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Lefschetz fibrations on cotangent bundles of

two-manifolds

Joe Johns

Abstract. In this paper our aim is to explain an explicit and relatively simple con-
struction of some symplectic Lefschetz fibrations on the disk cotangent bundle of an

arbitrary compact two dimensional manifold. Morally, the construction is inspired
by the idea of complexifying a given Morse function on the 2-manifold. The paper is
meant to give a treatment of a simple case in [J09], with extra focus on examples and

concrete constructions.

1. Introduction

Let N denote a compact two dimensional manifold without boundary. Let D(T ∗N)
denote the closed unit disk bundle of the cotangent bundle of N with respect to some
metric on the bundle T ∗N . We equip D(T ∗N) with the canonical 1-form θ which makes
it into an exact symplectic manifold. The goal of this paper is to construct a Lefschetz
fibration

π : D(T ∗N) −→ D2

with an explicit description of the regular fiber M and the vanishing cycles V1, . . . , Vk
in M .

The basic motivation is that we obtain an explicit presentation for the 4−manifold
D(T ∗N) in terms of the regular fiber M (which is a 2-manifold with boundary) and
the vanishing cycles V1, . . . , Vk (which are some circles in M). For the reader unfamiliar
with these things, we explain in §2 the definition of a Lefschetz fibration, the regular fiber,
and the vanishing cycles; and in §3 we explain two examples in some detail.

One way we might try to proceed is to start with a Morse function f : N −→ R and
then “complexify” it in some sense to get a Lefschetz fibration fC : D(T ∗N) −→ C. For
example, if N = R

2, and p : R2 −→ R is a real polynomial which is a Morse function, then
the obvious extension pC : C2 −→ C is a Lefschetz fibration on C

2 = T ∗(R2) which we
call the complexification of p. In this case, there is indeed a beautiful explicit description
of the regular fiber and vanishing cycles of pC, given by A’Campo in [AC99].
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This suggests a two step approach:

(i) Choose a Morse function f : N −→ R, and complexify f in some sense to get a
Lefschetz fibration fC : D(T ∗N) −→ C.

(ii) Describe the fiber M and vanishing cycles V1, . . . , Vk of fC in terms of the Morse
theory of f .

Unfortunately, both steps (i) and (ii) seem to be difficult to carry out if N is an arbitrary
2-manifold. In step (i), it is difficult to define the “complexification” fC so as to obtain
Lefschetz fibration on D(T ∗N). In step (ii), even if we succeed in step (i) in some cases,
it is not obvious how to describe the fiber and vanishing cycles explicitly.

In this paper, we will therefore take slightly different approach. Namely, we carry out the
following four steps.

(1) We choose a Morse function f on N and a metric g such that (f, g) is Morse-Smale
(which means the stable and unstable manifolds of −∇gf intersect transversely).
Then we take the handle decomposition of N induced by (f, g).

(2) Given the handle decomposition of N , we give an explicit construction of an exact
symplectic 2-manifold manifold M with contact boundary, and we specify some
exact Lagrangian spheres (circles) V1, . . . , Vk ⊂M . Here, there is one Vj for each
critical point of f .

(3) We make use of a well-known construction which allows us to produce an exact
symplectic Lefschetz fibration with any prescribed regular fiber and vanishing
cycles (see Theorem 2.2). In this case we obtain a Lefschetz fibration

π : E −→ D2

with regular fiber equal to M and with vanishing cycles V1, . . . , Vk. Here, E is
some exact symplectic 4−manifold with codimension 2 corners, which is deter-
mined by the construction.

(4) We prove that E is conformally exact symplectomorphic to the disk cotangent
bundle D(T ∗N) (after we smooth the corners of E). See Theorem 1.1 below.

Thus, the key idea is to make an educated guess in step (2) for what the regular fiber M
and vanishing cycles V1, . . . , Vk ought to be. This guess is then verified to be correct in
step (4). The source of inspiration for the construction in step (2) is A’Campo’s paper
[AC99] which we mentioned earlier, about complexifications of real polynomials.

The more precise result corresponding to step (4) is the following Theorem; the proof
is sketched in §6.
Theorem 1.1. Let N be a closed 2-manifold, equipped with a Morse function f : N −→ R

and let g be a metric such that (f, g) is Morse-Smale. Let π : E −→ D2 be a Lefschetz
fibration constructed according to steps (1) to (3) above. Then (E, π) has the following
properties:
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• There is an exact Lagrangian embedding N ⊂ E.
• Crit(π) ⊂ N , π(N) ⊂ R, and π|N = f : N −→ R (up to reparameterizing N and
R by diffeomorphisms).

• E is conformally exact symplectomorphic to the disk cotangent bundle D(T ∗N)
(after we smooth the corners of E).

Remark 1.2. Steps (1) to (4), and Theorem 1.1, work perfectly well in the case where N
has boundary, but to keep things simple we stick to the case where N is without boundary
in this paper. But see §5.4 for some simple examples of how the construction works in
the case where N has boundary.

Remark 1.3. We make some technical remarks. First, smoothing the corners of E is
done in a standard way - see [S08] lemma 7.6. Second, we recall that a conformal exact
symplectomorphism between exact symplectic manifolds is by definition a map

φ : (E1, ω1, θ1) −→ (E2, ω2, θ2)

such that φ∗θ2 = λθ1 + df for some smooth function f : E1 −→ R, and some λ ∈ R

with λ > 0. (Here, ωi = dθi is an exact symplectic structure on Ei.) In particular
φ∗ω2 = λω1, so φ is a conformal symplectomorphism. The basic example of a conformal
exact symplectomorphism is given by integrating the Liouville vector field of T ∗N to give
a map from a neighborhood of N in T ∗N onto a smaller neighborhood of N in T ∗N , with
strictly less symplectic volume.

In some cases it is possible to carry out steps (i) and (ii), and in such cases it is natural
to compare the result with the Lefschetz fibrations constructed as in steps (1) to (4). In
§3 we carry out steps (i) and (ii) for D(T ∗

RP 2) and D(T ∗T 2) (in these examples, we
can make use of the embeddings D(T ∗

RP 2) ⊂ CP 2 and D(T ∗T 2) ⊂ (C∗)2). In §5 we
explain how to construct the regular fiber vanishing cycles as in step (2) for D(T ∗T 2)
and D(T ∗

RP 2). Interestingly, we find the same regular fiber and vanishing cycles that
we got via steps (i) and (ii) for D(T ∗T 2) and D(T ∗

RP 2) in §3. In general, it remains an
interesting problem to carry out steps (i) and (ii) for more general manifolds and compare
the result to our construction in steps (1) to (4).

We conclude the introduction with a quick summary of the contents of the paper. Note
that §2 and §3 are of a more pedagogical nature, and they play only a peripheral role in
the rest of the paper.

In §2 we give the definition of a Lefschetz fibration, and review some of the basic theory.
In §3 we explain two examples of Lefschetz fibrations, on D(T ∗

RP 2) and D(T ∗T 2), which
come from algebraic geometry. In §4 we explain step (2) above. That is, we describe how
to constructM and V1, . . . , Vk ⊂M for an arbitrary closed 2-manifold N . We also specify
the basis of vanishing paths we want to use. In §5 we illustrate how the construction of
M and V1, . . . , Vk ⊂ M works in some examples, in particular, for the cases N = RP 2

and N = T 2. In §6 we sketch the proof of Theorem 1.1.
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2. A quick lesson on Lefschetz fibrations and Picard-Lefschetz

theory

In this section we discuss some of the basic theory of exact symplectic Lefschetz fibra-
tions. As general references we recommend [AGZV88, GS99, L81] for a classical point of
view on Lefschetz fibrations and [S08, S03A, AS04] for a symplectic point of view. We
remark that §2.8 describes the main result on constructing Lefschetz fibrations that will
be used later in the paper.

2.1. The definition of an exact symplectic Lefschetz fibration

Let M be a manifold with boundary. An exact symplectic structure on M is a 1−form
θ such that ω = dθ is a symplectic form; and in addition the Liouville vector field Xθ

defined by ω(Xθ, ·) = θ must be transverse to the boundary of M and point outwards;
this makes the boundary into a contact manifold, using θ as a contact form.

The simplest example of an exact symplectic Lefschetz fibration is a trivial fiber
bundle

π : E =M ×D2 −→ D2

where the fiber is given by an exact symplectic manifold M , and the base D2 ⊂ C has the
standard exact symplectic structure. Roughly speaking, a nontrivial Lefschetz fibration
is similar except it is allowed to have finitely many singular fibers of a certain type. That
is, there are finitely many points p1, . . . , pk ∈ Int(E) which are isolated critical points of
π of Morse type. We give the precise definition in moment. For now we just observe that
the total space of an exact symplectic Lefschetz fibration is naturally a manifold with
codimension 2 corners, because the fiber and base both have boundary.

