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Action of the cork twist on Floer homology

Selman Akbulut and Çağrı Karakurt

Abstract. We utilize the Ozsváth-Szabó contact invariant to detect the action of
involutions on certain homology spheres that are surgeries on symmetric links,
generalizing a previous result of Akbulut and Durusoy. Potentially this may be useful
to detect different smooth structures on 4-manifolds obtained by the cork twisting
operation.

1. Introduction

Any two different smooth structures of a closed simply connected 4-manifold are related
to each other by a cork twisting operation [16], and the cork can be assumed to be a Stein
manifold [4] (see [9] and [10] for applications). A quick way to generate corks, which was
used in [11], is from symmetric links as follows: Let L be a link in S3 with two components
K1 ∪K2. Suppose that L satisfies the following:

(1) Both components K1 and K2 are unknotted.
(2) There is an involution of S3 exchanging K1 and K2.
(3) The linking number of K1 and K2 is ±1 (for some choice of orientations).

From this we can construct a 4–manifold W (L) by carving out a disk bounded by K1

from a 4–ball, and attaching a 2–handle along K2 with framing 0. Therefore a handlebody
diagram of W (L) is given by a planar projection of L decorated by a dot on K1 (cf. [1]),
and a 0 on top of K2. We also require that the 4–manifold W (L) admits an additional
structure:

(4) The handlebody of W (L) described above is induced by a Stein structure.

The last condition can be reformulated as follows:

(4’) Regard K2 ⊂ S1×S2 = ∂S1×B3 equipped with the unique Stein fillable contact
structure. Then the maximal Thurston-Bennequin number of K2 is at least +1.
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Action of the cork twist on Floer homology

We will call links satisfying conditions (1)− (4) admissible. Some examples of admissible
links are given in Figure 1. These examples were first studied in [9]. Note that the Hopf
link is not admissible as it does not satisfy condition (4) even though the corresponding
4–manifold is B4 which admits a Stein structure. Condition (3) ensures that W (L) a
contractible 4–manifold. Hence its boundary is a homology sphere. By condition (2), we
have an involution τ on ∂W (L) that is obtained by exchanging the components of L. The
significance this involution is indicated by the following theorem:
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Figure 1. Examples of corks associated to certain symmetric links

Theorem 1.1. Let L be an admissible link. The involution τ : ∂W (L) → ∂W (L) acts
non trivially on the Heegaard Floer homology group HF+(−∂W (L))

This result generalizes [6], and it implies a result from [11]; namely τ does not extend
to W (L) as a diffeomorphism, even though it extends as a homeomorphism. Therefore
W (L) is a cork in the sense of [9]. The involution τ is called the cork twist. Theorem 1.1
was proved for the Mazur manifold W1 in [2], and [26] (for instanton Floer homology),
and [6] (for Heegaard Floer homology). Unlike the arguments in these papers, we do
not explicitly find the Floer homology of ∂W (L), and calculate the homomorphism the
cork twist induces. Instead, we show that the homomorphism permutes two different
distinguished Floer homology classes. These classes c+(ξ) are naturally associated to a
cork via the induced contact structure ξ on the boundary. This suggests that a cork
should be considered with its contact homology class (W, c+(ξ)), to be used as a tool for
checking nontriviality of its involution. In the course of our proof, we will incorporate
several techniques developed in [9], [8] and [25].

Organization of this paper is as follows. We will review some standard facts about
Stein manifolds, and Heegaard Floer homology respectively in the next two sections. We
shall deduce Theorem 1.1 from a slightly stronger result (Theorem 4.1). This result along
with some easy consequences are discussed in section 4.
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2. Stein manifolds and their symplectic compactifications

Our aim in this section is to review the proof of the embedding theorem of Stein
manifolds into closed symplectic manifolds in dimension four as given in [8]. See [18] for
an alternative proof. We assume that the reader is familiar with the basics of contact
geometry, open book decompositions and Lefschetz fibrations (cf. [19]). We start by
recalling the topological characterization of Stein manifolds.

Theorem 2.1 ([12]). Let W = B4 ∪ (1-handles) ∪ (2-handles) be a 4-dimensional
handlebody with one 0-handle and no 3 or 4-handles. Then:

(1) The standard Stein structure on B4 can be extended over the 1-handles so that
the manifold W1 := B4 ∪ (1-handles) becomes Stein.

