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Flat branes on tori and Fourier transforms

in the SYZ programme

Kaileung Chan, Conan Naichung Leung and Chit Ma

Abstract. The Strominger-Yau-Zaslow programme says that there should be a
theory of fiberwise Fourier transforms along special Lagrangian fibrations which would

explain mirror symmetry. This programme has been verified successfully in special
cases when quantum corrections do not arise. In this article we will describe a theory
of Fourier transforms of flat branes on tori and how it can be applied in the family

setting. And in certain special circumstances this explains quantum corrections in
SYZ transformations.

1. Mirror symmetry via the SYZ transforms

Roughly speaking, closed string theory on X can be regarded as quantum mechanics on
its loop space LX. A path in LX gives a surface Σ inX. This theory can be interpreted as
a 2-dimensional σ-model which studies Map(Σ, X). Supersymmetric considerations force
X to be a Calabi-Yau manifold. Open string theory concerns paths in X instead, families
of paths give surfaces with boundaries. The boundary conditions of these surfaces are
specified by geometric objects in X, those satisfying supersymmetry are known as (BPS)
branes. In [1], Witten suggests two ways of twisting the σ-model, namely the A-twist and
the B-twist. The twisted models are known as A-model and B-model, with correspond-
ing branes known as A-branes and B-branes respectively. The A-model is related to the
symplectic geometry of X and the B-model is related to the complex geometry of X. An
A-brane in X is a Lagrangian submanifold of X with a flat unitary complex vector bundle
on it. Energy minimizing A-branes are special Lagrangian submanifolds. A B-brane in X
is a complex submanifold of X with a unitary complex vector bundle (or more generally,
a complex of coherent sheaves), such that its connection defines a holomorphic structure
on the bundle. Energy minimizing B-branes are Hermitian Yang-Mills bundles.

The mirror symmetry conjecture says that the symplectic geometry (A-model) of a
Calabi-Yau manifold X is equivalent to the complex geometry (B-model) of another
Calabi-Yau manifold X̌, and vice versa. Kontsevich [2] formulated the conjecture as
an equivalence between the category of A-branes and the category of B-branes, which is
known as the homological mirror symmetry (HMS) conjecture. It is also generalized to
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manifolds which are not Calabi-Yau.

Strominger-Yau-Zaslow [3] proposed a geometric explanation to mirror symmetry,
using physical arguments. Near a large complex structure limit, the quantum effect
should be suppressed. To see the relation between a pair of mirror Calabi-Yau manifolds
X and X̌ (of complex dimension n), one can view X̌ as the moduli space of points in X̌
and treat it as a family of energy minimizing B-branes in X̌, it should correspond to a
family of energy minimizing A-branes in X. As X̌ is filled up by points, X is expected to
admit a fibration by corresponding A-branes, namely a special Lagrangian torus fibration
over a base affine manifold B (of real dimension n). Fix a point b ∈ B, equipping the fiber
torus Fb with different flat unitary connections on the trivial line bundle gives a family of
A-branes (of real dimension n), which can be parametrized by the dual torus F̌b. There-
fore, using the fibration structure of X, it is observed that X̌ is the total space of the
dual torus fibration of X over B. Furthermore, one expects that both A- and B-branes
should admit tropical limits. Namely they are families of flat branes on tori over tropical
subvarieties in B. The mirror correspondence should be a fiberwise Fourier-type transform
in that case.

The SYZ proposal has been realized in some special cases [4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15]. In particular, it can be carried out mathematically in certain semi-flat
cases, where the Lagrangian fibration for X does not admit singular fibers and the mirror
manifold X̌ is constructed by taking its dual torus fibration. Fiberwise Fourier trans-
form interchanges the symplectic and complex structures between X and X̌. For A- and
B-branes constructed by taking smooth families of flat branes on fiber tori, Fourier trans-
form can be applied to give an explicit correspondence between them. A brief discussion
will be given in section 4.

A typical torus fibration admits singular fibers [16]. If we perform the above naive
Fourier transform, we only expect to obtain the duality between A- and B-models in
their classical limits. To restore the duality, one needs to include the so called quantum
corrections in the A-model side.

Quantum corrections for closed string theory are contributed by holomorphic maps
from compact Riemann surfaces into X. There is a well developed theory of Gromov-
Witten invariants which allows one to “count” the Riemann surfaces contributing to
quantum corrections. Quantum corrections for open string theory are related to open
Gromov-Witten invariants defined by Fukaya-Oh-Ohta-Ono in [17, 18, 19], which “count”
holomorphic disks mapping into X with Lagrangian boundary conditions. Quantum cor-
rections for open string theory are more complicated, both to define and to compute, than
their closed counterpart.
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The construction of mirror manifold X̌ by incorporating quantum corrections of X
can be carried out explicitly when X is a toric Fano manifold [9] or a non-compact toric
Calabi-Yau manifold [8]. In both cases, X admits a “good” torus fibration µ : X → B to
an integral affine manifold B. The quantum corrections involved are so called genus zero
one-pointed open Gromov-Witten invariants, with boundary loops lying in a fiber torus
of the fibration. There is a lattice bundle Λ over B parametrizing fiberwise homotopy
classes of loops. Generating functions on Λ are defined by “counting” holomorphic disks
bounded by a fiberwise loop in Λ. The Fourier transforms of these functions are used to
correct the semi-flat complex structure to give a mirror manifold X̌. In other words, these
generating functions appear as “higher Fourier modes” of the corrected mirror complex
structure. We give a brief review for these constructions in section 5.

Despite having an explicit construction in the above cases, the reason for using quan-
tum corrections coming from holomorphic disks to correct the mirror complex structure
from the semi-flat complex structure is not completely clear. Furthermore, the general
procedure for using quantum corrections in the construction of mirror complex structure
is not known yet, due to the lack of computational methods for open Gromov-Witten
invariants. As we have seen that the corrections appear as “higher Fourier modes” in
the above cases, in order to get a better understanding of quantum corrections, it would
be important to develop a finite dimensional path space model and establish the Fourier
transform in the semi-flat case. Moreover, the Fourier transform defined for flat branes
can be used to give a mirror correspondence between A- and B-branes, as a geometric
construction for the mirror correspondence. We also give an example to illustrate Fourier
transforms between branes incorporating quantum corrections in section 5.

An ongoing project of the authors aims at laying a foundation for SYZ mirror trans-
forms by defining the category of flat branes on tori and constructing a Fourier-type
transform. The purpose of this article is to review the classical Fourier transform and
provide an outline of the theory of flat branes and their Fourier transform [20]. Explicit
examples will be given to highlight some features of the Fourier transform. We will also
describe briefly how to apply this construction along Lagrangian torus fibers and give a
geometric explanation to certain mirror symmetric phenomena.

2. Fourier transform on tori

In algebraic geometry, we have the Fourier-Mukai transform between an abelian variety
X and its dual abelian variety X̌ = Pic0(X): Let π : X× X̌ → X and π̌ : X× X̌ → X̌ be
the natural projection maps, P be the Poincaré line bundle (also called universal bundle)
on X × X̌. Then the Fourier-Mukai transform functor FM : D(X) → D(X̌) given by

FM(S) = Rπ̌∗(π
∗S

L
⊗ P)

is an equivalence of categories, where D(X), D(X̌) are the derived categories of coherent
sheaves on X and X̌ respectively. In fact, FM transforms the Pontrjagin product into
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the tensor product and vice versa.

Also, FM induces maps FK on K-theory and FH on singular cohomology, with the
following commutative diagram

K(X) K(X̌)

H∗
sing(X) H∗

sing(X̌),

FK

ch ch

FH

where ch is the Chern character map.

We are seeking an analogue transform of FH between a real torus T and its dual torus
T ∗. Using the deRham isomorphismH∗

sing(T )
∼= H∗

dR(T ), it becomes a transform between
deRham cohomology groups, which will be the classical Fourier-Mukai transform

Fcl : H
∗
dR(T ) → H∗

dR(T
∗).

In this section, we are going to review the definition of Fcl and explore how Fcl can be
generalized to an isomorphism in the level of differential forms by incorporating Fourier
series. We begin by introducing some notations which will be used throughout the paper.

2.1. Notations

Let V be a real vector space generated by a lattice Λ, with corresponding dual space
V ∗ and dual lattice Λ∗. We use (·, ·) as the natural pairing between V and V ∗. For a
subspace CR of V generated by a sublattice CZ of Λ, we have the following exact sequence
of vector spaces

0 → CR → V → V/CR → 0,

and the following exact sequence of Abelian groups

0 → CZ → Λ → Λ/CZ → 0.

Then we have a subtorus C = CR/CZ in T = V/CR. Given a ∈ V/CR (or a ∈ T/C), we
denote by Ca the affine subtorus given by translation of C by a.