Let E be a manifold with codimension 2 corners. An exact symplectic structure on
E is a 1−form θ such that ω = dθ is a symplectic form, and such that the Liouville vector
field Xθ is transverse to each boundary stratum of codimension 1, and points outwards;
this makes each boundary stratum into a contact manifold, using θ as a contact form.

Let E be an exact symplectic manifold with codimension 2 corners. An exact symplectic
Lefschetz fibration on E is a map

π : E −→ D2

such that the following conditions are satisfied (following [S08]):

• There are finitely many points p1, . . . , pk ∈ Int(E) such that, for each pj , there
are complex coordinates (z1, . . . , zn) near pj such that pj corresponds to 0; the
standard complex structure J0 = i on C

n is compatible with ω; and

π = z21 + . . .+ z2n + π(pj)
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in these coordinates. The points pj are called the singular points or critical points
of π; this type of singularity is called a Morse type singularity.

• For each z ∈ D2 \ {c1, . . . , ck}, where cj = π(pj), we require that Mz = π−1(z)
is an exact symplectic submanifold of E, where θz = θ|Mz makes it into an
exact symplectic submanifold with boundary. For each cj , π

−1(cj) \ {pj} is a
(noncompact) exact symplectic manifold with boundary.

• Set ∂vE = π−1(∂D2) and let ∂hE denote the boundary of all the fibers (including
singular ones). Then we require that ∂E = ∂hE ∪ ∂vE, where ∂E has two
boundary strata ∂hE (the horizontal part) and ∂vE (the vertical part) which meet
at a codimension 2 corner. Furthermore, π|∂hE −→ ∂D2 and π|∂hE −→ D2 are
required to be surjective fiber bundles.

• For each x ∈ E consider the splitting

TxE = Th
xE ⊕ T v

xE,

where T v
xE = Ker(Dπx) and Th

xE is the symplectic complement in TxE. This
splitting always exists; our requirement is

Th
xE = Tx(∂hE) for all x ∈ ∂hE.

2.2. Parallel transport

The purpose of the last condition in the definition of a Lefschetz fibration (we drop
the adjective “exact symplectic” from now on) is to ensure that parallel transport is
well-defined, as follows. Set Mz = π−1(z) for any z ∈ D2. Given any two regular values
x, y ∈ D2 \ {c1, . . . , ck}, and any path γ : [0, 1] −→ D2 \ {c1, . . . , ck} from x to y which
avoids the critical values, we define a parallel transport map

τγ :Mx −→My

by using the connection given by ThE. The last condition ensures that the vector field
given by the horizontal lifts of γ′(t) for each t can be integrated for all t ∈ [0, 1] and that
τγ maps the boundaries of the fibers into themselves.

2.3. The regular fiber

Let us now give a more intuitive description of a Lefschetz fibration. As we saw above,
if x, y are two regular values τγ gives an exact symplectic isomorphism from Mx to My.
Thus, a Lefschetz fibration is, roughly speaking, a fiber-bundle with one common fiber
M , except that finitely many of the fibers have isolated singular points (modeled locally
by z21 + . . .+ z2n = 0 in C

n). Thus we speak of “the regular fiber” M , which is defined to
be M = π−1(b) for some fixed regular value b.

Remark 2.1. The basic reason Lefschetz fibrations on E are useful for studying E is that
they give rise to a dimensional reduction: One can shift focus from E to the regular fiber
M which is two dimensions less (and then, potentially, one can repeat this process for
M and so on ...). So, for example, if E is a 4-manifold, we can instead focus on a 2-
manifold M . In principle, this philosophy may be applicable to many different questions
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about the symplectic topology of E, such as the symplectomorphism type (classification
and construction of exotic structures, see [M09, MS09, AS10]), the symplectomorphism
group of E and M (see [AMP05, S06]), and Lagrangian submanifolds of E and M (see
[S03B, S08, FSS08]).

2.4. Vanishing paths

For the rest of this section we fix some notation, in order to discuss some general
properties of Lefschetz fibrations.

• Let π : E −→ D2 be a Lefschetz fibration.
• Let p1, . . . , pk ∈ E denote the critical points of π.
• Let c1, . . . , ck ∈ Int(D2) denote the critical values of π.
• Fix a base point b ∈ D2 \ {c1, . . . , ck}.
• Set M = π−1(b), set Mx = π−1(x), for any x ∈ D2 \ {c1, . . . , ck}, and set
Mj = π−1(cj) for all j.

• For each j we pick a path γj : [0, 1] −→ D2 from b to cj which avoids all other
ci 6= cj . And assume that γi((0, 1]) ∩ γj((0, 1]) = ∅ for all i 6= j.

If (γ1, . . . , γk) is a collection of paths satisfying the last condition, we call it a basis of
vanishing paths for (E, π).

2.5. Vanishing cycles and Lefschetz thimbles

Associated to each vanishing path γj there is an exact Lagrangian sphere Vj = Vγj
in

the regular fiber M . This is called the vanishing cycle, or vanishing sphere, associated
to γj . Roughly speaking, if we follow the parallel transport map along γj from M to the
singular fiber Mj then Vj collapses down to a point in Mj , which is the singular point pj .
This gives a nice description of each singular fiber Mj .

More precisely, we have the following lemma (for a proof see [S03A] §1). Since Th
xE = 0

for x = pj , we first have to say what we mean by the transport map τγj
:M −→Mj . We

define
τγj

(x) = lim
t−→1

τγj |[0,t](x).

Lemma 1. Let π : E −→ D2 be a Lefschetz fibration with critical points p1, . . . , pk. Let
(γ1, . . . , γk) be a basis of vanishing paths. Set M = π−1(b) and Mj = π−1(cj) for each
j. Then for each j there is an exact Lagrangian sphere Vj ⊂ M such that the parallel
transport map

τγj
:M −→Mj

is such that
τγj

|M\Vj
:M \ Vj −→Mj \ {pj},

is an exact symplectic isomorphism, and satisfies τγj
(Vj) = {pj}. Moreover, Vj comes

equipped with a diffeomorphism

φj : S
n−1 −→ Vj
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which is determined as a well-defined element [φj ] ∈ π0(Diff(Sn−1)/O(n)).

To each vanishing path γj there is also an associated Lagrangian disk

∆j = ∆γj
⊂ Int(E),

called the Lefschetz thimble of γj . Roughly speaking, ∆j is the trace of the vanishing
cycle Vj as it is transported over the path γj and eventually collapses to the critical
point pj . More precisely, for t ∈ [0, 1), let Vj(t) denote the vanishing cycle in π−1(γj(t))
corresponding to the restricted path γj |[t,0] (so Vj(1) = Vj , in particular). Then

∆j =
( ⋃

t∈[0,1)

Vj(t)
)
∪ {pj}.

In particular ∆j has the following properties: π(∆j) = γj([0, 1]), ∂∆j = Vj , and pj is
in Int(∆j). We give one more perspective: If γj([0, 1]) ⊂ R and γj : [0, 1] −→ R is an
embedding, then we can consider the Morse function f = Re(π) : Int(E) −→ R and ∆j

is just the unstable manifold of ±∇gf at pj ∈ Crit(f) with respect to any metric g on
Int(E). (More precisely, ∆j is the part of the unstable manifold of pj lying in f−1([a, b]),
where [a, b] = γj([0, 1]).)

2.6. An example: the standard local model

The simplest example of a Lefschetz fibration with at least one critical point comes
from the map q : Cn −→ C, where

q(z1, . . . , zn) = z21 + . . .+ z2n.

This example is of course very important because it serves as the local model near any
critical point of an arbitrary Lefschetz fibration. We now summarize some key features
of q. For a detailed discussion we refer to [S03A], §1.

Every regular fiber q−1(z) is exact symplectomorphic to T ∗Sn−1. To see that, we note
that for any s > 0,

q−1(s) = {x+ iy ∈ C
n : |x|2 − |y|2 = s, x · y = 0};

and we realize T ∗Sn as

T ∗Sn−1 = {(u, v) ∈ R
n × R

n : |u| = 1, u · v = 0}
equipped with the restriction of the standard exact symplectic structure on R

n×R
n ∼= C

n.
Now we define a map

σs : q
−1(s) −→ T ∗Sn−1

by the formula σs(x+ iy) = (u, v), where u = x
|x| , v = −|x|y; this is an exact symplecto-

morphism.

To make q into an exact symplectic Lefschetz fibration, we cut down the fiber from
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T ∗Sn−1 to the disk bundle D(T ∗Sn−1), and we cut down the base from C to D2, as
follows. For z ∈ C

n, set

k(z) =
1

4
(|z|4 − |q(z)|2).