(2) If each 2-handle is attached to ∂W1 along a Legendrian knot with framing one
less than the Thurston-Bennequin framing, then the complex structure on W1 can
be extended over the 2-handles making W a Stein manifold.

(3) The handle decomposition of W is induced by a strictly plurisubharmonic Morse
function.

By Theorem 2.1 (see also [15]), we represent Stein manifolds by special kind of han-
dlebody diagrams which contain handles of index up to two and the attaching circles of
the two handles are all Legendrian (i.e., they have horizontal cusps instead of vertical
tangencies and the smaller slope strand is over the bigger slope strand at each crossing).
For a Legendrian knot, the Thurston-Bennequin number (tb for short) is defined to be
the writhe minus half of the number of cusps. In these special diagrams we understand
that the framing on each 2–handle is one less than tb as in item (2) in Theorem 2.1. By
abuse of language, a handle decomposition as in Theorem 2.1 is called a Stein structure.

Similarly for a given contact manifold (Y, ξ), one can attach 1–handles and tb − 1
framed 2–handles to Y × {1} ⊂ Y × [0, 1], in order to form a Stein cobordism built on
(Y, ξ).

The embedding theorem relies on the fact that Stein manifolds are equivalent to positive
allowable Lefschetz fibrations (PALF for short). Recall that a PALF on a 4–manifold W
is a Lefschtetz fibration over a disk whose fibers have non-empty boundary and vanishing
cycles are all non-separating curves. The restriction of a PALF on the boundary Y = ∂W
is an open book decomposition whose monodromy can be written as a product of right
handed Dehn twists. By [7], every Stein 4–manifold admits a PALF (and every PALF
has a Stein structure). The construction is algorithmic where input is a handlebody
decomposition of a Stein 4–manifold W as described in Theorem 2.1 and the output is a
PALF of W which is unique up to positive stabilization. Moreover, it is proved in [25]
that the open book induced by this PALF is compatible (in the sense of [14]) with the
contact structure ξ induced by the Stein structure.
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Given a Stein manifold W , fix a compatible PALF as in the previous paragraph. Then
one can extend this PALF to a Lefschetz fibration over a closed manifold. Here is a sketch
of what to do: First, recall the chain relation in the mapping class group of a surface. Let
Σg be a surface of genus g. Let β1, β2, · · · , β2g be a set of non-separating simple closed
curves such that the following hold:

• |βi ∩ βj | = 1 if |i− j| = 1,
• |βi ∩ βj | = 0 if |i− j| > 1.

Proposition 2.2. Let tα denote the mapping class of the right handed Dehn twist about
a curve α. Then following relation holds in the mapping class group of Σg:

(tβ1
tβ2

· · · tβ2g
)4g+2 = 1. (2.1)

Now on the Stein manifold W , we first choose a PALF which induces an open book on
Y = ∂W with connected binding. This open book is compatible with the induced contact
structure ξ. Then we attach a 2–handle along the binding with 0–framing relative to the
page framing. Denote the corresponding cobordism by V0 : Y → Y0. By [13], V0 can be
equipped with a symplectic structure extending the one defined on a collar neighborhood
of Y . On the other hand, Y0 is a surface bundle over the circle whose monodromy can
be written as a product of right handed Dehn twists along non-separating curves. Let F
denote a generic fiber in Y0. Next, we use the chain relation of Proposition 2.2 to trivialize
the monodromy by attaching −1 framed 2–handles: Write the monodromy of Y0 as a
product of right handed Dehn twists tγ1

· · · tγn
, where each γi is a non-separating curve

on F . There is a diffeomorphism of F identifying γi with β1 for each i = 1, · · · , n. Using
this diffeomorphism and the chain relation, we can write t−1

γi
as a product of right handed

Dehn twists. Attaching 2–handles as necessary, we can trivialize the monodromy. Finally
we attach a copy F × D2 to get a cobordism V1 : Y0 → ∅. Note that V1 itself admits a
Lefschetz fibration (with closed fibers) over disk. The closed 4–manifold X := W ∪V0∪V1

naturaly admits a Lefshcetz fibration over S2. It is also possible to show that the Lefschetz
fibration has a section, and hence symplectic, and that the construction can be made to
guarantee that b+2 (X) ≥ 2. In other words, V = V0 ∪V1 is a concave symplectic filling for
(Y, ξ). We summarize this construction in the following statement.

