγF (t1) and TrγF (t2)
of any two distinct osculating flags to a disconjugate curve γ are transversal. Therefore,
the topology of their intersection does not change when we change reference points t1 and
t2.

Unfortunately, as it was shown in [10] for general disconjugate curves such transver-
sality fails for intersections of the trains of more than two osculating flags.

However, the so-called dimensional transversality holds for intersection of Grassmann
trains of osculating flags to the moment curve. The following result was proved by Eisen-
bud and Harris.

Lemma 3.1. (Dimensional transversality, see [6]) Suppose that t1 < t2 < . . . < tr be
the set of reference points on the moment curve ν in R

n. Let SchγF (ti) be the Schubert
decomposition of Grassmannian Gk(n)with respect to the osculating flag νF (ti). Then
flags νF (ti) have dimensional transversality property, i.e. the codimension of the inter-
section of an arbitrary set of cells C1, . . . , Cr, where Ci belongs to SchνF (ti), equals the
maximum between dim(Gk(n)) and the sum of codimensions of Cis.

It implies, in particular, that intersections of k(n − k)-tuple of Grassmann trains in
Gk(n) of osculating flags to the moment curve is pure zero-dimensional, i.e., contains
points only. Moreover, any intersection of more trains is empty.

The stronger transversality statement (see Conjecture 3.2) might be the actual reason
why the total reality property holds for enumerative properties in Schubert calculus in
Grassmannians (see [18]).

Below we discuss the total reality and the M-property of such problems. Let us first
recall the notion of an M-variety.

Example 3.1. M-curves. Let C = CC be a real (i.e., invariant under the standard
complex conjugation) projective nonsingular algebraic curve of genus g embedded in CPn,
and CR be its real part, i.e., CR = CC ∩ RPn. Then Harnack-Klein theorem claims that
the number of connected components of CR does not exceed g+1. The curve C is called
an M -curve if the latter number of connected components equals g + 1.

Furthermore, for any real (invariant under the complex conjugation) embedded
projective algebraic variety X = XC ⊂ CPn, and its real part XR = X ∩ RPn the
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Smith inequality claims that:
∑

bi(X
R,Z2) ≤

∑
bi(X

C,Z2). (3.1)

We say that X is an M -variety if
∑

bi(X
R,Z2) =

∑
bi(X

C,Z2). (Roughly speaking,
X = XC is an M -variety if any cycle in XC generates a cycle in XR.)

Example 3.2. The intersection of two open Schubert cells in general position in the
space of complete flags is an M -variety [17].

Example 3.3. The same holds for intersections of two or more open real Schubert cells in
the space of special incomplete two step flags consisting of a line in a hyperplane, see [15].

Conjecture 3.2. For the moment curve ν(t) = (1 : t : . . . : tn−1) and any set of reference
points t1 < t2 < . . . < tm the corresponding Grassmann trains TrνGk(n)(ti), 1 ≤ i ≤ m

intersect transversally in Gk(n).

F. Sottile in [19] proved that the special Schubert calculus is totally real. More exactly,
he showed that there exist reference points

t1 < t2 < t3 < . . . < tk(n−k) (3.2)

on the moment curve ν in R
n such that all intersection points ∩

k(n−k)
j=1 TrνGk(n)(tj) are

real.

Remark 3.4. Note that if a variety X ⊂ CPn of pure dimension zero contains only real
points then it is an M -variety.

The idea of transversality combined with the total reality of the special Schubert
calculus leads to the following

Conjecture 3.3. (Total reality conjecture) Let t1 < . . . < tk(n−k) be an arbitrary
k(n− k)-tuple of distinct reference points on the moment curve ν. Then the intersection

∩
k(n−k)
j=1 TrνGk(n)(tj) in any Grassmann manifold Gk(n) is an M -variety.
Indeed, transversality means that all such intersections have the same topology for any

positions of reference points. In particular, for the dimension zero the number of points
would be the same.

The general transversality conjecture 3.2 remains widely open. But its zero-dimensional
version and, in particular, conjecture 3.3 is proved. Conjecture 3.3 for Gn−2(n) (or, by
duality for G2(n)) was proved by A. Eremenko and A. Gabrielov in [4]. The general case
of Gk(n) was proved by A. Varchenko, E. Mukhin, and V. Tarasov see [9].

As we mentioned above it was shown in [10] that if we replace the moment curve by
a general disconjugate curve the analog of conjecture 3.3 fails. On the other hand, it is
clear, that the set of curves for which conjecture 3.3 is valid is open in the Cn-topology
on the space of smooth nondegenerate curves in R

n.

Question: Find an open neighborhood of the moment curve such that each curve in this

neighborhood satisfies total reality conjecture 3.3.
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4. Total reality of meromorphic functions

In [4] the authors settled the total reality conjecture for Gn−2(n) using its equivalent
reformulation given below.

Namely, let f =
p(t)

q(t)
=

∑n
i=0 pit

i

∑n
i=0 qit

i
be a rational function of degree n. Such a ra-

tional function determines a subspace Sf ⊂ R
n+1 of codimension 2 given as follows.

If {x0, x1, . . . , xn} are standard coordinates in R
n+1 then Sf is the intersection of two

hyperplanes given by the equations
∑n

i=0 pixi = 0 and
∑n

i=0 qixi = 0.

Remark 4.1. If det

(
a b

c d

)
6= 0, a, b, c, d ∈ C then we call functions f(t) and

af(t) + b

cf(t) + d
Möbius-equivalent.

Remark 4.2. Möbius-equivalent functions determine the same codimension 2 subspace.

Direct computation shows that the dimension two osculating subspace to the moment
curve ν at the reference point t0 intersects Sf if and only if f ′(t0) = 0.

Then the total reality conjecture can be formulated in the following way.

Equivalent reformulation: Let f =
p(t)

q(t)
be a rational function of degree n such that

all its (2n− 2) critical points are real and distinct. Then f is Möbius-equivalent to a real

function g, i.e., all coefficients of numerator and denominator of g are real.

Inspired by the results of [4] for rational functions we want to ask whether total reality
might hold for meromorphic functions on a real algebraic curve of a positive genus.

Question: If Σ is a real curve of a positive genus and φ is a meromorphic function on Σ
with all its critical points real, is it true that φ is Möbius-equivalent to a real meromorphic

function?

In conclusion, let us mention two partial cases when the above question has a positive
answer.

Theorem 4.1. (See [5]) A function of any prime degree d on any real curve of genus

g > d2
−4d+3
3 whose critical points are real and distinct, is Möbius-equivalent to a real

meromorphic function.

Theorem 4.2. (See [3]) Any function of degree at most four on any real curve whose

critical points are real and distinct is Möbius-equivalent to a real meromorphic function.
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