Then k ≥ 0 and the sub-level sets of k precisely cut down the fibers of q to disk bundles
with respect to the standard metric:

σs(q
−1(s) ∩ {k ≤ r}) = Dr(T

∗Sn−1).

Let r, s > 0 and set

Er,s = {z ∈ C
n : |q(z)| ≤ s, |k(z)| ≤ r}, πr,s = q|Er,s.

Then it is easy to see that the symplectic complement to Ker(Dqz) is precisely
zC ⊂ C

n = Tz(C
n), and that Dkz is zero on zC. Thus

∂hEr,s = {k = r} ∩ Er,s and ∂vEr,s = {|q| = s} ∩ Er,s

and Th
x (E) = Tx(∂hE) for x ∈ ∂hE, because dk is zero on Th

x (E).

Take s = 1 and set E0 = Er,1, π0 = πr,1. Then (E0, π0) is a Lefschetz fibration with
regular fiber isomorphic to Dr(T

∗Sn−1) = {(u, v) ∈ T ∗Sn−1 : |v| ≤ r}. The vanishing
cycle can be described as follows. For any path γ in D2 from b = 1 to c = 0, the van-
ishing cycle Vγ is given by the zero section Sn−1 ⊂ Dr(T

∗Sn−1) (under the isomorphism

σ1 : π−1
0 (1) −→ Dr(T

∗Sn−1)).

Because an arbitrary Lefschetz fibration π : E −→ D2 has the same local form given
by π0 : E0 −→ D2 near every critical point, we obtain the same picture for π near each
critical point: A neighborhood of the critical point in E corresponds to a neighborhood
of the origin in C

n (where the neighborhood of 0 ∈ C
n can be taken to be Er,s ⊂ C

n) and
a neighborhood of each vanishing cycle Vj in M corresponds to a neighborhood of Sn−1

in T ∗Sn−1.

2.7. Monodromy

The main classical result about Lefschetz fibrations is the Picard-Lefschetz theorem.
We will not need this result, so we will not give the precise statement, but the rough
idea is the following. Take a loop λj in D from b to b which winds counter-clockwise
around cj , and suppose λj does not wind around any ci 6= cj . Then the Picard-Lefschetz
theorem asserts that the monodromy map τλj

: M −→ M is isotopic to a Dehn twist
around the vanishing sphere Vj ⊂M . If dimM = 2, then Vj is a circle, and a Dehn twist
is the familiar map from geometric topology. If dimM > 2 there is a generalization of the
notion of Dehn twist in any symplectic manifold. See [S08] §16c for more details. Since
π1(D

2 \{c1, . . . , ck}) is generated by λ1, . . . , λk, the Picard-Lefschetz theorem can also be
used to describe the monodromy map τγ :M −→M up to isotopy, for any loop γ from b
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to b which avoids c1, . . . , ck. The corresponding map

Θ : π1(D
2 \ {c1, . . . , ck}) −→ π0(Symp(M))

is called the monodromy homomorphism.

2.8. Constructing Lefschetz fibrations

Given a Lefschetz fibration π : E −→M , we call the data

(M,V1, . . . , Vk, γ1, . . . , γk),

Picard-Lefschetz data for (E, π), where (γ1, . . . , γk) is a basis of vanishing paths, and
(V1, . . . , Vk) is the family of parameterized vanishing spheres determined by (γ1, . . . , γk).
Here, each Vj is parameterized, which means that each Vj comes with a diffeomorphism
φj : S

n−1 −→ Vj , more precisely, an element [φj ] ∈ π0(Diff(Sn−1)/O(n)), as in lemma 1.

In this paper, the main result we will need is the following theorem that we quote from
[S08, lemma 16.9]. It says that any desired Picard-Lefschetz data can be realized by some
exact symplectic Lefschetz fibration; and in fact there is an explicit construction of the
desired Lefschetz fibration. The more precise statement goes as follows:

Theorem 2.2. Let M be any exact symplectic manifold, and let V1, . . . , Vk be any choice
of parameterized exact Lagrangian spheres in M . Let b ∈ D2, and let c1, . . . , ck ∈ Int(D2)
be any points with b 6= cj for all j. Let (γ1, . . . , γk) be any choice of paths γj : [0, 1] −→ D2

satisfying the conditions of a basis of vanishing paths, that is: γj(0) = b, γj(1) = cj,
γj(t) 6= ci for all t ∈ [0, 1], and for all i 6= j, and γi((0, 1]) ∩ γj((0, 1]) = ∅ for all i 6= j.
Then, there exists a Lefschetz fibration

π : E −→ D2

equipped with a canonical isomorphism π−1(b) ∼= M such that π has critical values
c1, . . . , ck and the vanishing cycles corresponding to (γ1, . . . , γk) are precisely (V1, . . . , Vk),
under the identification π−1(b) ∼=M .

The proof of this theorem follows from an explicit construction. The basic idea is
start with the trivial fibration M × D2 −→ D2 and cut and paste in the local model
π0 : E0 −→ D2 to produce a Lefschetz fibration Ej with exactly one vanishing cycle,
j = 1, . . . , k. Then we fiber-connect sum each E1, . . . , Ek onto one more copy of the
trivial fibration to get a Lefschetz fibration π : E −→ D2.

We remark that there is also a definition of Lefschetz fibrations π : X −→ CP 1, where
the total space and fiber are closed symplectic manifolds, as in [AS04] for example. But
there is no analogue of Theorem 2.2 in that setting.
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3. Two examples of complexifications in algebraic geometry

In this section we discuss two examples of complexifications in algebraic geometry. The
first is a Lefschetz fibration

π : D(T ∗
RP 2) −→ D2

which arises from the embedding RP 2 ⊂ CP 2. The second example is a Lefschetz fibration

π : D(T ∗T 2) −→ D2

which arises from the embedding T 2 = S1 × S1 ⊂ C
∗ × C

∗.

3.1. A complexification of a Morse function f : RP 2 −→ R using a

classical Lefschetz pencil on CP 2

The first example will be based on a Lefschetz fibration on D(T ∗
RP 2) using the

algebraic geometry of a simple Lefschetz pencil on CP 2. (This is a modification of the
example in [AS04, p. 39].) Let s0 = x21 + x22 and s1 = x20 − x22 be two real homogeneous
polynomials of degree 2. For each α ∈ C we consider the subsets of CP 2

Cα = {s1 + αs0 = 0}, and C∞ = {s0 = 0}.
For α ∈ C, we have s1 + αs0 = 0 iff s1

s0
= −α iff [s0, s1] = [1,−α] in CP 1. Thus we can

think of Cα as a family of subsets parameterized by α ∈ CP 1 = C ∪ {∞}, where α = ∞
just means C∞ = {s0 = 0}.

The collection Cα, α ∈ CP 1 is called a Lefschetz pencil of curves in CP 2. We call Cα the
“fiber” of the pencil lying above α ∈ CP 1. (The word “pencil” is a bad translation of the
French word “pinceau”, meaning “brush”.)

For each α, if Cα is smooth then it follows from standard facts in algebraic geometry
relating degree to Euler characteristic that Cα is diffeomorphic to S2. If all the curves
Cα were smooth, and if they were mutually disjoint, then they would fiber CP 2 into a
fiber bundle CP 2 −→ CP 1 with fiber S2. However, this picture is not correct for two
reasons: first, not all Cα are smooth, and so not all are diffeomorphic to S2; and second,
the curves Cα are not mutually disjoint. Let us discuss the second issue first.

The base locus of the pencil is by definition

B = {s0 = s1 = 0}
which in this case consists of four points

B = {[1, 1, i], [1,−1, i], [1, 1,−i], [1,−1,−i]}
The meaning of B is that any two of our curves Cα and Cα′ meet in B.

Next, there are three singular fibers, each of which is the union of two lines in CP 1:

C∞ = {s0 = 0} = {x1 = −ix2} ∪ {x1 = ix2}
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C0 = {s1 = 0} = {x0 = x1} ∪ {x0 = −x1}
C1 = {s1 + s0 = 0} = {x0 = −ix1} ∪ {x0 = ix1}.

It is straight-forward to check that for α /∈ {0, 1,∞}, that Cα is regular. (For this let
Fα = s1 + αs0 and check that the complex rank of DFα is 1 on Cα in each of the three
standard charts ψ0(y1, y2) = [1, y1, y2], etc.)

Now we delete one regular curve from CP 2, say Ci = {s1 + is0 = 0}. Then what re-
mains,

X = CP 2 \ Ci,

is the union of a family of curves Cα \ B, α ∈ CP 1 \ {i} which are mutually disjoint.
There are three singular fibers and every regular fiber is diffeomorphic to a four times
punctures sphere S2 \ {four points}. We define

π : X −→ CP 1 \ {i} ∼= C

to be the map which sends p ∈ Cα to α. Thus

π = −s1
s0

: X −→ CP 1 \ {i} ∼= C.