Theorem 2.3 ([7]). Every Stein fillable contact manifold (Y, ξ) admits a concave
symplectic filling V = V0 ∪ V1, where V0 is the cobordism Y → Y0 corresponding to a
2–handle attachment along the binding of an open book compatible with ξ, and V1 ad-
mits a Lefschetz fibration over disk with closed fibers, which extends the fibration on Y0.
Moreover, V can be chosen in such a way that b+2 (V ) ≥ 2.

3. Heegaard Floer homology

Heegaard Floer homology ([21], [22]) is a type of Lagrangian Floer homology for the
symmetric product of a Heegaard surface of a 3–manifold. There are several versions
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denoted by ĤF (Y, t), HF+(Y, t), HF−(Y, t), HF∞(Y, t). All of these groups are invari-
ants of a 3-manifold Y with a Spinc structure t. When c1(t) is torsion these groups are
Q-graded. Each one admits an endomorphism U of degree −2 which makes all of them

Z[U ] modules (the action of U on ĤF is trivial). They also satisfy the property that any
Spinc cobordism (M, s) : (Y1, t1) → (Y2, t2), from (Y1, t1) to (Y2, t2), induces a homomor-
phism

F ◦
(M,s) : HF ◦(Y1, t1) → HF ◦(Y2, t2) (3.1)

where HF ◦ represents any of ĤF ,HF+, HF−, or HF∞. When both c1(t1) and c1(t2)
are torsion, these homomorphisms shift degree by

d(M, s) =
c1(s)

2 − 3σ(M)− 2χ(M)

4
. (3.2)

These homomorphisms also satisfy the following composition law : given two Spinc

cobordisms (M1, s1) : (Y1, t1) → (Y2, t2) and (M2, s2) : (Y2, t2) → (Y3, t3), and F ◦
M1,s1

and
F ◦
M2,s2

are the induced homomorphisms, their composition is given by

F ◦
M2,s2

◦ F ◦
M1,s1

=
∑

s∈Spinc(M1∪W2):s|Mi
=si

F ◦
M1∪M2,s

. (3.3)

The following long exact sequence exists for every Spinc 3–manifold (Y, t) and it is
natural under cobordism–induced homomorphisms.

· · ·
δ

−−−−→ HF−(Y, t)
ι

−−−−→ HF∞(Y, t)
π

−−−−→ HF+(Y, t)
δ

−−−−→ · · · (3.4)

The connecting homomorphism δ is an isomorphim between coker(π) and ker ι. We denote
these groups respectively by HF+

red(Y, t) and HF−
red(Y, t), and call both of them by the

same name: the reduced Heegaard Floer homology.
Heegaard Floer homology also provides a 4-manifold invariant (c.f. [23]). To review

its definition first recall the mixed homomorphisms. Let (M, s) : (Y1, t1) → (Y2, t2) be
a Spinc cobordism with b+2 (M) ≥ 2. Every such cobordism admits an admissible cut,
i.e., M can be decomposed as a union of two codimension zero sub-manifolds M1 and
M2 with b+2 (Mi) ≥ 1, i = 1, 2, and δH1(N) ⊆ H2(M) is trivial where N is the common
boundary of these two sub-manifolds. Let si = s|Mi

and t = s|N . Then we have the
following commutative diagram.

HF+(Y1, t1)
δ

−−−−→ HF−(Y1, t1)
ι

−−−−→ HF∞(Y1, t1)yF+

M1,s1

yF−

M1,s1

yF∞

M1,s1
=0

HF+(N, t)
δ

−−−−→ HF−(N, t)
ι

−−−−→ HF∞(N, t)
yF+

M2,s2

yF−

M2,s2

yF∞

M2,s2
=0

HF+(Y2, t1)
δ

−−−−→ HF−(Y2, t1)
ι

−−−−→ HF∞(Y2, t1)
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The mixed homomorphism

Fmix
(M,s) : HF−(Y1, t1) → HF+(Y2, t2)

is defined by the composition F+
(M,s2)

◦ δ−1 ◦ F−
(M,s1)

. In [23], it is proved that the mixed

homomorphism is independent of the admissible cut.

