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Landau–Ginzburg models — old and new

Ludmil Katzarkov and Victor Przyjalkowski

Abstract. In the last three years a new concept — the concept of wall crossing
has emerged. The current situation with wall crossing phenomena, after pa-
pers of Seiberg–Witten, Gaiotto–Moore–Neitzke, Vafa–Cecoti and seminal works
by Donaldson–Thomas, Joyce–Song, Maulik–Nekrasov–Okounkov–Pandharipande,
Douglas, Bridgeland, and Kontsevich–Soibelman, is very similar to the situation with
Higgs Bundles after the works of Higgs and Hitchin — it is clear that a general “Hodge

type” of theory exists and needs to be developed. Nonabelian Hodge theory did lead
to strong mathematical applications —uniformization, Langlands program to mention
a few. In the wall crossing it is also clear that some “Hodge type” of theory exists —
Stability Hodge Structure (SHS). This theory needs to be developed in order to reap

some mathematical benefits — solve long standing problems in algebraic geometry. In
this paper we look at SHS from the perspective of Landau–Ginzburg models and we
look at some applications. We consider simple examples and explain some conjectures
these examples suggest.

1. Introduction

Mirror symmetry is a physical duality between N = 2 superconformal field theories.
In the 1990’s Maxim Kontsevich reinterpreted this concept from physics as an incredibly
deep and far-reaching mathematical duality now known as Homological Mirror Symmetry
(HMS). In a famous lecture in 1994, he created a frenzy in the mathematical community
which lead to synergies between diverse mathematical disciplines: symplectic geometry,
algebraic geometry, and category theory. HMS is now the cornerstone of an immense field
of active mathematical research.

In the last three years a new concept — the concept of wall crossing has emerged. The
current situation with wall crossing phenomena, after papers of Seiberg–Witten, Gaiotto–
Moore–Neitzke, Vafa–Cecoti and seminal works by Donaldson–Thomas, Joyce–Song,
Maulik–Nekrasov–Okounkov–Pandharipande, Douglas, Bridgeland, and Kontsevich–
Soibelman, is very similar to the situation with Higgs Bundles after the works of Higgs
and Hitchin — it is clear that a general “Hodge type” of theory exists and needs to
be developed. Nonabelian Hodge theory did lead to strong mathematical applications

Key words and phrases. Hodge structures; categories; Landau–Ginzburg models.
L.K was funded by NSF Grant DMS0600800, NSF FRG Grant DMS-0652633, FWF Grant P20778,

and an ERC Grant — GEMIS, V.P. was funded by FWF grant P20778, RFFI grants 11-01-00336-a and

11-01-00185-a, grants MK−1192.2012.1, NSh−5139.2012.1, and AG Laboratory GU-HSE, RF government
grant, ag. 11 11.G34.31.0023.

97



KATZARKOV and PRZYJALKOWSKI

— uniformization, Langlands program to mention a few. In the wall crossing it is also
clear that some “Hodge type” of theory needs to be developed in order to reap some
mathematical benefits — solve long standing problems in algebraic geometry.

The foundations of these new Hodge structures, which we call Stability Hodge Struc-
tures (SHS) will appear in a paper by the first author, Kontsevich, Pantev and Soibelman
(see [1]). In this paper we will look at SHS from the perspective of Landau–Ginzburg
models and we will also look at some applications. We will consider simple examples and
explain some conjectures these examples suggest. Further elaboration and examples will
appear in [1] and [2].

We start with the classical interpretation of wall crossings in Landau–Ginzburg mod-
els. After that we describe a hypothetical program of “Stability Hodge Theory” which
combines Nonabelian and Noncommutative Hodge theory. We consider some possible
applications in this paper. First we consider an approach to the conjecture that the
universal covering of a smooth projective variety is holomorphically convex. This is a
classical question in algebraic geometry proven by the first author and collaborators for
linear fundamental groups [3]. It was believed that for nonresidually finite fundamental
groups one needs a different approach and in this paper we outline a procedure of extend-
ing the argument to the nonresidually finite case based on SHS. We also outline possible
applications to Hodge structures with many filtrations and to Sarkisov’s theory.

Stability Hodge Structure is a notion which originates from functions of one complex
variable and combinatorics — gaps, polygons, and circuits. We give these classical notions
a new read through HMS and category theory, dressing them up with some cluster varieties
and integrable systems. After that we enhance these data additionally with some basic
nonabelian Hodge theory in order to get a property we need — strictness. In the same
way as moduli spaces of Higgs bundles parameterize spectral coverings, the moduli space
of deformed stability conditions parameterizes Landau–Ginzburg models.