This defines a Lefschetz fibration on X in the sense of classical complex algebraic geome-
try. (This also yields an exact symplectic Lefschetz fibration with codimension 2 corners
if we restrict π to a compact subset of X in such a way that we down the base to D2 and
we cut down the regular fiber to S2 \ { four small open disks }.)

Notice that our three singular fibers are related to the four base points in the follow-
ing way. Take the line through two of the base points and take the other line through
the other two base points. The union of these two lines yields one of the singular fibers.
There are three ways to do this and in this way we obtain all three singular fibers.

Now, this actually tells us what the three vanishing cycles corresponding to the three sin-
gular fibers look like, as follows. Fix one regular fiber, which is S2\B. Now take the singu-
lar fiber consisting of the line through p1, p2 ∈ B and the line through q1, q2 ∈ B\{p1, p2}.
Then the corresponding vanishing cycle V ⊂ S2 \B must be such that when we collapse
V to a point the result consists of S2 \ {p1, p2} and S2 \ {q1, q2} meeting at one point.
Thus, V must have divided B into two halves {p1, p2} and {q1, q2}. There are therefore
three vanishing cycles which divide B into pairs in all three possible ways. See figure 1.

Now consider RP 2 ⊂ CP 2. Notice that three singular fibers have critical points (where
the two lines intersect) [1, 0, 0], [0, 1, 0], and [0, 0, 1] which all lie in RP 2. Also notice that
π(RP 2) ⊂ R and in fact f = π|RP 2 is the standard Morse function on RP 2 with three
critical points.
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Figure 1. The regular fiber of the pencil π = s1/s0 (with the four base
points deleted) and the three vanishing spheres.

Let Bǫ(i) denote a small open disk around i such that ǫ < 1/2 so that π(RP 2) ⊂ R

has a neighborhood disjoint from Bǫ(i). Now set

D = CP 1 \Bǫ(i) ∼= D2

so that D is diffeomorphic to a compact disk and it contains π(RP 2) in its interior. Now
instead of deleting just Ci from CP 2 let us delete U = π−1(Bǫ(i)), which we view as a
small neighborhood of the fiber Ci which is disjoint from RP 2 ⊂ CP 2. Set

X0 = CP 2 \ U, and π0 = π|X0
: X0 −→ D.

Now for α ∈ D, the fiber π−1
0 (α) = Cα \ U consists of S2 minus a small neighborhood of

B, which means we get

π−1
0 (α) = S2 \ {four small disks}

with the same vanishing cycles.

In fact X is symplectomorphic to D(T ∗
RP 2) so that π0 : X0 −→ D is a Lefschetz

fibration on D(T ∗
RP 2) which we can view as a complexification (extension, in particu-

lar) of the standard Morse function f : RP 2 −→ R.

3.2. A complexification of a Morse function f : T 2 −→ R using a Laurent

polynomial on (C∗)2

Realize the torus as

T 2 = S1 × S1 ⊂ (C∗)2

Now define a Lefschetz fibration

W : (C∗)2 −→ C

by the formula

W = x+
1

x
+ y +

1

y
.

One can easily check this has four critical points (x, y) = (±1,±1) and the complex Hes-
sian D2W is nondegenerate there; thus W is indeed a Lefschetz fibration.
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Notice that
W |T 2 = 2 cos θ1 + 2 cos θ2

where we parameterize T 2 by
x = cos θ1 + i sin θ1,

y = cos θ2 + i sin θ2,

θ1, θ2 ∈ R/2πZ.

Thus f = W |T 2 is the standard Morse function on T 2 (f is the sum of two copies of
the height function on S1). f has four critical points given by θ1, θ2 ∈ {0, π}, that is,
(x, y) = (±1,±1) ∈ S1 × S1. Thus all the critical points of W lie on T 2 ⊂ (C∗)2.

To describe the topology of the regular fiber of W , notice that

W (−1,−1) = −4, W (1, 1) = 4, W (−1, 1) =W (1,−1) = 0

so b = 1 is a regular value. Let us take the equation

x+
1

x
+ y +

1

y
= 1

and multiply by xy to get

x2y + y + y2x+ x− xy = 0.

Now let us homogenize this equation in the coordinates [x, y, z] ∈ CP 2 to get an equation
in CP 2:

M = {x2y + yz2 + y2x+ xz2 − xyz = 0} ⊂ CP 2

Since this is a regular cubic in CP 2 standard results in algebraic geometry relating the
Euler characteristic to the degree tell us that

M ∼= T 2.

Now to put M back into (C∗)2 we should delete the lines x = 0, y = 0, and z = 0. We
note that

x = 0 implies yz2 = 0, so y = 0 or z = 0;
y = 0 implies xz2 = 0, so x = 0 or z = 0;
z = 0 implies x2y = y2x, so y = 0, or x = 0, or y = x.

Thus the intersection of M with the three lines consists of four points

(M ∩ {x = 0}) ∪ (M ∩ {y = 0}) ∪ (M ∩ {z = 0})
= {[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 0]}.

Thus the fiber of W is diffeomorphic to T 2 minus four points. We do not determine
the vanishing cycles. But in §5.2 we shall construct a Lefschetz fibration

π : D(T ∗T 2) −→ D2

which has four critical points all lying on T 2 ⊂ D(T ∗T 2) and such that the restriction
π|T 2 = f : T 2 −→ R is the standard Morse function above. The fiber of π is T 2 minus
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four small disks (which is compact version of the fiber ofW ). Thus the natural conjecture
is that the vanishing cycles of W coincide with those of π.

4. The construction of the fiber and vanishing cycles

In this section we explain how to carry out step (2) in our four step plan in the
introduction.

4.1. The construction of the fiber M

Let N be a compact 2-manifold without boundary and let f : N −→ R be a Morse
function. Take a metric g such that (f, g) is Morse-Smale. Assume that f has just one

maximum and minimum and denote the critical points by x0, x
j
1, x2, where the subscript

indicates the Morse index. (This assumption is for convenience; see section 4.3 for a dis-
cussion of how to remove this assumption if desired.) Take the handle-decomposition of

N induced by (f, g). Let us denote the handles by h0, h
j
1, h2, where the subscript indicates

the index.

The fiber M will be constructed as follows. First let V0 = S1. And set

M0 = D(T ∗V0).

This can be thought of as the first approximation to our fiber; it contains only one
vanishing cycle, namely V0, which we think of as the vanishing cycle corresponding to x0.

To finish constructing the fiber M we will attach 2k 1-handles to the boundary of

M0 = D(T ∗V0) ∼= S1 × [−1, 1].

Remark 4.1. As usual, the manifold resulting from each handle attachment must be
smoothed afterwards to get a smooth manifold with boundary. We are working with
exact symplectic 2-manifolds, so in our case we use the method of handle-attachments
described by Weinstein [W91], so that the manifold resulting from attaching a handle
has a canonical exact symplectic structure inherited form the one on D(T ∗V0) plus the
exact symplectic structure on the handle (there is a standard model of a handle in this
context).

For each 1-handle hj1 in the handle decomposition of N , we take two 1-handles h̃j1 and

ĥj1 which will be attached to D(T ∗V0).

Each 1-handle hj1 is attached to h0 = D2 at a pair of points

{aj , bj} ⊂ ∂h0 = S1,

called the attaching sphere (0-sphere) of hj1. Now we identify

V0 = ∂h0 = S1.
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In this way V0 inherits the attaching spheres {aj , bj} ⊂ V0, j = 1, . . . , k. For each j we

will attach attach two 1-handles, h̃j1 and ĥj1, to the following four points in the boundary
of D(T ∗V0) ∼= S1 × [−1, 1]:

{(−1, aj), (−1, bj), (1, aj), (1, bj)} ⊂ ∂(S1 × [−1, 1]) ∼= ∂(D(T ∗V0)).

The way the handles are attached will depend on the framing used to attach hj1 to h0,
as follows. (One thing to keep in mind is the result M is supposed to be a symplectic
2-manifold, so it must be orientable.)

(1) First consider the case where hj1 is attached to h0 with a twist (for example, there
is a twist in the 1-handle of the standard handle decomposition of RP 2). In this

case h̃j1 will be attached to (aj , 1) and (bj , 1) while ĥ
j
1 will be attached to (aj ,−1)

and (bj ,−1). For both of the handles, the framing will be such that there is no
twist in the handle. This means, more precisely, that there are small tubular
neighborhoods

[aj − ǫ, aj + ǫ]× {1} and [bj − ǫ, bj + ǫ]× {1}
such that the handle attachment is equivalent to identifying these neighborhoods
while preserving the orientations of the intervals. (And the same statement holds
with 1 replaced by −1.)