To define the 4–manifold invariant, we need to recall the Heegaard-Floer homology
groups of the 3–sphere S3 with its unique Spinc structure:

HF+
n (S3) =

{
Z If n is even and n ≥ 0
0 If n is odd,

HF−
n (S3) =

{
Z If n is even and n ≤ −2
0 If n is odd,

Now, let X be a closed 4–manifold with b+2 (X) ≥ 2 and s be a Spinc structure on
X. For simplicity, assume that b1(X) = 0. Puncture X at two points and regard it as a
cobordism from the 3–sphere to itself. Let Θ±

(n) denote the generator of HF±
n (S3). The

Ozsváth-Szabó 4–manifold invariant is a linear map ΦX,s : Z[U ] → Z which is described
as follows: ΦX,s(U

n) is characterized uniquely by the formula

Fmix
X,s (U

nΘ−
(−2)) = (ΦX,s(U

n))Θ+
(0).

The 4-manifold invariant is zero on elements of degree not equal to d(X, s). A Spinc

structure s on X is called a basic class if ΦX,s 6≡ 0. Finding the set of all basic classes of
a given 4-manifold is an important problem in low-dimensional topology. The adjunction
inequality gives a very strong restriction on the set of basic classes.

Theorem 3.1 ([23]). Let X be a closed 4–manifold. Let Σ ⊂ X be a homologically non-
trivial embedded surface with genus g ≥ 1 and with non-negative self-intersection number.
Then for each Spinc structure s ∈ Spinc(X) for which ΦX,s 6= 0, we have that

|〈c1(s), [Σ]〉|+ [Σ] · [Σ] ≤ 2g − 2. (3.5)

The following is another version of the adjunction inequality along with a non-vanishing
result of the 4–manifold invariant for Lefschetz fibrations.

Theorem 3.2 ([24]). Let π : X → S2 be a relatively minimal Lefschetz fibration over
sphere with generic fiber F of genus g > 1, and b+2 > 1. Then for the canonical Spinc

structure s the map Fmix
X,s sends the generator of HF−

−2(S
3) to the generator of HF+

0 (S3)

(and vanishes on the rest of HF−(S3)). In particular s is a basic class. For any other
Spinc structure t 6= s with 〈c1(t), [F ]〉 ≤ 2− 2g = 〈c1(s), [F ]〉, the map Fmix

X,t vanishes.

Given a contact structure ξ on Y , let tξ be the induced Spinc structure. A Heegaard
Floer (co-)homology class c+ ∈ HF+(−Y, tξ), which is an invariant of the isotopy class
of ξ, is constructed in [20] as follows: Take an adapted open book decomposition for ξ
which has connected binding. One can always find such an open book by doing positive
stabilizations to any adapted open book as necessary. Let Y0 denote the result of the
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0–surgery on the binding, and V0 : Y → Y0 be the associated cobordism. Naturally, Y0

admits a fibration over circle. Let t0 the Spinc structure corresponding to the tangent
plane distribution of fibers.

Proposition 3.3 ([24]). HF+(−Y0, t0) = Z.

Let c be a generator of HF+(−Y0, t0). It can be shown that there is a unique extention
s of the Spinc structure t0 over the cobordism W . The contact invariant is defined to be
the image of c under the homomorphism which is induced by the Spinc cobordism (V0, s).

Definition 3.4. c+(ξ) := F+
V0,s

(c) ∈ HF+(−Y, tξ)/(±1).

Note that we turned V0 upside down in this construction. This invariant is independent
of the choice of the adapted open book decomposition used in its definition.

By using this definition along with the adjunction inequality and the symplectic com-
pactification theorem, it can be proven that the contact invariant of a Stein fillable contact
structure is in the image of the mixed homomorphism of some concave filling (c.f. [25]).
From Theorem 2.3, we know that every Stein fillable contact manifold (Y, ξ) admits a con-
cave symplectic filling V = V0 ∪ V1 where V0 is a cap off cobordism and V1 is a Lefschetz
fibration over a disk. Let s be the canonical Spinc structure.

Lemma 3.5 ([25]). Fmix
V,s (Θ−

(−2)) = ±c+(ξ) if c1(ξ) is torsion.

This lemma will play a key role in our argument. Its proof relies on the special topology
of the concave filling constructed in Theorem 2.3. One would hope to prove it for arbitrary
concave fillings (with b+2 ≥ 2), but the authors do not know how to do it in full generality.

We are going to need a variant of Lemma 3.5 where one is allowed to add any Stein
cobordism to the concave filling.