On the other hand, we have dual exact sequences

0 → (V/CR)
∗ → V ∗ → (CR)

∗ → 0,

and
0 → (Λ/CZ)

∗ → Λ∗ → (CZ)
∗ → 0.

We denote (V/CR)
∗ and (V/CZ)

∗ by ČR and ČZ respectively. Then Č := ČR/ČZ defines

a subtorus in T ∗ = V ∗/Λ∗. Č is called the mirror object of C and satisfies ˇ̌C = C.
Similarly, we denote by Čǎ = Č + ǎ the affine subtorus in T ∗.

4



Flat branes on tori and Fourier transforms in the SYZ programme

Suppose yj ’s are coordinates of T (resp. yj ’s are dual coordinates of T ∗). Then, given
ǎ = (a1, · · · , an) ∈ V ∗ (resp. a = (a1, · · · , an) ∈ V ), we denote by

∇ǎ := d− 2πi

n
∑

j=1

ajdyj (resp. ∇̌a := d− 2πi

n
∑

j=1

ajdy
j)

the connection 1-form determined by ǎ (resp. a) on T (resp. T ∗).

2.2. Fourier transform

From the fact that

T ∗ = H1(T,R)/H1(T,Z)
exp
∼= HomZ(Λ, U(1)),

we can see that points in T ∗ parametrize flat unitary connections on the trivial line bundle
over T , up to gauge equivalence. The roles of T and T ∗ can be reversed.

To see this concretely, given a point ǎ ∈ V ∗, we equip the trivial bundle C · 1 with the
connection form ∇ǎ. This determines a map from V ∗ to space of flat U(1) line bundles
on T . As ∇ǎ is gauge equivalent to ∇ǎ+λ̌ for λ̌ ∈ Λ∗, the map descends to T ∗ as an
isomorphism.

We can describe the isomorphism using the Poincaré line bundle P. We define the
universal connection by the connection 1-form

∇P := d+ πi
n
∑

j=1

(yjdy
j − yjdyj)

on the trivial complex line bundle P̃ over V × V ∗, the universal cover of T × T ∗. The
natural action of Λ× Λ∗ on V × V ∗ can be lifted to an action on P̃ given by

(λ, λ̌) · (y, y̌, t) = (y + λ, y̌ + λ̌, eπi[(λ̌,y)−(y̌,λ)]t).

Taking the quotient of P̃ by Λ×Λ∗, we get the Poincaré line bundle P over T ×T ∗ which
is a nontrivial bundle. The connection ∇P descends to T × T ∗ as a unitary connection.

We have the universal property that ∇P |T×{ǎ} and ∇P |{a}×T∗ can be written as ∇ǎ

and ∇̌∗
a respectively. This provides an isomorphism from T ∗ to the moduli space of flat

unitary line bundles on T , by sending y̌ to P|T×{y̌}.

Also, the curvature of ∇P is given by

FP = 2πi
n
∑

j=1

dyj ∧ dy
j .

5



CHAN, LEUNG and MA

We use this together with the projection maps π and π̌ from T × T ∗ to T and T ∗ respec-
tively to define the following transform for differential forms.

Definition 2.1. The classical Fourier-Mukai transform Fcl : Ωk(T ) → Ωn−k(T ∗) is
defined by

Fcl(α) = (−1)
n(n−1)

2 π̌∗(π
∗α ∧ e

i
2πFP )

= (−1)
n(n−1)

2

∫

T

π∗α ∧ e
i

2πFP .

For example Fcl(1) = dy1 ∧ dy2 ∧ · · · ∧ dyn.

We may also define the inverse Fourier transform F−1
cl : Ω∗(T ∗) → Ω∗(T ) by

F−1
cl (α̌) = (−1)

n(n−1)
2 π∗(π̌

∗α̌ ∧ e−
i

2πFP )

= (−1)
n(n−1)

2

∫

T∗

π̌∗α̌ ∧ e−
i

2πFP .

Even though F−1
cl is called the inverse transform, Fcl is not an isomorphism and

F−1
cl ◦ Fcl : Ω

∗(T ) → Ω∗(T ) is just the harmonic projection. Nevertheless, Fcl descends
to an isomorphism on cohomologies

Fcl : H
∗
dR(T,R) → H∗

dR(T
∗,R).

Under the deRham isomorphism, Fcl is consistent with the earlier discussion on duality
of subtori: We first note that Hsing

∗ (T ) is generated by homology classes [C]’s of subtori
C’s in T and H∗

sing(T ) is generated by their Poincaré duals PD[C]’s. Via the deRham

isomorphism, Fcl (PD[C]) =PD[Č]. Furthermore Fcl (PD[C1 ∩ C2]) =PD[Č1 + Č2].

The classical Fourier transform Fcl works nicely in the study of mirror symmetry
without corrections, see [11] and [13]. However, we have to extend it by incorporating
Fourier series in order to obtain an isomorphism on the level of forms which corresponds
to quantum corrections in mirror symmetry.

2.3. Fourier series

In the classical Fourier series setting, a function f : Z → C and a function
f̌ : S1 = R/Z → C can be interchanged by

f(λ) =

∫

S1

f̌(y)e2πiλydy

and

f̌(y) =
∑

λ∈Z

f(λ)e−2πiλy.

This can be easily generalized to higher dimensional cases for tori and lattices. Roughly
speaking, instead of considering functions on T and T ∗, we consider functions on T × Λ
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and T ∗ × Λ∗. The idea of defining a transform between them is transforming functions
on T (resp. Λ) to functions on Λ∗ (resp. T ∗). Let π and π̌ be the projection maps from
T ×Λ×T ∗×Λ∗ to T ×Λ and T ∗×Λ∗ respectively. Then we have the following definition
by combining the Fourier series and our earlier Fourier-Mukai transform.

Definition 2.2. Let (y, λ) ∈ T × Λ and (y̌, λ̌) ∈ T ∗ × Λ∗. The Fourier transform
F : Ωk(T × Λ) → Ωn−k(T ∗ × Λ∗) is defined by

F(α) = (−1)
n(n−1)

2 π̌∗

(

π∗α ∧ e(
i

2πFP+2πi(y,λ̌)−2πi(λ,y̌))
)

= (−1)
n(n−1)

2

∫

T

(

∑

λ∈Λ

(π∗α)e−2πi(λ,y̌)
)

e2πi(y,λ̌) ∧ e
i

2πFP ,

and the inverse transform F−1 : Ωk(T ∗ × Λ∗) → Ωn−k(T × Λ) is defined by

F−1(α̌) = (−1)
n(n−1)

2 π∗

(

π̌∗α̌ ∧ e−( i
2πFP+2πi(y,λ̌)−2πi(λ,y̌))

)

= (−1)
n(n−1)

2

∫

T∗

(

∑

λ̌∈Λ∗

(π̌∗α̌)e−2πi(λ̌,y)
)

e2πi(λ,y̌) ∧ e−
i

2πFP .

Example 2.3. If f(y, λ) = f(λ), then

F(f(y, λ)) = F(f(λ)) =

{

f̌(y̌)dy1 ∧ dy2 ∧ · · · ∧ dyn if λ̌ = 0,

0 if λ̌ 6= 0,

where f̌(y̌) is the ordinary Fourier transform of f(λ). Conversely, if

f(y, λ) =

{

f(y) if λ = 0,
0 if λ 6= 0,

,

then

F(f(y, λ)) = f̌(λ̌)dy1 ∧ dy2 ∧ · · · ∧ dyn,

where f̌(λ̌) is the ordinary Fourier series of f(y). In general, suppose I = {i1, · · · , ik}
is a subset of {1, · · · , n} with i1 < · · · < ik, Ī = {ik+1, · · · , in} = {1, · · · , n} − I with
{i1, · · · , ik, ik+1, · · · , in} an even permutation of {1, · · · , n}, we have

F(f(y, λ)dyI)

= (−1)
n(n−1)

2

∫

T

(

∑

λ∈Λ

(f(y, λ)dyI)e
−2πi(λ,y̌)

)

e2πi(y,λ̌) ∧ e
i

2πFP

= (−1)
n(n−1)

2 +
|Ī|(|Ī|+1)

2

∫

T

(

∑

λ∈Λ

f(y, λ)e−2πi(λ,y̌)
)

e2πi(y,λ̌)dyI ∧ dy
Ī ∧ dyĪ

= (−1)
n(n−1)

2 +
|Ī|(|Ī|+1)

2 +|I||Ī|

∫

T

(

∑

λ∈Λ

f(y, λ)e−2πi(λ,y̌)
)

e2πi(y,λ̌)dyĪ ∧ dyI ∧ dyĪ

= (−1)
n(n−1)

2 +
|Ī|(|Ī|−1)

2 +|I||Ī|f̌(y̌, λ̌)dyĪ

7



CHAN, LEUNG and MA

where

f̌(y̌, λ̌) =

∫

T

(

∑

λ∈Λ

f(y, λ)e−2πi(λ,y̌)
)

e2πi(y,λ̌),

and dyĪ = dyik+1 ∧ · · · ∧ dyin , dyI = dyi1 ∧ · · · ∧ dyik .