(2) Next consider the case where hj1 is attached to h0 without a twist (for example,
both 1-handles in the standard handle decomposition of T 2 have no twists). In

this case h̃j1 will be attached to (aj , 1) and (bj ,−1) while ĥj1 will be attached to
(aj ,−1) and (bj , 1). For both of the handles, the framing will be such that there
is no twist in the handle. This means, more precisely, that there are small tubular
neighborhoods

[aj − ǫ, aj + ǫ]× {1} and [bj − ǫ, bj + ǫ]× {−1}
such that the handle attachment is equivalent to identifying these neighborhoods
while preserving the orientations of the intervals. (And the same statement holds
with 1 and −1 exchanged.)

Once we have attached these 2k 1-handles to D(T ∗V0), this completes the construction
of the fiber, M .

Remark 4.2. Here is an alternative way of thinking of the construction of M which is
conceptually appealing. Start with D(T ∗V0) as before. Now for each 1−handle hj1 take a
copy of the circle, denoted by

V j
1 = S1.

This will be the vanishing cycle corresponding to the critical point xj1. Now for each j,

do a plumbing of D(T ∗V0) and D(T ∗V j
1 ) such that in the plumbing

V0 ∩ V j
1 = {aj , bj}
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and such that the result is the same as attaching the two 1-handles h̃j1 and ĥj1 as before.
See for example figure 3 for how this plumbing looks like. The conceptual advantage
of plumbing is that the vanishing cycles V j

1 corresponding to xj1 are apparent from the
beginning.

4.2. Construction of the vanishing cycles

We have constructed our fiber M . It remains to describe the vanishing cycles in M .
First, V0, the vanishing cycle corresponding to x0, is apparent. Next we define V j

1 , the

vanishing cycle corresponding to xj1, to be union of the two segments:

({aj} × [−1, 1]) ∪ ({bj} × [−1, 1]) ⊂ V0 × [−1, 1] ∼= D(T ∗V0)

and the core of h̃j1 and the core of ĥj1. See figures 3 and 5 for example. (Alternatively, see

remark 4.2 at the end of the last section for another construction of M where V j
1 is quite

manifest.)

The last vanishing cycle V2 corresponding to the critical point x2 is the most interesting
one. It is obtained by doing the Lagrangian surgery of V0 with all V j

1 simultaneously for
j = 1, . . . , k (see [P91] for a general discussion of Lagrangian surgery). There is also a

choice of “left” or “right” Lagrangian surgery; we have chosen a “left” surgery V0#V
j
1 ,

which means as we move along V0 towards the surgery point the surgered curve moves to
the left, see figure 4.

The reason we choose the left surgery is because of our choice of vanishing paths which we
describe now. Our choice of left surgery corresponds to the fact that our vanishing paths
(see figure 2) lie in the lower half plane {z ∈ C : Re(z) ≤ 0}. (If the vanishing paths were
reflected to the upper half plane then the right surgery would have been appropriate in
the definition of V2). We choose the critical values in the unit disk D2 ⊂ C to lie on the
real line:

c2 = 3/4, c1 = 0, c0 = −3/4.

And we choose the base point to be

b = −1/2.

Let γ0, γ1 = γj1, j = 1, . . . , k, and γ2 denote the vanishing paths as in figure 2. Note that

we chose all γj1, j = 1, . . . , k to be all the same, equal to γ1:

γ11 = . . . = γk1 = γ1.

This is not a problem since the vanishing cycles V j
1 , j = 1, . . . , k are mutually disjoint.

4.3. General Morse functions

In this section we briefly discuss how to remove the assumption that there is only one
critical point index 0, and one of index 2. (This discussion is not essential for the rest of
the paper, so the reader is free to skip it, or come back to it later.) In the general case
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Figure 2. Here we have the vanishing paths γ0, γ1 = γj1, j = 1, . . . , k,
and γ2 in C. Here, γ0 goes along the interval [−3/4,−1/2] from b = −1/2
to c0 = −3/4; γ1 goes along the interval [−1/2, 0] from b = −1/2 to
c1 = 0; and γ2 goes from b = −1/2 to c2 = 3/4 by going around c1 = 0
via an arc in the lower half plane, and then along the interval [1/2, 3/4].

we proceed as follows. Let x10, . . . x
l
0 denote the critical points of index 0; let x11, . . . x

k
1

denote the critical points of index 1; and let x12, . . . x
m
2 denote the critical points of

index 2. Corresponding to this we have the handle decomposition of f with 0-handles hi0,

1-handles hj1, and 2-handles hp2, i = 1, . . . , l, j = 1, . . . , k, p = 1, . . . ,m.

To constructM , we start with l disjoint copies ofD(T ∗S1), denotedD(T ∗V i
0 ), i = 1, . . . , l.

So we set M0 = ∪iD(T ∗V i
0 ) as our first approximation to M . Now we identify each V i

0

with the boundary of hi0, that is V i
0 = ∂hi0. In this way ∪iV

i
0 inherits several embed-

ded copies of S0, say Kj = S0, j = 1, . . . k, which are the attaching spheres of the
1-handles hj1, j = 1, . . . , k. As before, each Kj gives rise to four points in the boundary
of ∪iD(T ∗V i

0 ). That is, each pair of points aj , bj ∈ V i
0 = S1 gives rise to (aj ,±1) and

(bj ,±1) in D(T ∗V i
0 ) = S1 × [−1, 1]. To construct M we attach a pair of 1-handles h̃j1,

ĥj1 at each quadruple of points (aj ,±1), (bj ,±1) according to the same rules as before

(that is, rule (1) or (2) in §4.1, depending whether the 1-handle hj1 was attached with or
without a twist in the handle decomposition of N).

The vanishing cycles V i
0 and V j

1 are evident as before. Now V p
2 , p = 1, . . . ,m arise

by doing the (left) Lagrangian surgery of ∪iV
i
0 and ∪jV

j
1 in M at each point where they

meet. There will result from all these surgeries precisely m circles which are by definition
V p
2 , p = 1, . . . ,m.

The reason we will obtain the correct number of circles (i.e., m) is that the Lagrangian

surgery of ∪iV
i
0 and ∪jV

j
1 in M perfectly mirrors the surgery that happens in N as we

pass between level sets,

from the level set ∂[∪ih
i
0], to the level set ∂[(∪ih

i
0) ∪ (∪jh

j
1)].

As an example/exercise, we suggest considering N = S2, where f : S2 −→ R has
two maxima, two minima, and two critical points of index 1. Before trying this exercise
the reader may first wish to look at the next two sections, where we will carry out the
examples N = RP 2 and N = T 2 where the Morse function has only one maximum and
one minimum in each case.
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5. Some examples of the construction

In this section we explain how the construction described in §4 works in some examples,
in particular, we consider the cases N = T 2 and N = RP 2.

5.1. Example 1: N = RP 2.

First, we consider the example N = RP 2. In this case we have a handle decompo-
sition with three handles h0, h1, h2. To construct the fiber M of our Lefschetz fibration

π : D(T ∗
RP 2) −→ D2, we start with D(T ∗V0) and then attach two 1-handles h̃1 and ĥ1

to D(T ∗V0). To begin, identify ∂h0 = S1 = V0 and let {a, b} denote the two points where
h1 is attached to h0 (i.e., {a, b} is the attaching 0-sphere). Thus we obtain two points
{a, b} ⊂ V0. Now identify

D(T ∗V0) = V0 × [−1, 1]

and consider the following four points in the boundary of D(T ∗V0):

{(a,−1)(a, 1), (b, 1), (b,−1)} ⊂ ∂(V0 × [−1, 1]).

In the handle decomposition of N = RP 2 the 1-handle h1 is attached with a twist.
Therefore, according to the instructions in §4.1 (1), we must attach h̃1 to (a, 1), (b, 1)

and ĥ1 to (a,−1), (b,−1). The result is shown in figure 3 (notice that the 1-handles are
attached without twists so that M is orientable).

There are three vanishing cycles. Two, V0 and V1 are quite obvious: In figure 3, V0 is
the horizontal segment, and V1 is the circle which meets V0 vertically; V1 is the core of
the evident annulus plumbed on to D(T ∗V0).

Remark 5.1. Notice that V0 and V1 intersect in two points. These two points correspond
exactly to the two flow lines from x1 to x0, which are represented by the two attaching
points, a, b, where h1 attached to h0.

The last vanishing cycle V2 is the Lagrangian surgery of V0 and V1. It is shown in
figure 4: V2 coincides with V0 and V1 away from a neighborhood of V0 ∩ V1, and inside a
neighborhood of V0 ∩ V1 it coincides with the four curved arcs in figure 4.