Lemma 3.6. Let (Y, ξ) be a Stein fillable contact manifold with torsion c1(ξ). Let M be
any Stein cobordism built on (Y, ξ) which does not contain any 1–handles. Then M can
be extended to a concave filling V of (Y, ξ) such that Fmix

V,s (Θ−
(−2)) = ±c+(ξ).

Proof. Let (Y1, ξ1) be the convex end of M . Take a Stein filling of (Y, ξ) and glue it to
M in order to obtain a Stein filling of (Y1, ξ1). Pick a PALF of this Stein manifold and
apply the algorithm in the proof of the Theorem 2.3 to find a concave filling V = V0 ∪ V1

of (Y1, ξ1). If we glue this to M , we get a concave filling V ′ of (Y, ξ). By changing the
order of some 2–handle attachments we can write this as V ′ = V0∪V ′

1 , where V
′
1 = M ∪V1

which is a Lefschetz fibration on disk. Now apply Lemma 3.5. �

It is possible to define a relative version of the Ozsváth–Szabó 4–manifold invariant in
the presence of a contact structure on the boundary. For, let W be a 4–manifold with
connected boundary and ξ be a contact structure on ∂W . Given a Spinc structure s on
W , the relative invariant ΦW,s(ξ) ∈ Z/± 1 is uniquely characterized by the formula

F+
W,s(c

+(ξ)) = ΦW,s(ξ)Θ
+
(0).
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Again we puncture W and turn it upside down to regard it as a cobordism from
−∂W to S3. A twisted version of this invariant is conjecturally equivalent to the relative
Seiberg–Witten invariant defined in [17].

4. Main theorem

With all the necessary tools in hand, we are ready to prove our main result. Henceforth
suppose that W is a cork corresponding to an admissible link L. Let ξ be the induced
contact structure for some choice of a Stein structure on W . Let τ be the involution
on ∂W obtained by exchanging the components of L. Let ξ′ be the pull back contact
structure τ∗ξ.

Theorem 4.1. The contact invariants c+(ξ) and c+(ξ′) in HF+(−∂W ) are distinct.
Moreover, both elements descend non-trivially to HF+

red(−∂W ).

Proof. The trick is to inflate the cork using a Stein handle so that the cork twist changes
the framing on the handle. This trick was first used in [10] to generate exotic Stein
manifold pairs. We start by attaching a 2-handle to ∂W along a trefoil with framing 1
as in the left hand side of Figure 2. Thanks to the non-trivial linking with the 1-handle,
this handle attachment induces a Stein cobordism M built on (∂W, ξ). On the right hand
side of the same figure, however, the handle attachment can not be realized as a Stein
cobordism, because the maximum Thurston-Bennequin number of trefoil is 1.

n n+ 1

0

τ

W ∪id M W ∪
τ
M

n n+ 1

0

1

1

Figure 2

Next we apply Lemma 3.6 in order to extend M to a concave filling V of (∂W, ξ) whose
mixed homomorphism hits the contact invariant c+(ξ).

The symplectic manifold X := M ∪ V admits a relatively minimal Lefschetz fibra-
tion. Let s denote its canonical Spinc structure. By Theorem 3.2, Lemma 3.6 and the
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compostion law, we have

Θ+
(0) = Fmix

W∪V,s(Θ
−
(−2))

= F+
W,s ◦ F

mix
V,s (Θ−

(−2))

= ±F+
W,s(c

+(ξ)).

In particular F+
W,s(c

+(ξ)) 6= 0. On the other hand if we remove the cork W from X

and reglue it using the cork twist τ , we obtain the manifold X ′ := W ∪τ V which is
homeomorphic to X. The right hand side of Figure 2 is W ∪τ M and it embeds into
X ′. In that figure the trefoil represents an embedded torus of self intersection 1, which
violates the adjunction inequality (Theorem 3.1). Therefore X ′ has no basic classes. This
implies

0 = Fmix
W∪τV,s

(Θ−
(−2))

= F+
W,s ◦ τ

∗ ◦ Fmix
V,s (Θ−

(−2))

= ±F+
W,s(τ

∗(c+(ξ))).

This proves that c+(ξ) and c+(ξ′) = τ∗(c+(ξ)) are distinct. To prove the last statement,
note that up to sign the U–equivariant involution τ∗ : HF+(−∂W ) → HF+(−∂W ) fixes
the image of HF∞(−∂W ) under the homomorphism π in Equation 3.4. Since c+(ξ) and
c+(ξ′) are not fixed by τ they descend non-trivially to coker(π). �

The following corollary was previously proved in [4] by using different techniques.