As in the classical case, given a function f : Z → C, f̌(y̌) =
∑

λ∈Z
f(λ)e−2πiλy̌ may

not converge. Therefore, in our case, we have to restrict to those f(y, λ)dyI ∈ Ω∗(T ×Λ)
such that for a fixed λ ∈ Λ, f(y, λ) = f(y) is a L2-function and for a fixed y ∈ T ,
f(y, λ) = f(λ) is a rapid-decay function. We define Ω∗

(2)(T × Λ) to be the subspace of

Ω∗(T × Λ) consisting of all forms with the above property. Then, we have:

Proposition 2.4. F : Ω∗
(2)(T × Λ) → Ω∗

(2)(T
∗ × Λ∗) is an isomorphism and F−1 ◦ F is

the identity map on Ω∗
(2)(T × Λ).

Remark 2.5. As our motivations come from string theory which is roughly quantum
mechanics on loop spaces, it is worth noticing that T × Λ is simply the space of all
geodesic loops in T . When we generalize this to the family of tori T in a Lagrangian
fibration in a symplectic manifold X, we should consider the space of fiberwise geodesic
loops in X. In [9], K.W. Chan and the second author used this method in toric setting to
obtain the mirror Landau-Ginzburg model predicted by Kontsevich and Hori-Vafa [21].

3. Flat branes in tori

As mentioned in section 1, an A-brane is a pair (L,E) where L is a special Lagrangian
submanifold and E is a flat unitary vector bundle E on L, a B-brane is a pair (Ľ, Ě)
where Ľ is a complex submanifold and Ě is unitary complex vector bundle such that
its connection defines a holomorphic structure on Ě. In a large structure limit, mirror
manifolds are expected to admit dual Lagrangian (possibly singular) tori fibrations over
a singular affine manifold B [13]. Furthermore, one expects that both A- and B-branes
should admit tropical limits. Namely they are families of flat branes on tori over tropical
subvarieties in B. According to SYZ, the mirror correspondence is predicted to be a fiber-
wise Fourier-type transform on these flat branes on dual tori, incorporating with quantum
corrections. This would give a geometric understanding for the mirror correspondence.
However, the mathematical description for this correspondence is not completely clear
yet, much more work is needed to clarify how singular the families of flat branes can be
and how to include quantum corrections.

In order to understand the correspondence better, we study flat branes in a single flat
torus, which should be thought of a smooth fiber of the Lagrangian fibration. We are
going to discuss how to obtain a bijection between the set of flat branes in a torus and
its dual via Fourier transform. Furthermore, we will define a complex using the space of
mininal geodesic paths from a flat brane to another to study the quantum intersection
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between two flat branes.

We start by giving the definition of flat branes. Recall that, with a subtorus C = CR/CZ

in T and a ∈ V/CR (or a ∈ T/C), we denote by Ca the affine translation of C by a.

Definition 3.1. A flat brane B in a torus T is a pair (Ca, E), where Ca is an affine
subtorus in T and E is a flat unitary complex vector bundle over Ca.

Remark 3.2. E splits orthogonally into a direct sum of flat unitary line bundles.

Suppose Bi = (Ci,ai
, Ei), i = 1, 2, are two flat branes in a torus T , we will define a

complex to study the quantum intersection of two branes. In general, we are supposed to
study the path space from C1,a1

to C2,a2
. When the torus T is a fiber of a Lagrangian

fibration at a large complex structure limit, the intersection theory should localize to the
subspace consisting of minimal geodesics, which is a finite dimensional manifold.

Definition 3.3. For two affine subtori C1,a1
and C2,a2

, an instanton from C1,a1
to C2,a2

is a connected minimal geodesic segment γ : [0, 1] → T such that γ(0) ∈ C1,a1
and

γ(1) ∈ C2,a2
.

Passing to the universal cover, an affine subtorus C is lifted to infinitely many affine
linear subspaces. An instanton from C1,a1

to C2,a2
, upon lifting to the universal cover

V , is a line segment joining an affine subspace covering C1,a1
and to an affine subspace

covering C2,a2
, which is orthogonal to both subspaces. Two points in distinct flat branes

are said to be intersecting each other in the quantum sense if they are joined by an
instanton. The space of instantons is denoted by M(C1,a1

, C2,a2
), or simply M1,2 if there

is no confusion. There are two natural evaluation maps

M(C1,a1
, C2,a2

)

C1,a1
C2,a2

.

evs evt

Remark 3.4. In the case that both Ci,ai
’s are affine translations of the same torus C,

we have a map

M(Ca1
, Ca2

)
∼
→ Ca1

× Λ/CZ

given by

γ 7→ (γ(0), γ
′

+ ã1 − ã2),

where ãi’s are some liftings of ai’s. This gives an explicit parametrization for the space
of instantons.
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The quantum intersection complex can be defined using the spaceM1,2 in the following
manner.

First, we can form the homomorphism bundle over M1,2 from ev∗sE1 and ev∗tE2,
denoted by Homqu(E1, E2) = Hom(ev∗sE1, ev

∗
tE2). There is a natural flat unitary con-

nection given by ∇1,2 = ev∗s (∇
∗
1)⊗ ev∗t (∇2). This gives a differential complex

(Ω∗(M1,2,Homqu(E1, E2)),∇1,2).

Second, we define a bundle N1∨2 over the space M1,2. Denoting by Pγ : Tγ(0)T → Tγ(1)T
the parallel transport along the path γ ∈M1,2, we define

N1∨2|γ = Tγ(0)T/(Tγ(0)C1,a1
+ P−1

γ Tγ(1)C2,a2
).

The metric on T induces a connection on N1∨2 which is flat.

Indeed, if we identify tangent space at every point of T as V , the tangent space of Ci,ai

is naturally identified with Ci,R. Then we have N1∨2 ≃ V/(C1,R +C2,R) at every path γ.
Thus N1∨2 is a trivial bundle with trivial connection under this identification.

s(γ) = 2πiγ
′

∈ N1∨2 defines a flat section of the trivial bundle ∧1N1∨2 over M1,2.
Therefore, we can define

δ : Γ(M1,2,∧
qN1∨2) → Γ(M1,2,∧

q+1N1∨2)

by δ(ϕ) := s ∧ ϕ. We can verify that δ2 = 0.

Remark 3.5. There is an equivalent complex defined using the dual bundle N ∗
1∨2, with

the differential
δ̆ : Γ(M1,2,∧

qN ∗
1∨2) → Γ(M1,2,∧

q−1N ∗
1∨2)

given by δ̆(ϕ) := ιs(ϕ). The two complexes are identified by an isomorphism N ∗
1∨2 ≃ N1∨2

using metric and then the Hodge star operator, up to a factor of (−1)q−1 on sections of
∧qN ∗

1∨2.

Remark 3.6. The reason for introducing the complex ∧∗N1∨2 will become clear when we
will consider families of flat branes. When we consider A-branes, N1∨2 is identified with
a subbundle of cotangent bundles of two A-branes, using symplectic form. In this case,
all non constant paths will contribute and result in a quantum theory. When we consider
B-branes, the complex ∧∗N1∨2 is exact off the classical intersection of two B-branes. This
gives a classical intersection theory.

We let Ωp,q(B1,B2) := Ωp(M1,2,Homqu(E1, E2) ⊗ ∧qN1∨2). Then δ and ∇1,2 induce
two commuting differentials

δ : Ωp,q(B1,B2) → Ωp,q+1(B1,B2) and ∇1,2 : Ωp,q(B1,B2) → Ωp+1,q(B1,B2).

Therefore, Ω∗,∗(B1,B2) is a double complex. Furthermore, we define the total com-
plex Ωn(B1,B2) := ⊕p+q=nΩ

p,q(B1,B2) and D : Ωn(B1,B2) → Ωn+1(B1,B2) by defining
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D := ∇1,2+(−1)p+q+1δ on Ωp,q(B1,B2). Then we have D2 = 0 and hence (Ω∗(B1,B2), D)
is a cochain complex.

We can define another complex Ω̆p,−q = Ωp(M1,2,Homqu(E1, E2)⊗∧qN ∗
1∨2), with two

differentials (∇1,2, (−1)pδ̆). There is an isomorphism between the two double complexes,
as well as their total complexes, by a degree shifting.