Notice that the resulting fiber M is diffeomorphic to S2 with four small disks removed.
This agrees with the example we did from classical algebraic geometry in §3.1. Fur-
thermore, V0, V1 and V2 divide the four punctures in all three possible ways. Thus the
vanishing cycles also agree with the example from classical algebraic geometry.

5.2. Example 2: N = T 2.

Next, we consider the example of the torus, N = T 2. In this case we have a handle
decomposition with four handles h0, h

1
1, h

2
1, h2. To construct the fiber M of our Lefschetz

fibration π : D(T ∗T 2) −→ D2, we start with D(T ∗V0) and then attach four 1-handles to

D(T ∗V0) in pairs, denoted h̃11, ĥ
1
1 and h̃21, ĥ

2
1. To begin, consider the points {aj , bj} ⊂ ∂h0
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Figure 3. This is the fiber M in the case N = RP 2. The two vertical
edges marked by >> are identified. The vanishing cycle V0 is represented
by the horizontal line in the middle. The vanishing cycle V1 is the circle
meeting V0 vertically. The last vanishing cycle V2 is not shown (for V2
see figure 4).

where hj1 is attached to h0, j = 1, 2. Now identify S1 = V0 = ∂h0. Thus we obtain four
points in V0:

a1, b1, a2, b2 ⊂ V0.

The cyclic order in V0 is: a1, a2, b1, b2, which we see from the handle decomposition of T 2.
Now identify D(T ∗V0) = V0 × [−1, 1] and for j = 1, 2, consider the following four points
in the boundary of D(T ∗V0):

{(aj ,−1)(aj , 1), (bj , 1), (bj ,−1)} ⊂ ∂(V0 × [−1, 1]).

In the handle decomposition of N = T 2 both 1-handles hj1, j = 1, 2 are attached with

no twist. Therefore, according to the instructions in §4.1 (2), we must attach h̃j1 to

(aj , 1), (bj ,−1) and ĥj1 to (aj , 1), (bj ,−1). The result is shown in figure 5 (notice that the
1-handles are attached without twists so that M is orientable).

There are four vanishing cycles V0, V
1
1 , V

2
1 , V2. Three of them, V0, V

1
1 , and V

2
1 are quite

obvious, see figure 5.

71



JOHNS

Figure 4. This is the fiber M in the case N = RP 2. The two vertical
edges marked by >> are identified. The vanishing cycle V2 is shown (it
is curvy); it is the Lagrangian surgery of V0 and V1 which are shown in
figure 3.

Remark 5.2. Notice that V0 and V j
1 intersect in two points. These two points correspond

exactly to the two flow lines from xj1 to x0, which are represented by the two attaching

points, aj , bj , where h
j
1 is attached to h0.

The last vanishing cycle V2 is the Lagrangian surgery of V0 and V 1
1 ∪ V 2

1 . It is shown
in figure 6: Outside of a neighborhood of the four intersection points,

(V0 ∩ V 2
1 ) ∪ (V0 ∩ V 2

1 ) = {a1, b1, a2, b2},
V2 coincides with V0, V

1
1 , and V2; and inside a neighborhood of {a1, b1, a2, b2}, V2 coin-

cides with the eight curved arcs shown in figure 6. It is instructive to trace through the
figure and verify that we indeed get a copy of S1, which is V2 by definition.

By inspecting the boundary carefully we see there are 4 boundary components. The
Euler characteristic is −4 (to see this, we can retract M onto the 1-skeleton, which has
one 0-cell and five 1-cells). Thus we conclude M is diffeomorphic to T 2 with 4 small disks
removed. (Here we use the formula for the Euler characteristic of a compact 2-manifold
Σ given by χ(Σ) = (2 − 2g) − b, where g = genus(Σ), and b is the number of boundary
components of Σ.)

ThusM agrees with the fiber in the example of the Lefschetz fibration on (C∗)2 ∼= T ∗T 2 we
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Figure 5. The fiber M in the case N = T 2. The two vertical edges
indicated by >>>>> are identified to form S1 × [−1, 1] = D(T ∗V0).
The other marked edges, in pairs, indicate where the four 1−handles are
attached. We have drawn in part of one of the 1-handles (up to iden-
tifying > and >) to indicate how a handle would look. Three of the
four vanishing cycles are visible: V0 is the horizontal segment, and V 1

1 is
represented by two of the vertical segments (joining the edges marked >
and >>) and V 2

1 is represented by the other two vertical segments (join-
ing the edges marked >>> and >>>>). Because of the identifications
indicated, these vertical segments join together to form two copies of S1.
See figure 6 for the final vanishing cycle V2.

considered in §3.2. In that example we had four critical points all lying on (S1)2 ⊂ (C∗)2

which corresponds to T 2 ⊂ T ∗T 2. This agrees with the fact that we have four vanishing
cycles in M . The natural conjecture is that the vanishing cycles of the example in §3.2
are the same as the ones in M .
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Figure 6. The fiber M in the case N = T 2. Here V2 is shown; it is the
Lagrangian surgery of V0 and V 2

1 , V
2
1 . See figure 5 for a picture of V0

and V 2
1 , V

2
1 .

5.3. The genus of the fiber in general

Let N be the closed oriented surface of genus g. Take the standard handle decompo-
sition of N with one 0−handle, one 2−handle, and 2g 1−handles. We describe without
proof the fiber M in this case: If we construct M as in §4.1, and reason in a way similar
to the example of the torus, then we find the fiber M is equal to a genus g surface with
2 + 2g small disks removed, and with 2g + 2 vanishing cycles. Theorem 1.1 implies there
is a Lefschetz fibration on D(T ∗N) with this regular fiber and vanishing cycles. This
answer for M makes sense in view of the general fact that the total space of a Lefschetz
fibration on a 4-manifold is homotopy equivalent to the fiber M with a 2-cell attached
at each vanishing cycle. Indeed, in this case M is equal to N with 2g + 2 small disks
removed, so it is plausible that attaching (2g + 2) 2-cells to the vanishing cycles should
recover N as expected. (This is not a complete argument that E is homotopy equivalent
to N because the the position of the vanishing cycles has not taken into account.)
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5.4. Two quick examples where N has boundary

Let

N1 = T 2 \D,
where D is an embedded disk, and let

N2 = RP 2 \D′,

where D′ is an embedded disk. Then N1 and N2 admit Morse functions and handle
decompositions which are the same as the ones we had in §5.1, 5.2 except we remove a
neighborhood of the maximum, and correspondingly we omit h2 from the handle decom-
positions. In these cases the regular fibers are exactly the same as before, as in §5.1, 5.2,
and we have the same vanishing cycles, except we omit V2 in both cases.

6. Sketch of E ∼= D(T ∗
N)

Let N be a 2-manifold and construct M and V0, V
j
1 , V2 ⊂M as described in §4. Take

the vanishing paths γ0, γ
j
1, γ2 as described in §4.2. Now we invoke Theorem 2.2 and obtain

a Lefschetz fibration

π : E −→ D2

which, by construction, has the Picard-Lefschetz data

(M,V0, V
j
1 , V2, γ0, γ

j
1, γ2).

In this section we sketch the proof of the following theorem:

Theorem 6.1. (1) There is an exact Lagrangian embedding N ⊂ E.
(2) Crit(π) ⊂ N , π(N) = [a, b] ⊂ R, and π|N = f : N −→ R (up to reparameterizing

N and R by diffeomorphisms).
(3) E is conformally exact symplectomorphic to the disk cotangent bundle D(T ∗N)

(after we smooth the corners of E).

The main step is (1). Then (2) follows easily by construction of N . The last step (3) is
accomplished by describing a retraction of E onto a small Weinstein neighborhood of N in
E, symplectomorphic to D(T ∗N). The retraction is obtained by using the parallel trans-
port map with varying time along some fixed paths; that is why it is a conformally exact
symplectomorphism. See remark 1.3 for more about conformally exact symplectomor-
phisms. As a model example one should imagine some neighborhood of the zero section
in T ∗N retracting onto the disk bundle Dǫ(T

∗N) for some small ǫ > 0 via the Liouville
flow along the cotangent fibers, with varying time. This is obviously not symplectic be-
cause it distorts the symplectic volume, but it is a conformal exact symplectomorphism,
which is the best one could hope for in this situation, and still useful.

We will discuss the proof in the case N = RP 2, as in §5.1. The proof in the general
case involves no new ideas. But see remark 6.2 for a brief discussion of the general case.
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The regular fiber M and vanishing spheres V0, V1, V2 are as in figure 8 below. The critical
values in D2 are chosen to be

π(x2) = c2 = −3/4,

π(x1) = c1 = 0,

π(x0) = c0 = 3/4.