Corollary 4.2. The contact structures ξ and ξ′ are homotopic, contactomorphic but not
isotopic.

Proof. We use the homotopy classification of 2–plane fields on a 3–manifold (see [15]).
Since ∂W is an integral homology sphere, ξ and ξ′ have the same two dimensional invari-
ant. These two have also the same 3–dimensional invariant because they can be connected
by a Stein cobordism which is topologically trivial: Simply take the symplectizations of
(∂W, ξ) and (∂W, ξ′), and glue two ends using τ . This proves that ξ and ξ′ are homo-
topic. By definition τ defines a contactomorphism between these two contact structures.
Theorem 4.1 shows that they are not isotopic. �

Next corollary was first proved in [3] for the Mazur manifold, and in [11] in the general
form.

Corollary 4.3. The cork twist τ : ∂W → ∂W does not extend inside of W as a diffeo-
morphism.

Proof. Let s be the unique Spinc structure on W . Let ξ be the contact structure induced
by a Stein structure. The proof of Theorem 4.1 shows that FW,s(c

+(ξ)) = Θ+
(0) and

FW,s(τ
∗c+(ξ)) = 0. This shows that the relative invariants ΦW,s(ξ) and ΦW,s(τ

∗ξ) are
different. �
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The following corollary was first proved in [5] by using adjunction inequality. Let us
first introduce a terminology. Two Spinc manifolds (X, s) and (X ′, s′) are said to be fake
copies of each other if they are homeomorphic but not diffeomorphic.

Corollary 4.4. The cork W can be symplectically embedded in some closed symplectic
4–manifold X so that removing W and regluing it via cork twist produces a fake copy X,
with its canonical Spinc structure.

Proof. Pick a concave symplectic filling V of (∂W, ξ) as in Theorem 2.3. The manifold
X = W ∪ V is simply connected and symplectic. Let s be the canonical Spinc structure
of X. Now, remove the cork and reglue it using cork twist. The manifold X ′ = W ∪τ V
is simply connected and has the same intersection form as X. By Freedman’s theorem
there is a homeomorphism f : X → X ′. Let s

′ = f∗(s). We will prove that s
′ is not a

basic class. By Lemma 3.5

Fmix
X′,s′(Θ

−
(−2)) = F+

W,s ◦ τ
∗ ◦ Fmix

V,s (Θ−
(−2))

= ±F+
W,s(τ

∗(c+(ξ)))

= 0.

�

Remark 4.5. Note that if the inflated cork W ∪idM (of Theorem 1.1) embeds symplecti-
cally into a symplectic manifold X, then the cork twist produces a fake copy of X since in
the cork twisted manifold the adjunction inequality fails. This is what is used in [5] and
[11].

Remark 4.6. Let us formulate Corollary 4.4 in other terms: There is a concave filling
V of (∂W, ξ) such that attaching V to W in two different ways produce two closed Spinc

4–manifolds (X, s) and (X ′, s′) that are fake copies of each other. A large family of concave
fillings satisfy this condition and presumably this also holds for all concave fillings (with
b+2 (V ) ≥ 2). Proving the latter, however, requires a generalization of Lemma 3.5 for
arbitrary concave fillings. Once this is done, one would be able to show the following:

Conjecture: If a cork embeds symplectically into any symplectic manifold X, such that
b+2 (X) ≥ 2, then the cork twist produces a fake copy of X.
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[20] P. Ozsváth and Z. Szabó, Heegaard Floer homology and contact structures, Duke Math. J., 129

(2005), 39–61.
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[24] P. Ozsváth and Z. Szabó, Holomorphic triangle invariants and the topology of symplectic four-
manifolds, Duke Math. J., 121 (2004), 1–34.

[25] O. Plamenevskaya, Contact structures with distinct Heegaard Floer invariants, Math. Res. Let., 11
(2004), 547-561.

[26] N. Saveliev, A note on Akbulut Corks, Math. Res. Lett., 10 (2003), 777-785.

Department of Mathematics Michigan State University, East Lansing 48824 MI, USA

E-mail address: akbulut@math.msu.edu

Department of Mathematics The University of Texas at Austin, 2515 Speedway, RLM 8.100

Austin, TX 78712

E-mail address: karakurt@math.utexas.edu

52