We believe this is only the tip of the iceberg and this very rich motivic conglomerate
of ideas will play an important role in the studies of categories and of algebraic cycles.
In particular we suggest that the categorical notion of spectra can be seen as a Hodge
theoretic notion related to the “homotopy type of a category”.

The paper is organized as follows. In Sections 2 and 3 we describe the classical approach
to Landau–Ginzburg models and wall crossings. After that in Sections 4, 5, 6 we define
Stability Hodge Structures and build a parallel with Simpson’s nonabelian Hodge theory.
We also discuss possible applications in Sections 7, 8, 9.

2. Classical Landau–Ginzburg models and wall crossings

In this section we recall the “classical” way of interpreting wall crossing in the case of
Landau–Ginzburg models. We will establish a certain combinatorial framework on which
we later base our constructions.

We recall the notion of Landau–Ginzburg models from the Laurent polynomials point
of view. For more details see, say, [4] and references therein.
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Let X be a smooth Fano variety of dimension N . We can associate a quantum co-
homology ring QH∗(X) = H∗(X,Q) ⊗ Λ to it, where Λ is the Novikov ring for X.
The multiplication in this ring, the so called quantum multiplication, is given by (genus
zero) Gromov–Witten invariants — numbers counting rational curves lying in X. Given
these data one can associate a regularized quantum differential operator QX (the second
Dubrovin connection) — the regularization of an operator associated with connection in
the trivial vector bundle given by a quantum multiplication by the canonical class KX .
In “good” cases such as we consider (for Fano threefolds or complete intersections) the
equation QXI = 0 has a unique normalized analytic solution I = 1 + a1t+ a2t

2 + . . ..

Definition 2.1. A toric Landau–Ginzburg model is a Laurent polynomial
f ∈ C[x±1

1 , . . . , x±
n ] such that:

Period condition: The constant term of f i ∈ C[x±1
1 , . . . , x±

n ] is ai for any i (this
means that I is a period of a family f : (C∗)n → C, see [4]).

Calabi–Yau condition: Any fiber of f : (C∗)n → C after some fiberwise compact-
ification has trivial dualizing sheaf.

Toric condition: There is an embedded degeneration X  T to a toric variety
T whose fan polytope (the convex hull of generators of its rays) coincides with
the Newton polytope (the convex hull of non-zero coefficients) of f . A Laurent
polynomial without the toric condition is called a weak Landau–Ginzburg model.

Toric Landau–Ginzburg models for complete intersections can be derived from the
Hori–Vafa suggestions (see, say, [5]).

Definition 2.2. LetX be a general Fano complete intersection of hypersurfaces of degrees
d1, . . . , dk in Pn. Let d0 = n− d1 − . . .− dk be its index. Then a Laurent polynomial

fX =
(x1,1 + . . .+ x1,d1−1 + 1)d1 · . . . · (xk,1 + . . .+ xk,dk−1 + 1)dk

∏
xij

+ x01 + . . .+ x0d0−1.

we call of Hori–Vafa type.

Theorem 2.3 (Proposition 9 in [5] and Theorem 2.2, [6]). The polynomial fX is a toric
Landau–Ginzburg model for X.

Definition 2.4. Let f be a Laurent polynomial in C[x
±1
0 , . . . , x±1

n ]. Then a (non-toric
birational) symplectomorphism is called of cluster type if it is a composition of toric
change of variables and symplectomorphisms of type

y0 = x0 · f0(x1, . . . , xi)
±1, y1 = x1, . . . , yn = xn,

for some Laurent polynomial f0 and under this change of variables f goes to a Laurent
polynomial for which a Calabi–Yau condition holds.

It is called elementary of cluster type if (up to toric change of variables)

f0 = x1 + . . .+ xi + 1.

It is called of linear cluster type if it is a composition of elementary symplectomorphisms
of cluster type and toric change of variables.
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Remark 2.5. For all examples in the rest of the paper the Calabi–Yau condition holds
for all considered cluster type transformations.

Proposition 2.6. Let f be a weak Landau–Ginzburg model for X. Let f ′ be a Laurent
polynomial obtained from f by symplectomorphism of cluster type. Then f ′ is a weak
Landau–Ginzburg model for X.