And the base point is

b = −1/2.

Let γ0, γ1, γ2 denote the vanishing paths in figure 2.

Now let b′ = 1/2 and consider the obvious reflection of the vanishing paths through
the origin, γ′0, γ

′
1, γ

′
2. Then let

M ′ = π−1(b′).

We will suppress how M and M ′ are identified. (Roughly speaking they are related by a
“half twist operation”, and then transport around the half circle from 1/2 to -1/2 gives
an exact symplectomorphism from M ′ to M which can be understood explicitly. See
Lemma 6.1 and Lemma 7.2 in [J09] for details.)

If we identify M = M ′ then the vanishing spheres V ′
0 ,V

′
1 ,V

′
2 in M ′ appear as in

figure 7. Under the identification M ′ = M , we have V ′
1 = V1, V

′
2 = V0 and V ′

0 looks
similar to V2, but the surgery is the right surgery of V ′

0 and V ′
1 , which means as you move

along V ′
0 towards the surgery region, the curve moves to the right. Compare with figure 8

which shows V0, V1, V2 ⊂M .

At this point we need to go into the construction of (E, π) in a bit more detail (see
[J09] for full details). Let (Er,s, πr,s) denote the standard local model (see §2.6) with
fiber Dr(T

∗Sn), r > 0; but use q1 = z21 − z22 + c1 rather than the usual q = z21 + z22 . Let

φ1 : Dr(T
∗S1) −→M

denote an exact Lagrangian embedding such that φ1(S
1) = V1 (such an embedding exists

by Weinstein’s theorem).

Let E1 denote the Lefschetz fibration over Ds(c1) = {z ∈ C : |z − c1| ≤ s} obtained
in the following way. Take the trivial fibration

F =M ×Ds(c1),

and consider the subset obtained by deleting a neighborhood of V1 in every fiber:

F0 = (M \ φ1(Dr/2(T
∗S1))×Ds(c1).
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Figure 7. In the case N = RP 2: The fiber M ′ at b′ = 1/2

Figure 8. In the case N = RP 2: The fiber M at b = −1/2
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Now use the fact that we can trivialize Er,s ∩ {z ∈ Er,s : r/2 < k(z) ≤ r} (where
k(z) = 1

4 (|z|4 − |q1(z)|2) as in §2.6) by radial parallel transport, yielding an exact sym-
plectomorphism

ρ : Er,s ∩ {r/2 < k ≤ r} −→ φ1(D(r/2,r](T
∗S1))×Ds(c1),

where D(r/2,r](T
∗S1) = {(u, v) ∈ T ∗S1 : |v| ∈ (r/2, r]}. We define

E1 = F0 ∪ρ Er,s

where we glue F0 and Er,s using the map ρ. The map π1 : E1 −→ Ds(c1) is defined to
be πr,s = z21 − z22 + c1 on Er,s and the projection map to Ds(c1) on F0 (these two maps
agree on the overlap using the gluing map ρ).

Now, the Lefschetz fibration π : E −→ D2 is constructed such that the restriction of
π to π−1(Ds(c1)) agrees with (E1, π1). Let

Nr,s = Er,s ∩ R
2 ⊂ C

2.

Set

f1(x1, x2) = x21 − x22 + c1,

so f1 is the standard Morse function of index 1 on R
2. Note that

πr,s|Nr,s = f1, and

Nr,s = {x ∈ R
2 : |f1(x)| ≤ s, |x|4 − f1(x)

2 ≤ r}.
Note that Nr,s is diffeomorphic to an 8 sided polygon as in figure 9 (i.e., Nr,s is the same
as N loc

1 in figure 9).

When we construct the embedding N ⊂ E (see §6.1 below), we will write N as the
union of several over-lapping pieces. These pieces correspond to something like a handle-
decomposition of N . Nr,s will play the role of the 1-handle. Let

I+ = Nr,s ∩ {f1 = s} and I− = Nr,s ∩ {f1 = −s}.
Then I± ∼= S0 × D1. I− corresponds to the part of the 1-handle which attaches to the
0-handle, and I+ corresponds to the part of the 1-handle which meets the boundary of
the 2-handle. We identify I− with S0 ×D1 explicitly using:

ψ− : S0 × [−a, a] −→ I−,

ψ−(±1, θ) = (±√
s sinh(θ),±√

s cosh(θ)),

where a > 0 is chosen suitably.

Using an explicit formula for ρ it is easy to check (see the proof of Lemma 7.2 in [J09])
that under the trivialization

ρ : Er,s ∩ {r/2 < k ≤ r} −→ φ1(D(r/2,r](T
∗S1))×Ds(c1),
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we have ρ(I− ∩ {r/2 < k ≤ r}) is equal to
D(r/2,r](T

∗
aS

1) ∪D(r/2,r](T
∗
b S

1)

for some K− = {a, b} ⊂ S1, K−
∼= S0. We assume that φ1 is chosen such that φ1(K−) is

V0 ∩ V1 in M and φ1(Dr(T
∗
aS

1)∪Dr(T
∗
b S

1)) is equal to a neighborhood of V0 ∩ V1 in V0.
The main technical ingredient for our construction of N ⊂ E is the following lemma.

Lemma 2. Let 0 < a0 < a be the unique number such that

ψ−(S
0 × ([−a,−a0) ∪ (a0, a])) = I− ∩ {r/2 < k ≤ r}.

Let ψ0
− denote the restriction ψ−|(S0×([−a,−a0)∪(a0,a])). Then under the trivialization

ρ : Er,s ∩ {r/2 < k ≤ r} −→ φ1(D(r/2,r](T
∗S1))×Ds(c1),

we have that

φ1 ◦ ρ ◦ ψ0
− : S0 × ([−a,−a0) ∪ (a0, a]) −→ V0

agrees with the framing that is used to attach the 1-handle in the given handle decomposi-
tion of N . More precisely, if h : S0× [−a, a] −→ ∂h0 is the attaching map of the 1-handle
in the given handle decomposition of N , then the restriction h|(S0 × ([−a,−a0] ∪ [a0, a]))
is equal to φ1 ◦ ρ ◦ ψ0

−, up to isotopy.

The proof involves inspecting each map, and we find that rules (1) and (2), which we
used for constructing M in §4.1, are precisely what we need to get this result.

6.1. Sketch of the exact Lagrangian embedding N ⊂ E

We describe N ⊂ E as the union of several overlapping pieces. These correspond to
something like a handle-decomposition of N . In fact, this type of decomposition is used
in Milnor’s book on the h-cobordism theorem [M65, pages 27-32]. For N = RP 2 our
decomposition will have four pieces as in figure 9 below. We will call this a Milnor type
handle decomposition.

In the Milnor type handle decomposition of RP 2 shown in figure 9 we have N0 = D2

and N2 = D2, which are the same as the usual 0- and 2-handles. Then there is

N loc
1 = {x ∈ R

2 : |f1(x)| ≤ δ, |x|4 − f1(x)
2 ≤ ǫ},

where δ, ǫ > 0 are some small numbers and f1(x) = x21 − x22. Here, N loc
1 plays the role

of the 1-handle, but it is diffeomorphic to polygon with eight edges (as opposed to a
standard 1-handle, which is diffeomorphic to D1 ×D1). For the last piece, suppose that
the 1−handle (in the usual handle-decomposition) is attached using an embedding

φ : S0 × [−ǫ, ǫ] −→ S1 = ∂N0.

Then the last piece is

N triv
1 = [S1 \ φ(S0 × (−ǫ/2, ǫ/2))]× [−1, 1].
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Figure 9. In the case N = RP 2, the pieces N0,N2 (top), N triv
1 (bottom

left), N loc
1 (bottom right). The overlap regions are also indicated.

This last piece has no analogue in a usual handle-decomposition; roughly, it fills in the rest
of the space in N after N0, N2, N

loc
1 are glued together. Now we realize four embeddings

(∗) N0, N
loc
1 , N triv

1 , N2 ⊂ E

such that the four pieces overlap just like they do in the handle decomposition of N = RP 2

(as in figure 9). Fix some small δ > 0. Here is how we define the four embeddings (∗):
(1) N0 is defined to be the Lefschetz thimble ∆[−3/4,−δ] with respect to the vanishing

path [−3/4,−δ].
(2) N2 is defined to be the Lefschetz thimble ∆[δ,3/4] with respect to the vanishing

path [δ, 3/4].
(3) To define N loc

1 , first take a neighborhood U of the critical point x1, which lies
over the middle critical value c1. By construction of π (see above) we may assume
U = Eǫ,2δ (so r = ǫ, s = 2δ), and

π|Eǫ,2δ = πǫ,2δ, where πǫ,2δ(z1, z2) = z21 − z22 + c1.