Remark 3.7. In fact we should consider those φ ∈ Ω∗(B1,B2) with decay condition

|γ
′

|k|φ(γ)| → 0 as |γ
′

| → ∞ for all k ∈ Z≥0. We continue to denote this subcomplex by
(Ω∗(B1,B2), D).

Example 3.8. In the case where Ca1
= {a1} and Ca2

= {a2} are translations of the zero
subtorus C, M1,2 is parametrized by the lattice Λ. Let f(λ) ∈ Γ(M1,2,∧

0N1∨2), we have

δ(f(λ)) = 2πif(λ)(λ+ ã2 − ã1).

If a1 6= a2, then ã2−ã1 is not in Λ and λ+ã2−ã1 is not zero. In this case, H0
δ (Γ(∧

∗N1∨2))
is trivial which means Ca1

and Ca2
do not intersect in the classical sense. However, if

a1 = a2, then ã2 − ã1 ∈ Λ and we can check that H0
δ (Γ(∧

∗N1∨2)) = C, which means Ca1

and Ca2
do intersect in the classical sense. Although the spaces of instantons in both

cases are the same, the difference in the differential δ helps to distinguish whether the
flat branes Ca1

and Ca2
intersect or not.

When two flat branes are the same, denoted by B = (Ca, E), we can define a product
on Ω∗(B,B). We consider a natural map

p :M(Ca, Ca) evt
×evs

M(Ca, Ca) →M(Ca, Ca)

defined by joining the paths. More precisely, given a pair of paths (γ1, γ2) such that
γ1(1) = γ2(0), we let p(γ1, γ2) = γ1◦γ2 be the unique geodesic path with γ1◦γ2(0) = γ1(0)
and (γ1 ◦ γ2)

′ = γ′1 + γ′2. For two α, β ∈ Ω∗(B,B), we define

α ∗ β = p∗(π
∗
1α ∧ π∗

2β).

In the case where C is just a point in T , we can identify M(Ca, Ca) with the lattice
Λ. The product is a convolution product along the lattice. When C is T , it gives the
ordinary wedge product. In general, it is a mixture of both. The complex

(

Ω∗(B,B), D),
together with the product ∗, gives a differential graded algebra.

3.1. Fourier transform

In this section, we define the Fourier transform. A check “∨” will be added to notations
for objects in T ∗ to distinguish them from objects in T .

11
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Transform of flat branes

We have to define a transform between flat branes in T and T ∗ by using the Poincaré
line bundle P and the universal connection ∇P .

Given a flat brane B = (Ca, E) in T , without loss of generality, we consider the case
that E is a line bundle over Ca, with a flat unitary connection ∇E .

For each y̌ ∈ T ∗, we have an embedding Ca × {y̌} → T × T ∗. We define

Ě|y̌ := H0(E ⊗ P∗|Ca×{y̌},∇E ⊗∇∗
P |Ca×{y̌}),

and we consider the subset {y̌ ∈ T ∗ : Ě|y̌ 6= 0} in T ∗. It turns out this subset equals to

the affine subtorus Čǎ in T ∗, for a suitable choice of ǎ (determined by ∇E).

We consider the bundle E ⊗ P∗ over Ca × Čǎ. We define Ě|y̌ = H0(E ⊗ P∗|y̌). It
has a natural metric constructed from the L2 metric of the space H0(E ⊗P∗|y̌). Parallel
transport along paths in Čǎ defines a connection ∇̌Ě on Ě. We define F(B) to be the flat

brane (Čǎ, Ě).

This can be seen in local coordinates. Given Ca, we can fix a local coordinate
y = (y1, . . . , yn) of V , such that

CR = {y ∈ V : yk+1 = 0, · · · , yn = 0},

and let y̌ = (y1, . . . , yn) be the corresponding dual coordinates. We can write the flat
U(1)-connection ∇E on Ca as the connection 1-form

∇ǎ = d− 2πi

k
∑

j=1

ajdyj

with respect to some trivialization 1E , for some ǎ = (a1, · · · , ak) ∈ C∗
R
.

Fixing a point y̌ ∈ V ∗, the function e−πi(y̌,y) on V × V ∗ descends to a trivialization of
P|T×{y̌}, with corresponding connection 1-form given by d− 2πi(y̌, dy). Then we have

∇ǎ ⊗∇∗
P |Ca×{y̌} = d+ 2πi

k
∑

j=1

(yj − aj)dyj ,

it has nonzero flat section if and only if

f(y1, · · · , yk) = exp
(

− 2πi

k
∑

j=1

(yj − aj)yj

)

defines a function on C. This is equivalent to the condition y̌ − ǎ ∈ C∗
Z
.

12
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We can verify that, for a suitable choice of a ∈ V/CR, the connection ∇̌Ě can be
expressed in the form

∇̌a = d− 2πi

n
∑

j=k+1

ajdy
j ,

with respect to some trivialization of Ě.

In general, B = (Ca, E) is a flat brane in T with E a flat U(r)-bundle. Since Ca

itself is a torus, (E,∇) can always be decomposed into a direct sum
⊕r

i=1(Ei,∇i). Thus,
transformation of B reduces to transformation of (Ca, Ei) and gives r flat branes in T ∗.

Finally, we define a tautological section φ of E∗ ⊗ Ě ⊗ P over Ca × Čǎ which is used
in the transformation of the quantum intersection complex. Over a point (y, y̌), there is
a natural pairing

E∗|y ⊗H0(E ⊗ P∗|y̌)⊗ P|(y,y̌) → C.

This gives an identification of the bundle E∗ ⊗ Ě ⊗ P with the trivial bundle and
determines a section φ which is identified to the constant function 1. Notice that φ is flat
with respect to the connection of E∗ ⊗ Ě ⊗ P.

The inverse transform F−1 can be defined in a similar way using the dual Poincaré
line bundle P∗, and we have

Proposition 3.9. F−1 ◦ F(B) = B.

Remark 3.10. When we carry out the inverse transform F−1 on F(B) = (Čǎ, Ě), we get

a line bundle ˇ̌E over Ca which is defined by ˇ̌E|y := H0(Ě ⊗P|{y}×Čǎ
, ∇̌Ě ⊗∇P |{y}×Čǎ

).

The tautological section φ gives an identification of E and ˇ̌E.

Transform of quantum intersection complex

Given flat branes Bi = (Ci,ai
, Ei) in T , for i = 1, 2, we are going to define a Fourier

transform
F : Ω∗(B1,B2) → Ω∗(F(B1),F(B2)).

We write F(Bi) = (Či,ǎi
, Ěi). For simplicity, we work on the case of line bundles.

Let us consider the product of spaces M1,2 × M̌1,2 with two natural projections π and

π̌ to M1,2 and M̌1,2 respectively. As analogue to the Fourier-Mukai transform, our trans-

form is established by defining some universal objects over the space M1,2 × M̌1,2.

First, we define a tautological section φF of the bundle

π∗ Homqu(E1, E2)
∗ ⊗ π̌∗ Homqu(Ě1, Ě2)

on M1,2 × M̌1,2. The product of evaluation maps gives

13
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M1,2 × M̌1,2

C1,a1
× Č1,ǎ1

C2,a2
× Č2,ǎ2

.

evs evt

We also have two tautological sections φi of E
∗
i ⊗ Ěi ⊗P on Ci,ai

× Či,ǎi
, for i = 1, 2.

(evs)
∗φ∗1 ⊗ (evt)

∗φ2 is a section of the bundle

π∗ Homqu(E1, E2)
∗ ⊗ π̌∗ Homqu(Ě1, Ě2)⊗ (evs)

∗P∗ ⊗ (evt)
∗P.

Each point (γ, γ̌) ∈ M1,2 × M̌1,2 gives a path in T × T ∗ and parallel transport along it
gives a natural pairing ((evs)

∗P∗ ⊗ (evt)
∗P)|(γ,γ̌) → C. We define φF to be the section

(evs)
∗φ∗1⊗ (evt)

∗φ2 after identifying (evs)
∗P∗⊗ (evt)

∗P with C using the natural pairing.

Next, we define two canonical forms

G1 ∈ π∗Ω1(M1,2,∧
1Ň1∨2)

G2 ∈ π̌∗Ω1(M̌1,2,∧
1N1∨2).