Proof. A period giving constant terms of Laurent polynomials is, up to proportion, an
integral of the (depending on λ ∈ C) form 1

1−λf

∏ dxi

xi
over a standard n-cycle on the

torus |x1| = . . . = |xn| = 1. This integral does not change under cluster type symplecto-
morphisms. �

Example 2.7. Let X be a quadric threefold. There are two types of degenerations of X
to normal toric varieties inside the space of quadratic forms. That is,

T0 = {x1x2 = x3
2} ⊂ P[x1 : x2 : x3 : x4 : x5]

and
T1 = {x1x2 = x3x4} ⊂ P[x1 : x2 : x3 : x4 : x5].

Let

f0 =
(x+ 1)2

xyz
+ y + z

be a weak Landau–Ginzburg model of Hori–Vafa type for X. Let

f1 =
(x+ 1)

xyz
+ y(x+ 1) + z

be its cluster-type transformation given by the change of variables
y

(x+ 1)
7→ y.

One can see that T0 = Tf0 and T1 = Tf1 .

Remark 2.8. One can see that applying the same change of variables a second time to
f1 gives back (up to toric change of variables) f0.

Example 2.9. Let X be a cubic threefold. There are two types of degenerations of X
to normal toric varieties inside the space of cubic forms. That is,

T0 = {x1x2x3 = x3
4} ⊂ P[x1 : x2 : x3 : x4 : x5]

and
T1 = {x1x2x3 = x2

4x5} ⊂ P[x1 : x2 : x3 : x4 : x5].

Let

f0 =
(x+ y + 1)3

xyz
+ z

be a weak Landau–Ginzburg model of Hori–Vafa type for X. Let

f1 =
(x+ y + 1)2

xyz
+ z(x+ y + 1)
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be its cluster-type transformation given by the change of variables

z

(x+ y + 1)
7→ z.

One can see that T0 = Tf0 and T1 = Tf1 .

Remark 2.10. Applying this change of variables a second time to f1 we get (up to toric
change of variables) f1 again and applying it a third time we get f0 back.

Example 2.11. Let X be a cubic fourfold. There are three types of degenerations of X
to normal toric varieties inside the space of cubic forms. That is,

T00 = {x1x2x3 = x3
4} ⊂ P[x1 : x2 : x3 : x4 : x5 : x6],

T10 = {x1x2x3 = x2
4x5} ⊂ P[x1 : x2 : x3 : x4 : x5 : x6],

and

T11 = {x1x2x3 = x4x5x6} ⊂ P[x1 : x2 : x3 : x4 : x5 : x6],

Let

f00 =
(x+ y + 1)3

xyzt
+ z + t

be a weak Landau–Ginzburg model of Hori–Vafa type for X. Let

f10 =
(x+ y + 1)2

xyzt
+ z(x+ y + 1) + t

be its cluster-type transformation given by the change of variables

z

(x+ y + 1)
7→ z

and let

f11 =
(x+ y + 1)

xyzt
+ z(x+ y + 1) + t(x+ y + 1)

be the cluster-type transformation of f10 given by the change of variables

t

(x+ y + 1)
7→ t.

One can see that T00 = Tf00 , T10 = Tf10 , and T11 = Tf11 .

Remark 2.12. Applying the first change of variables a second time to f10 we get (up to
toric change of variables) f10 again, applying it once more we get f00, and applying any
change of variables to f11 we get f10.

Example 2.13. Consider quadrics in P = P(1, 1, 1, 1, 2). Denote the coordinates in P by
x0, x1, x2, x3, x4, where the weight of x4 is 2. The general quadric is

T1 = {F2(x0, x1, x2, x3) + λx4 = 0},
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where F2 is a quadratic form and λ ∈ C \ 0. Projection on the hyperplane generated by
x0, . . . , x3 gives an isomorphism of T1 with P3. The general variety with λ = 0 is a toric
variety

T2 = {x0x1 = x2x3}.
It degenerates to

T3 = {x1x2 = x2
0}.

One can see that T3 is an image of P(1, 1, 2, 4) under the Veronese map v2.
Consider the following 3 weak Landau–Ginzburg models for P3:

f1 = x+ y + z +
1

xyz
,

f2 = x+
y

x
+

z

x
+

1

xy
+

1

xz
,

f3 =
(x+ 1)2

xyz
+

y

z
+ z.

Changing toric variables one can rewrite f1 as

f ′
1 = z(x+ 1) + y +

1

xyz2
,

f ′′
1 = z(x+ 1) +

y

z
+

1

xyz
.