Set

N loc
1 = Nǫ,2δ := Eǫ,2δ ∩ R

2, and

f1 = πǫ,2δ|N loc
1 , f1(x1, x2) = x21 − x22 + c1.

Explicitly,

N loc
1 = {x ∈ R

2 : |f1(x)| ≤ 2δ, |x|4 − f1(x)
2 ≤ ǫ}

for some small δ, ǫ > 0.

(4) We define N triv
1 . Consider V0 ⊂M and let Ṽ0 denote the result of deleting a small

neighborhood of V1 ∩ V0 from V0. Thus Ṽ0 is diffeomorphic to the disjoint union

of two closed intervals: Ṽ0 ∼= [a, b] ∪ [c, d]. Now let N triv
1 be the result of parallel
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transporting Ṽ0 over the interval [−3/4+σ, 3/4−σ], where σ > 0 is small enough
that b = −1/2 and b′ = 1/2 lie in the interior (−3/4 + σ, 3/4− σ). Obviously,

N triv
1

∼= ([a, b] ∪ [c, d])× [−3/4 + σ, 3/4− σ].

Note that the critical point x1 does not cause a singularity to arise, since we

deleted V1 from V0 to form Ṽ0.

As we discussed just before Lemma 2, f−1
1 (−δ) ∩ N loc

1 corresponds precisely to a
neighborhood of V0 ∩ V1 in V0 (where V0 here is understood to be transported from
M = π−1(−1/2) to π−1(−δ) along [−1/2,−δ]). Moreover, Lemma 2 asserts that the
embedding

f−1
1 (−δ) ∩N loc

1 −→ V0

precisely agrees with the framing used to attach h1 to h0 in the handle decomposition of
RP 2.

Similarly, there is an embedding

f−1
1 (δ) ∩N loc

1 −→ V ′
0 ⊂ π−1(δ).

So, summarizing we can say there is are embeddings

f−1
1 (−δ) ∩N loc

1 −→ ∂N0

f−1
1 (δ) ∩N loc

1 −→ ∂N2

and the first one has the correct framing (agreeing with the one used to attach h1 to h0
in the standard handle decomposition of RP 2). Now, N triv

1 simply fills in the gap from
∂N0 to ∂N1. We should define it so that it overlaps with N0, N2 and N loc

1 .

To conclude, the union N0∪N loc
1 ∪N triv

1 ∪N2 is diffeomorphic to N because it reproduces
the Milnor style handle decomposition of N ; the key point being that the correct framing
is used for N loc

1 as it overlaps N0. Moreover, N is an exact Lagrangian submanifold
because for each piece θ restricts to be zero.

Remark 6.2. In the general case, i.e., if there are several critical points of index 1, then
we have the same three vanishing paths, with V 1

1 , . . . , V
k
1 all having the same vanishing

path γ1 = γj1, j = 1, . . . , k. This is not a problem since all V j
1 are mutually disjoint.

We make the same argument locally near each critical point of index 1. Of course N triv
1

is diffeomorphic to (S1 \ J) × [a, b], where J is the union of several copies of S0 × D1,
disjointly embedded in V0 = S1.

6.2. Sketch proof of part 2 of Theorem

Part 2 of Theorem 6.1 essentially follows from inspection of the construction of N ⊂ E
given above. For instance π(N0) = [−3/4,−δ] and π|N0 obviously coincides (up to smooth
reparameterization) with the usual model for an index 0 critical point on R

2 given by the
model f0 = −x21 − x22.
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Figure 10. Here we have A ⊂ C, a small neighborhood of π(N) ⊂ R.
Also A0 is the region between the two dotted lines; A− is the part of A
to the left of A0, and A+ is to the right of A0.

6.3. Sketch proof of E ∼= D(T ∗N)

First, use radial parallel transport to retract E onto π−1(A), where A is a small tubular
neighborhood of π(N) = [−3/4, 3/4] ⊂ D2. Let’s split A into three pieces:

A− = A ∩ {x+ iy : x < −δ}
A+ = A ∩ {x+ iy : x > δ}
A0 = A ∩ {x+ iy : −2δ < x < 2δ}.

See figure 10. Now let E− = π−1(A−). We construct (E, π) such that E− consists of a
trivial piece

F− = (M \Dǫ/2(T
∗V0))×A−

with a copy of the local model with fiber Dǫ(T
∗V0) glued on. Now consider the subset

E−
′ ⊂ E− given by

E−
′ = (M \Dǫ(T

∗V0))×A− ⊂ F−.

Now, let

A−
0 = A ∩ {x+ iy : −2δ < x < −δ} ⊂ A0,

A+
0 = A ∩ {x+ iy : δ < x < 2δ} ⊂ A0.

And set
E±

0 = π−1(A±
0 ).

Now we transport almost the whole region E−
′ into E−

0 = π−1(A−
0 ) along paths par-

allel to the real line, so that the points corresponding to M \ Dǫ(T
∗V0) move onto the

corresponding points in the fibers of E0 = π−1(A−
0 ). See figure 11 for a schematic picture.

We say we move “almost” all of E−
′ because what we do more precisely is the

following. Fix some small fixed a > 0. Let p = (p′, z) ∈ E−
′ = (M \ Dǫ(T

∗V0)) × A−.
If p′ ∈ M \Dǫ(T

∗V0) has distance > a from Dǫ(T
∗V0) then we transport p, over a path

parallel to the real line, into E−
0 = π−1(A−

0 ) (for a time depending only on Re(z), where
z = π(p) ∈ A−). But if p′ ∈ M \ Dǫ(T

∗V0) has distance t ∈ [0, a] from Dǫ(T
∗V0) then

we multiply the old transport time by a cut-off function φ(t), so as to taper down to the
identity map. This means not quite all of E−

′ is transported out of E− into E0. But the
part that remains can be retracted in the fiber direction (by a Liouville flow) onto the
local model over A− with fiber Dǫ(T

∗V0).
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Figure 11. Here we have a schematic drawing of the retraction map.
The three crosses represent the regular fibers over A−, A0, and A+. The
dotted parts of the crosses on the left and right correspond to the part
of the fiber corresponding to M \ D(T ∗V0). The idea of the retraction
is to parallel transport those dotted parts of the fibers over A− and A+

onto the corresponding parts of the fibers over A0.

We do a similar procedure to E+, transporting (most) of a set E+
′ ⊂ E+ into E+

0 ,
and then retracting what remains in the fiber direction onto the local model over A+

with fiber Dǫ(T
∗V ′

2). (Here, (E, π) is constructed such that the part over A+ consists of
a trivial piece

F+ = (M ′ \Dǫ/2(T
∗V ′

2))×A+

with a copy of the local model with fiber Dǫ(T
∗V ′

2) glued on.)

So what we have reduced to so far in E+ and E− is an arbitrarily small neighborhood
of N0 and N2. Indeed, in the base direction we began by retracting onto a small neigh-
borhood of π(N) = [−3/4, 3/4] and in the fiber direction, we are inside the local models
with fiber Dǫ(T

∗V0) over A− and with fiber Dǫ(T
∗V2) over A+. Thus, in E+ and E− we

have retracted (by a Liouville type flow) onto small neighborhoods of N0 and N1 which
can be modeled by D(T ∗N0) and D(T ∗N2).

To finish our discussion, let’s take a look at E0. As in the discussion before Lemma 2,
(E, π) is constructed such that E0 consists of a trivial piece

F0 = (M \Dǫ/2(T
∗V1))×A0

with a copy of the local model with fiber Dǫ(T
∗V1) glued on.

The part of E0 given by the local model over A0 with fiber Dǫ(T
∗V1) is a neighbor-

hood of N loc
1 in C

2 which is isomorphic to D(T ∗N loc
1 ). Next, note that N triv

1 is given
by

N triv
1 = (V0 \Dǫ/2(T

∗V1))×A0 ⊂ F0.

The trivial part of E0 given by F0 can be retracted to an arbitrarily small neighbor-
hood N triv

1 as follows. First we deal with the fiber direction by shrinking the radius of
D(T ∗V0) ⊂M enough (by a fiberwise retraction). Then, in the base direction we make A0

close enough to π(N triv
1 ) = [−2δ, 2δ]. In this way F0 retracts onto a small neighborhood

of N triv
1 which can be modeled by D(T ∗N triv

1 ).
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To conclude we have retracted E (using a Liouville type flow) onto a union of neigh-
borhoods of the form D(T ∗N0), D(T ∗N2), D(T ∗N triv

1 ), D(T ∗N loc
1 ), which together form

a Weinstein neighborhood of N in E, isomorphic to D(T ∗N).
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