Through the evaluation map evs : M1,2 → C1,a1
, we identify TγM1,2 with the subspace

(Tγ(0)C1,a1
∩ P−1

γ Tγ(1)C2,a2
) of Tγ(0)T . At the path (γ, γ̌), using the natural pairing on

Tγ(0)T ⊗ Tγ̌(0)Ť , we obtain an isomorphism between T ∗
γM1,2 and Ň1∨2|γ̌ . Hence we have

two natural sections G1, G2 of the bundle

π∗T ∗M1,2 ⊗ π̌∗Ň1∨2 ⊕ π̌∗T ∗M̌1,2 ⊗ π∗N1∨2

given by restrictions of the metric and the dual metric to corresponding subspaces.
The universal section φF ⊗ eG1+G2 serves as the kernel function for the Fourier trans-

form. Given α ∈ Ω∗(B1,B2), we define

F(α) = (−1)m+m̌π̌∗(π
∗α ∧ (φF ⊗ eG1+G2)),

where m and m̌ are dimensions of M1,2 and M̌1,2 respectively.
Here we choose unit length trivialization of the top exterior power of N1v2 with R using

the metric, together with an orientation of M1,2 to obtain an integration
∫

: Ωm(M1,2,∧
m̌N1∨2) → C.

In the case that B1 = B2 = T , equipped with the trivial connection, B̌ is the trivial
subtorus without affine translation. In this case, we recover the ordinary Fourier trans-
form.

Example 3.11. For simplicity, we let T = S
1 = R/Z be the unit circle with coordinate

θ ∈ R, and θ̌ ∈ R
∗ be the corresponding dual coordinate. We write Λ ≃ Z for the lattice

and Λ∗ ≃ Z
∗ for the dual lattice. λ̌ ∈ Z

∗ parametrizes the loop which is a line segment

14
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from 0̌ to λ̌ in R
∗. The universal connection 1-form is given by ∇P = d+ πi(θdθ̌ − θ̌dθ)

on R× R
∗.

We take C1 = C2 = T , equipped with the trivial connection on the trivial bundle.
Then Č1 = Č2 = 0̌ is the origin. We parametrize M1,2 by T and M̌1,2 by Λ∗. We only
need to compute the parallel transport along the path γ̌λ̌. Parallel transport of P along

γ̌λ̌ maps 1 to e−πiλ̌θ · 1 on the universal cover, taking the quotient and changing the

trivialization results in a multiplication by e−2πiλ̌θ. Hence the tautological section φF is

given by e2πiλ̌θ and we have F(fdθ)(λ̌) = −
∫

T
f(θ)e2πiλ̌θdθ, under the natural invariant

basis of the bundles.

We give three more examples to illustrate the situation.

Example 3.12. In this example, we consider the standard torus T = R
n/Zn, equipped

with the standard metric. We use y = (y1, . . . , yn) ∈ R
n as coordinate and let y̌ =

(y1, . . . , yn) ∈ (Rn)∗ be the corresponding dual coordinate. We consider two flat branes
given by

Bi =



C̃i = {y : yk = 0 for k ∈ Ii}, Ei = C · 1Ei
, ∇ǎi

= d− 2πi
∑

j /∈Ii

ajidyj



 ,

with C̃i are some liftings of Ci to V . The corresponding dual branes are given by

B̌i =
(

˜̌Ci,ǎi
= {y : yk = aki for k /∈ Ii}, Ěi = C · 1̌Ěi

, ∇̌ = d
)

,

for some trivialization 1̌Ěi
. We also denote by ǎi ∈ Č⊥

i,R some fixed liftings of the affine
translations if there is no confusion.

In this case, we give explicit parametrization of the spaces M1,2 and M̌1,2. We denote

by Č⊥
1∨2,Z the lattice (Č1,R + Č2,R)

⊥ ∩ Λ. There is an isomorphism

(Č1 ∩ Č2)× Č⊥
1∨2,Z → M̌1,2,

given by sending (y̌, λ̌) ∈ (Č1 ∩ Č2) × Č⊥
1∨2,Z to a path γ̌y̌,λ̌ with γ̌y̌,λ̌(0) = y̌ + ǎ1 + ǎT2 ,

γ̌′
y̌,λ̌

= λ̌ + (ǎ2 − ǎ1)
⊥ and γ̌y̌,λ̌(1) = y̌ + ǎ2 + ǎT1 , where ǎ

T
1 is the projection of ǎ1 to

Č2,R (similarly for ǎ2) and (ǎ2 − ǎ1)
⊥ is the projection to Ň1∨2 ≃ Č⊥

1∨2,R. The space

M1,2 ≃ (C1 ∩ C2)× C⊥
1∨2,Z is parametrized in similar way.

We give an explicit description of the tautological section φF . In T × T ∗, consider a
path (γy,λ, γ̌y̌,λ̌). In order to compute the sections φi, we choose liftings C̃1 = C1,R and

C̃2,λ = C2,R+λ of C1 and C2, liftings
˜̌C1,ǎ1

= Č1,R+ǎ1 and
˜̌C2,ǎ2+λ̌ = Č2,R+ǎ2+λ̌ of Č1,ǎ1

and Č2,ǎ2
respectively. The functions e−πi(ǎ1,y) on C̃1 ×

˜̌C1,ǎ1
and e−πi[(ǎ2+λ̌,y)−(λ,y̌)] on

15
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C̃2×
˜̌C2,ǎ2+λ̌ descend to trivializations e1 and e2 of P|C1×Č1,ǎ1

and P|C2×Č2,ǎ2
respectively.

Similar to the previous example, we see that the parallel transport of P on V × V ∗

along (γy,λ, γ̌y̌,λ̌) is multiplication by a factor e−πi[(λ̌+(ǎ2−ǎ1)
⊥,y)−(λ,y̌)]. It follows that

the parallel transport maps e1 to e2.

The connection forms of the Poincaré line bundle over C1×Č1,ǎ1
and C2×Č2,ǎ2

(corre-
sponding to the trivializations e1 and e2) are written as d − 2πi(ǎ1, dy) and
d + 2πi[(λ, dy̌) − (ǎ2 + λ̌, dy)] respectively. We choose the trivializations of Ě1 and Ě2

given by 1E1
⊗ e∗1 and e2πi[(λ,y̌)−(λ̌,y)]1E2

⊗ e∗2, denoted by 1̌Ě1
and 1̌Ě2

respectively.

Notice that 1̌Ěi
do not depend on λ and λ̌. As a result, we have φ1 = 1∗E1

⊗ 1̌Ě1
⊗ e1 and

φ2 = e2πi[(λ̌,y)−(λ,y̌)]1∗E2
⊗ 1̌Ě2

⊗ e2. Hence we have

φF = e2πi[(λ̌,y)−(λ,y̌)]1E1
⊗ 1∗E2

⊗ 1̌∗
Ě1

⊗ 1̌Ě2
.

Next, we give the expression of the canonical forms. Under the identification of
T ∗M1,2 ≃ Ň1∨2, dyk is identified with ∂

∂yk , for k ∈ I1 ∩ I2. Similarly, dyk is identi-

fied with ∂
∂yk

, for k ∈ Ī1 ∩ Ī2, where Īi = {1, . . . , n} − Ii. Then we have

G1 +G2 =
∑

k∈I1∩I2

dyk ⊗
∂

∂yk
−

∑

l∈Ī1∩Ī2

∂

∂yl
⊗ dyl.

Suppose we have α ∈ Ω∗(B1, B2) written in the form

α(y, λ) = f(y, λ)dyJ ⊗
∂

∂yK
.

Then we will have

F(α)(y̌, λ̌)

=
(

∫

C1∩C2

(
∑

λ

f(y, λ)e−2πi(λ,y̌))e2πi(λ̌,y)dyI1∩I2 ⊗
∂

∂yĪ1∩Ī2

)

dy(Ī1∩Ī2)−K ⊗
∂

∂y(I1∩I2)−J
,

expressed in terms of the corresponding trivialization, up to a sign.

As seen from the above example, the Fourier transform is a homomorphism

F : Ωp,q(B1,B2) → Ωm̌−q,m−p(B̌1, B̌2).

We can use the Hodge star operator over the trivial bundles N1∨2 and Ň1∨2 to turn F
into a homomorphism

F̂ : Ωp,q(B1,B2) → Ωq,p(B̌1, B̌2).

After doing that, we have
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Proposition 3.13. F̂ : Ω∗(B1,B2) → Ω∗(B̌1, B̌2) is a chain map.

Remark 3.14. Indeed it is more convenient to write down the transform using the
complex Ω̆∗(B1,B2). The advantage of this is that the transform preserves the differential
without involving the star operator and the metric tensor. Let I1 be a section of the
bundle T ∗M1,2 ⊗ Ň ∗

1∨2 defined using the natural pairing between Ň1∨2 and TM1,2, and

let I2 defined similarly. The transform F̆ is defined by

F̆(α) = (−1)m+m̌π̌∗(π
∗α ∧ (φF ⊗ eI1+I2)).

Example 3.15. In this example, we consider an example where the two branes are the
same. Let B be a brane in T 2 with a lifting C̃ of the torus C given by

(C̃ = {y : y2 − 2y1 = 0}, E = C · 1E , ∇ = d).

The lifting ˜̌C of the dual torus with corresponding dual connection is given by

( ˜̌C = {y̌ : 2y2 + y1 = 0}, Ě = C · 1̌Ě , ∇̌ = d).

In this case, we use explicit parametrizations of M and M̌ , with coordinates (y1, λ) and
(y2, λ̌). A path γy1,λ with coordinate (y1, λ) has γ(0) = (y1, 2y1) and γ′y1,λ

= λ(−2
5 ,

1
5 ).

A path γ̌y2,λ̌ has γ̌y2,λ̌(0) = (−2y2, y2) and γ̌′
y2,λ̌

= λ( 15 ,
2
5 ). For example, γ′0,3 is shown

in the following figure.

y2 − 2y1 = 0

γ′0,3 = 3
(

− 2
5 ,

1
5

)

b

b

b b

b

b b

b

b

We consider a path (γy1,λ, γ̌y2,λ̌) in T × T ∗. The constant function 1 descends to a

trivialization e1 of the Poincaré bundle over C × Č. We have φ1 = 1E ⊗ 1̌Ě ⊗ e1.

17
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Then we use the liftings C̃(0,λ) = CR + (0, λ) and ˜̌C(λ̌,0) = ČR + (λ̌, 0) to compute φ2.

Note that the function eπi(λy
2−λ̌y1) on C̃(0,λ) ×

˜̌C(λ̌,0) descends to a trivialization e2 of

P|C(0,λ)×Č(λ̌,0)
, with corresponding connection form given by d + 2πi(λdy̌2 − λ̌dy1). We

have φ2 = e2πi(λ̌y1−λy2)1E ⊗ 1̌Ě ⊗ e2. Parallel transport along (γy1,λ, γ̌y2,λ̌) identifies e1
to e2. Thus we obtain the tautological section given by

φF = e2πi[(λ̌,y1)−(λ,y2)]1E ⊗ 1∗E ⊗ 1̌∗
Ě
⊗ 1̌Ě ,

and the Fourier transform for a function f(y1, λ) is given by

F̂(f)(y2, λ̌) =
∑

λ∈Z

(

∫

C

f(y1, λ)e
2πi[(λ̌,y1)−(λ,y2)]),

with respect to the chosen basis.

Example 3.16. We take the standard 2-dimensional torus T 2 in this example. We use
same notations as last example. The branes Bi have liftings given by

(C̃1 = {y : y2 = 0}, E1 = C · 1E1
, ∇1 = d)

(C̃2 = {y : y2 − ny1 = 0}, E2 = C · 1E2
, ∇2 = d).

The corresponding dual branes will have the liftings given by

( ˜̌C1 = {y̌ : y1 = 0}, Ě1 = C · 1̌Ě1
, ∇̌1 = d)

( ˜̌C2 = {y̌ : ny2 + y1 = 0}, Ě2 = C · 1̌Ě2
, ∇̌2 = d).

for some n ∈ Z>0.

In this case, M1,2 and M̌1,2 consist of a finite number of constant paths. We denote

γi = ( i
n , i) and γ̌i = (i,− i

n ), for i = 0, · · · , n − 1. The constant function 1 on C̃2 ×
˜̌C2

descends to a trivialization e2 of P|C2×Č2
. To compute the φF at (γk, γ̌j), we choose

C̃1,(0,k) = C̃1 + (0, k) and ˜̌C1,(j,0) =
˜̌C1 + (j, 0) as liftings of the subtori on the universal

cover, as shown in the figure.
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O

Ǒ
C̃1 = {y : y2 = 0}

C̃1 + (0, k)

C̃2 = {y : y2 − ny1 = 0} ˜̌C1 = {y̌ : y1 = 0} ˜̌C1 + (j, 0)

˜̌C2 = {y̌ : ny2 + y1 = 0}
b

b

The function eπi(ky
2−jy1) on C̃1,(0,k)×

˜̌C1,(j,0) descends to a trivialization e1 of P|C1×Č1
.

Hence, we get φ1 = e2πi(jy1−ky2)1∗E1
⊗ 1̌Ě1

⊗ e1. At the point (γk, γ̌j), we compute that

φF =
(

e−2πi jk

n

)

j,k
, which is an invertible matrix transforming functions on M1,2 to func-

tions on M̌1,2.

The general case is a mixture of the above situations and we claim that for F̂−1 defined
similarly, we have

Proposition 3.17.

F̂−1 ◦ F̂ = id

up to a constant.

4. Mirror symmetry without corrections

In this section, we will have a brief review of certain mirror symmetry phenomena
for semi-flat Calabi-Yau manifolds [11, 13]. In this case, mirror symmetry is T-duality
without any modifications (or so-called quantum corrections). In fact, by performing the
classical Fourier transform

Fcl : Ω
∗(T ) → Ω∗(T ∗)

to each torus fiber, we will see the interchange of complex and symplectic structures on
mirror manifolds. Furthermore, we will give a taste of how the Fourier transform on flat
branes defined in the last section establishes the correspondence between A-branes and
B-branes.
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4.1. Semi-flat mirror Calabi-Yau manifolds

Let N ∼= Z
n be a lattice and M = Hom(N,Z) denote the dual lattice of N . We

denote by NR = N ⊗Z R and MR =M ⊗Z R the real vector spaces spanned by N and M
respectively. Let B ⊂ MR be a convex domain. (In general, one may consider an affine
manifold.) We can construct two (non-compact) Calabi-Yau manifolds X and X̌ from
the tangent and cotangent bundles of B, they are called mirror manifolds.

Construction of X̌

Firstly, the tangent bundle TB = B × iMR is naturally a complex manifold with
complex coordinates zj = bj+iyj ’s, where bj ’s and yj ’s are the base coordinates on B and
corresponding fiber coordinates on MR. TB is equipped with the standard holomorphic
volume form ΩTB = dz1 ∧ · · · ∧ dzn. Taking quotient of TB by the lattice iM ⊂ iMR,
each fiber is compactified to a torus. We denote

X̌ := TB/iM = B × iTM ,

where TM denotes the torus MR/M and p̌ : X̌ → B is a torus fibration over B. Then
the holomorphic volume form ΩTB on TB descends to give the holomorphic volume form
ΩX̌ = dz1 ∧ · · · ∧ dzn on X̌.

Furthermore, if φ is an elliptic solution of the real Monge-Ampére equation

det
( ∂2φ

∂bj∂bk

)

= constant,

then the Kähler form

ωX̌ = 2i∂∂̄φ =
∑

j,k

φjkdb
j ∧ dyk,

where φjk is defined to be ∂2φ
∂bj∂bk

, determines a Calabi-Yau metric on X̌. Then p̌ : X̌ → B
becomes a special Lagrangian torus fibration, which is called the SYZ fibration.

Construction of X

Next, we consider the cotangent bundle T ∗B of B, we have T ∗B = B × iNR. T ∗B
carries the standard symplectic form ωT∗B =

∑n
j=1 db

j ∧ dyj , where yj ’s are fiber coor-
dinates on NR. Taking the quotient of T ∗B by the dual lattice iN ⊂ iNR, each fiber is
compactified to be a torus, denoted by

X := T ∗B/iN = B × iTN ,

where TN denotes the torus NR/N . Note that TN is the dual torus of TM and p : X → B
is the dual torus fibration of p̌ over B. Then the symplectic form ωT∗B descends to give
the symplectic form ωX =

∑n
j=1 db

j ∧ dyj on X.
By considering the metric

gX =
∑

j,k

(φjkdb
j ⊗ dbk + φjkdyj ⊗ dyk),
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where (φjk) is the inverse matrix of φjk, we obtain a complex structure onX with complex
coordinates given by dzj =

∑n
k=1 φjkdb

k + idyj . Then we have a natural holomorphic
volume form which is

ΩX = dz1 ∧ · · · ∧ dzn =
n
∧

j=1

(
n
∑

k=1

φjkdb
k + idyj).

Also p : X → B becomes a special Lagrangian torus fibration.

4.2. Semi-flat SYZ transform

In this section, we will discuss how the geometric structures of the mirror manifolds X̌
and X are transformed to each other by performing fiberwise Fourier transformion.

Given a point x ∈ B, p̌−1(x) is the torus TM and p−1(x) is the torus TN which is the
dual torus of TM . Using the construction in section 2.2, we define the trivial line bundle
P̃ = NR ×MR × C over NR ×MR, equipped with the connection 1-form

∇P := d+ πi

n
∑

j=1

(yjdy
j − yjdyj).

Taking quotient by the lattice N ×M , we obtain the Poincaré line bundle P. The
curvature of P is

F = 2πi
n
∑

j=1

dyj ∧ dy
j .

We perform this for each fiber torus and dual torus and combine these Poincaré line
bundles together to get a relative version of the above picture.

Let X ×B X̌ = B × i(TN × TM ) be the fiber product of the fibrations p : X → B
and p̌ : X̌ → B, with two natural projections π : X ×B X̌ → X and π̌ : X ×B X̌ → X̌
respectively. We use P and F = 2πi

∑n
j=1 dyj ∧ dy

j ∈ Ω2(X ×B X̌) again to denote the
fiberwise Poincaré line bundle and curvature two form respectively.

Definition 4.1. The semi-flat SYZ transform F : Ω∗(X) → Ω∗(X̌) is defined by

F(α) = π̌∗(π
∗α ∧ e

i
2πF ) =

∫

TN

π∗α ∧ e
i

2πF .

Remark 4.2. TN and TM here should be identified with T and T ∗ in section 2.

One significant property of this fiberwise Fourier transform is transforming the sym-
plectic structure on X to the complex structure on X̌ in the sense of the following propo-
sition.

Proposition 4.3.

F(eωX ) = ΩX̌ .
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Furthermore, we may define the inverse Fourier transform F−1 : Ω∗(X̌) → Ω∗(X) by

F−1(α̌) = i−nπ∗(π̌
∗α̌ ∧ e−

i
2πF ) = i−n

∫

TM

π̌∗α̌ ∧ e−
i

2πF .

Then, we transform the complex structure on X̌ to the symplectic structure on X as in
the previous proposition.

Proposition 4.4.

F−1(ΩX̌) = eωX .

As expected, one can also check that F−1(eωX̌ ) = ΩX and F(ΩX) = eωX̌ . The
propositions above can be proved by direct calculation [9]. For further discussions on the
transform and related materials, we refer readers to [11].

4.3. Fourier transform and semi-flat branes

As described in section 3, for A-branes and B-branes which can be regarded as families
of flat branes on tori, it is predicted that the mirror correspondence is a fiberwise Fourier-
type transform. In this section, we restrict our attention to the case that all bundles are
line bundles and establish this correspondence between special classes of A-branes on X
and B-branes on X̌ using the construction given in section 3.

Semi-flat A-branes

As mentioned in section 1, an A-brane is a pair (L,E) where L is a Lagrangian sub-
manifold and E is a flat unitary complex line bundle (in general, vector bundle) on L.
As our space X admits a torus fibration p : X → B, we restrict our attention to those
semi-flat A-branes which are compatible with the torus fibration structure p : X → B.
More precisely, a semi-flat Lagrangian L is a submanifold of p−1(BL), where BL is a
rational affine submanifold of B, such that p|L : L→ BL is a torus fiber bundle over BL,
and the fiber of p|L at every point b is an affine subtorus of p−1(b).

Definition 4.5. An A-brane (L,E) on X is called semi-flat if L is a semi-flat Lagrangian
in X.

As analogue to section 3, we study the quantum intersection theory between two semi-
flat A-branes (Li, Ei), i = 1, 2, by considering the space of fiberwise minimal geodesic
paths from L1 to L2. This space, denoted by M(L1, L2) (or simply M1,2 if there is no
confusion), is a finite dimensional manifold. There are two evaluation maps

M(L1, L2)

L1 L2

evs evt
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and p ◦ evs = p ◦ evt : M(L1, L2) → BL1
∩ BL2

is a fiber bundle, where the fiber over a
point b is the space of instantons Mb(L1 ∩ p

−1(b),L2 ∩ p
−1(b)) defined in section 3. We

combine N1∨2,b’s on Mb(L1 ∩ p−1(b),L2 ∩ p−1(b)) along the base BL1
∩ BL2

to obtain
a relative normal bundle of M1,2, again denoted by N1∨2, equipped with a connection
induced from the metric. The natural section s ∈ Γ(M1,2,N1∨2) is defined similarly. We
define Ω∗

A((L1, E1), (L2, E2)), with the operator D = ∇1,2 + (−1)p+q+1δ as in section 3.
It is not a complex in general, as s ∈ Γ(N1,2) is not necessary a flat section.

In order to obtain a complex, we use the symplectic form to get an isomorphism
y(iωX) : N1∨2 → T ∗(BL1

∩BL2
) of bundles over M1,2. This identification induces a map

Ω∗
A((L1, E1), (L2, E2)) → Ω∗(M(L1, L2),Hom(ev∗sE1, ev

∗
tE2)).

The operator D descends to give a cochain complex. The complex

(Ω∗(M(L1, L2), Hom(ev∗sE1, ev
∗
tE2)), D)

is defined to be the quantum intersection complex between two semi-flat A-branes.

Semi-flat B-branes

Similarly, we consider semi-flat complex submanifolds on X̌. A semi-flat complex
submanifold Ľ is a submanifold of p̌−1(BĽ), where BĽ is a rational affine submanifold of

B, such that p̌|Ľ : Ľ → BĽ is a torus fiber bundle over BĽ, and each fiber over b is an
affine subtorus of p̌−1(b).

Definition 4.6. A B-brane (Ľ, Ě) on X̌ is called semi-flat if Ľ is a semi-flat complex
submanifold and Ě is a unitary line bundle on Ľ, with its connection ∇Ě satisfying

(∇Ě |p̌−1(b)∩Ľ)
2 = 0 and (∇0,1

Ě
)2 = 0.

Given two semi-flat B-branes (Ľi, Ěi), i = 1, 2, The space of fiberwise minimal geodesic
paths, M̌(Ľ1, Ľ2) is naturally a complex manifold. We define Ω∗

B((Ľ1, Ě1), (Ľ2, Ě2)) using

a similar construction. Again it is not a complex, due to the fact that Ěi’s are not flat
bundles. Notice that Ň1∨2 is a holomorphic vector bundle over M̌1,2, with a holomorphic

section š defining the operator δ̌. Using the complex structure on M̌1,2, we obtain a map
given by projection to anti-holomorphic forms

Ω∗
B((Ľ1, Ě1), (Ľ2, Ě2)) → Ω0,∗(M̌(Ľ1, Ľ2),Hom(ev∗s Ě1, ev

∗
t Ě2)⊗ ∧∗Ň1∨2),

the operator Ď descends to give the operator ∂̄ + (−1)p+q+1δ̌. The quantum intersection
complex between two B-branes is given by

(Ω0,∗(M̌(Ľ1, Ľ2), Hom(ev∗s Ě1, ev
∗
t Ě2)⊗ ∧∗Ň1∨2), Ď).
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4.4. Transform of semi-flat branes

We describe the transform between A- and B-branes. For simplicity, we transform an
A-brane on X to give a B-brane on X̌. With the two projection maps

X ×B X̌

X X̌,

π π̌

we denote the Poincaré line bundle on X ×B X̌ by P, which is constructed by combining
fiberwise Poincaré line bundles into a family.

The Fourier transform is a family version of that given in section 3. Given a semi-flat
A-brane (L,E), we define

Ě|x̌ = H0(L ∩ p−1(p̌(x̌)), π∗E ⊗ P∗|L∩p−1(p̌(x̌))).

and

Ľ = {x̌ ∈ X̌ : Ě|x̌ 6= 0}.

Ě becomes a complex line bundle over Ľ and is equipped with a Hermitian metric and
a unitary connection. The fact that E is a flat line bundle implies that Ľ is a semi-flat
complex submanifold of X̌, and L being a Lagrangian submanifold implies that Ě is a
holomorphic line bundle over Ľ. Furthermore, if L is a special Lagrangian submanifold,
then Ě is asymptotically a Hermitian Yang-Mills line bundle when X̌ is approaching a
large complex structure limit. We define

F(L,E) = (Ľ, Ě)

to be the mirror B-brane on X̌.

Transform of quantum intersection complexes

Given two semi-flat A-branes (Li, Ei), i = 1, 2, with corresponding mirror B-branes
(Ľi, Ěi), we denote by Bi ⊂ B the common base of the fibrations of Li and Ľi. We
consider the fiber product

M1,2 ×B1∩B2
M̌1,2

L1 ×B1
Ľ1 L2 ×B2

Ľ2.

evs evt

The kernel of Fourier transform φF ⊗ eG1+G2 is defined by patching the fiberwise kernels
into a relative version. The Fourier transform F̂ descends as a map
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Ω∗(M(L1, L2),Hom(ev∗sE1, ev
∗
tE2))

Ω0,∗(M̌(Ľ1, Ľ2),Hom(ev∗s Ě1, ev
∗
t Ě2)⊗ ∧∗Ň1∨2).

F̂

The Fourier transform can be used to study the relation between the quantum inter-
section complexes of A- and B-branes.

5. Mirror symmetry and quantum corrections

The Lagrangian fibration p : X → B typically has singular fibers. The base of the
fibration will be (possbliy singular) integral affine manifold with corners, with Γ the
critical locus (or discriminant locus) of p. Restricting to B0 = B − Γ and X0 = p−1(B0),
we obtain a Lagrangian torus fiber bundle p : X0 → B0. Roughly speaking, the appear-
ance of singular fibers is due to the existence of vanishing cycles, and compactification
data is captured by these vanishing cycles. These vanishing cycles are typically repre-
sented by holomorphic disks bounded by a loop in a fiber of p|X0

.

In [8, 9], there are generating functions defined by “counting” holomorphic disks, or
more precisely one-pointed open Gromov-Witten invariants [17, 18, 19], with boundary
in fibers of p. These functions are used to construct the mirror manifold X̌. We give a
brief review of these constructions below.

5.1. Mirror symmetry for toric Fano manifolds

Consider a n-dimensional toric Fano manifold X, with P ⊂ MR its moment polytope
given by

P =

d
⋂

j=1

{b : (b, νj)− λj ≥ 0},

and Γ = ∂P the critical locus. We write

µ : X → P

for the moment map of X under the Hamiltonian Tn-action. The restriction of µ to the
open dense orbit X0 ⊂ X is a torus bundle over the interior of the polytope P0. This
gives a Lagrangian torus fibration.

Kontsevich and Hori-Vafa [21] predicted that the mirror of a toric manifold X to-
gether with its symplectic structure ωX is given by a Landau-Ginzburg model (X̌,W ),

where X̌ is the non-compact Kähler manifold (C∗)n and W =
∑d

j=1 e
λj−2π(b+iy̌,νj) is
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a holomorphic function called the superpotential which is ‘mirror’ to information from
the toric divisors at infinity. For example,W = z1+z2+

1
z1z2

is the superpotential for CP 2.

In [9], the authors constructed a generating function Φq(x, v) ∈ C∞(X0 × N), by
counting Maslov index 2 holomorphic disks bounded by the loop parametrized by (x, v)
in X0 ×N , where X0 ×N is interpreted as the space of fiberwise geodesic loops in X0.

By taking X̌ to be the dual torus fibration of µ|X0
, fiberwise Fourier transform gives a

function F(Φq) on X̌ × iM . Since Φq is constant along the fibers of µ|X0
, F(Φq) can be

regarded as a function on X̌ ∼= (C∗)n. The symplectic structure on X can be incorporated
to give the holomorphic structure on the Landau-Ginzburg model (X̌,W ) in the sense
that

F(Φqe
ωX ) = eWΩX̌ .

Remark 5.1. The form Φqe
ωX can be viewed as the symplectic structure modified by

quantum corrections from Maslov index 2 holomorphic disks in X with boundary on a
Lagrangian torus fiber. The form eWΩX̌ should be viewed as the holomorphic volume

form of the Landau-Ginzburg model (X̌,W ).

The isomorphism between the quantum cohomology of X and the Jacobian ring of
(X̌,W ) can be established using the Fourier transform. For details, we refer readers to
the article [9].

5.2. Mirror symmetry for toric Calabi-Yau manifolds

In [5, 8], a construction of the mirror manifold X̌ of toric Calabi-Yau manifolds
(necessarily non-compact) is described, using the non-toric special Lagrangian fibrations
constructed by M. Gross in [22]. The Gross fibration is introduced to investigate the
appearance of singular fibers in the interior of the base B. It serves as local model to
study a typical fibration of a Calabi-Yau manifold. For example, the Gross fibration for
C

2 will have as base B the upper half plane with boundary and a singular fiber over an
interior point of B. The local structure for the singular fiber is a focus-focus singularity.
We give a brief review for the construction of mirror manifolds given in [8].

The procedure involves constructing coordinate functions of X̌ by “counting” holo-
morphic disks emanating from boundary divisors of X. The problem is that in the Gross
fibration, B has only one codimension-1 boundary. This is a technical issue and can be
solved by modifying the Gross fibration using symplectic cuts. X appears as the limit as
the extra divisors move to infinity.
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The modified Gross fibration, which we continue to denote by µ : X → B, is a proper
Lagrangian fibration whose base B is a polyhedral set in MR having at least n distinct
codimension-1 faces, which are denoted by Ψj for j = 0, ...,m − 1. The preimage
Dj := µ−1(Ψj) of each Ψj is assumed to be a codimension-2 submanifold in X. Fur-
thermore, the critical locus besides Ψj is assumed to be contained in a hyperplane H. H
is called ‘the wall’ and separates B0 into two chambers.

Using the semi-flat Lagrangian fibration µ : X0 → B0, µ̌ : X̌0 → B0 is defined by
taking the dual torus fibration. The Lagrangian fibration µ defines a lattice bundle Λ
over B0, parametrizing fiberwise geodesic loops of µ : X0 → B0. For each j, a generating
function Ij is defined on Λ|B0−H by counting holomorphic disks intersecting the subman-
ifold Dj ’s, with boundary being the loop parametrized by Λ|B0−H . The fiberwise Fourier
transforms of Ij ’s give holomorphic functions žj on µ̌−1(B0−H). žj changes dramatically
from one component to another component, and this is called the wall-crossing phenom-
enon [5]. Let R be the subring of holomorphic functions on µ̌−1(B0 −H), generated by
constant functions, žj ’s and 1/žj ’s. The corrected mirror X̌ is defined to be X̌ = Spec(R).

For example, the mirror manifold X̌ for KP2 , is given by

X̌ = {(u, v, z1, z2) ∈ C
2 × (C∗)2 : uv = c(q) + z1 + z2 +

q

z1z2
},

where

c(q) = 1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . . ,

with the coefficients defined by one-pointed open Gromov-Witten invariants.

Applying the above construction, the mirror manifold X̌ obtained belongs to the
Hori-Iqbal-Vafa mirror family given in [23]. Moreover, a striking feature of the quantum-
corrected mirror family constructed above is that it is inherently written in flat coordinates
over the moduli space of complex structures of X̌ and gives an explicit description for the
mirror map. For details, we refer readers to [8].

5.3. Semi-flat branes and quantum corrections

Finally, we mention an example where we can see how Fourier transform of semi-flat
branes incorporates quantum corrections. We consider the case where X is a toric Fano
manifold, equipped with moment map torus fibration. We use the same notations as in
subsection 5.1.

For each b ∈ P0, the fiber torus {b} × iTN is a special Lagrangian submanifold. We
consider a semi-flat A-brane ({b} × iTN , E) where E is a flat unitary line bundle. The
corresponding dual B-brane is a point ž = b + iy̌ ∈ X̌, with 1-dimensional vector space
Ě = H0({b}×iTN , E) over it. ThenM({b}×iTN , {b}×iTN ) ≃ TN is the whole fiber torus
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and M̌(ž, ž) ≃ M is the dual lattice of {b} × iTN . The quantum intersection complexes
associated to ({b} × iTN , E) and (ž, Ě) are Ω∗(TN ) and Γ(M,∧∗MC), with differential
operators given by d and δ respectively.

In [24], the authors showed that the Floer differential m1 is given by d + ι, where ι
is defined by counting holomorphic disks of Maslov index 2. Given a Lagrangian torus
fiber {b} × iTN , there are exactly d families of holomorphic disks of Maslov index 2 with
boundary in {b} × iTN (modulo to automorphisms of the domain). If we let {Dj}

d
j=1 be

the holomorphic disks, then the operator ι is given by

ι(ψ) =

d
∑

j=1

[e
−

∫
Dj

ωX
hol−1

∇E
(∂Dj)](ι∂D#

j

ψ),

where ∂D#
j is the vector field generated by the circle action by ∂Dj ∈ N and hol∇E

(∂Dj)
is the holonomy around the loop ∂Dj . The operator ι commutes with d.

Fourier transform gives an isomorphism

F̂ : Ω∗(TM ) → Γ(M,∧∗MC).

If we identify ∧∗MC ≃ ∧∗T 1,0
ž X̌ and use the result

∫

Dj

ωX = 2π((b, νj)− λj)

proven in [24], we deduce that F̂(ι) is precisely the operator given by contraction with
∂W , where W is the superpotential. This gives a geometric and direct verification of the
result in [24].

6. Conclusion

We have seen that the Fourier transform plays an important role in various construc-
tions in the SYZ programme, especially when dealing with quantum corrections, as the
quantum corrections appear as “higher Fourier modes” for the mirror complex structures.
To understand the construction of mirror manifolds and mirror correspondence of branes,
it will be important to extend the definition of Fourier transform to flat branes, as quan-
tum corrections for branes is also expected to incorporate with the Fourier transform.
Furthermore, a geometric construction of the mirror correspondence of branes can help
to explain certain mirror symmetric phenomena.
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