The cluster-type change of variables

x 7→ x, y 7→ y, z(x+ 1) 7→ z

sends f ′
1 to a Laurent polynomial that differs from f3 by a toric change of variables and

f ′′
1 to a polynomial

z +
(x+ 1)y

z
+

(x+ 1)

xyz
,

which differs from f2 by toric change of variables.The cluster-type change of variables

x 7→ x, y(x+ 1) 7→ y, z 7→ z

sends the last expression to f3.
One can see that T1 = Tf1 , T2 = Tf2 , and T3 = Tf3 .

Theorem 2.14 (Hacking–Prokhorov, [7]). Let X be a degeneration of P2 to a
Q-Gorenstein surface with quotient singularities. Then X = P(a2, b2, c2), where (a, b, c)
is any solution of the Markov equation a2 + b2 + c2 = 3abc.

Remark 2.15. All Markov triples are obtained from the basic one (1, 1, 1) by a sequence
of elementary transforms

(a, b, c) 7→ (a, b, 3ab− c).
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Proposition 2.16 (S.Galkin). Let (a, b, c) be a Markov triple and let f be a weak
Landau–Ginzburg model for P2 such that Tf = P(a2, b2, c2). Then there is an elemen-
tary cluster-type transformation such that for the image f ′ of f under this transformation
Tf ′ = P(a2, b2, (3ab− c)2).

Sketch of the proof (S.Galkin). Consider d ≥ c such that 3ad = b (mod c). One can
check that we can choose toric coordinates x, y such that in these coordinates vertices of

the Newton polytope of f are (d, c), (d− c, c), and (−d(3ab−c)−b2

c ,−3ab+ c). Let p be the
k-th integral point from the end of an edge of integral length n of the Newton polytope
of f . Then the coefficient of f at p is

(
n
k

)
(this can be proved by induction). This means

that

f = xd−cyc(x+ 1)c +
1

x
d(3ab−c)−b2

c y3ab−c
+
∑

r

y−nrfr(x),

where ni’s are non-negative and fi’s are some Laurent polynomials in x. One can check
that the change of variables of cluster type

y′ = y(x+ 1), x′ = x

sends f to a weak Landau–Ginzburg model f ′ such that Tf ′ = P(a2, b2, (3ab− c)2). �

We extend observed connection between degenerations and birational transformations
further to a general connection between geometry of moduli space of Landau–Ginzburg
models, birational and symplectic geometry. We summarize this connection in Table 1
and we will investigate it (mainly conjecturally) in the sections that follow.

Fano variety X Landau–Ginzburg model LG(X)

A side
Fuk(X): symplectomorphisms
and general degenerations

FS(LG(X)): degenerations

B side Db
sing(LG(X)): phase changes Db(X): birational

transformations

Table 1. Wall crossings.

3. Minkowski decompositions and cluster transformations

Definition 3.1. Let N ∼= Zn be a lattice. Denote NR = N ⊗R. A polytope ∆ ⊂ NR is a
convex hull of finite number of points in NR. A polytope is called integral iff these points
lie in N ⊗ 1. A polytope is called primitive if it is integral and its vertices are primitive.
A Laurent polynomial is called primitive if its Newton polytope is primitive.

Definition 3.2. The Minkowski sum ∆1+. . .+∆k of polytopes ∆1, . . . ,∆k is the polytope
{v1 + . . .+ vk|vi ∈ ∆i}. An integral polytope is called irreducible if it can’t be presented
as a Minkowski sum of two non-trivial integral polytopes.
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Remark 3.3. A Minkowski sum of integral polytopes is integral.

Definition 3.4. Consider an integral polytope ∆ ⊂ Zn. A Minkowski presentation of ∆
is a presentation of each of its faces as a Minkowski sum of irreducible integral polytopes
such that if a face ∆′ lies in a face ∆ then the intersections of Minkowski summands for
∆ with ∆′ give a presentation for ∆′.

Consider a Laurent polynomial f ∈ C[Zn]. For any face ∆ of ∆f denote the sum of
all monomials of f lying in ∆ by f∆. The polynomial f is called a Minkowski polynomial
if there exists a Minkowski presentation such that, for any face ∆ of ∆f with given
Minkowski sum expansion ∆ = ∆1+ . . .+∆k, there are Laurent polynomials f∆i

∈ C[Zn]
such that the coefficients of f∆i

at vertices of ∆i are 1’s and f∆ = f∆1
· . . . · f∆k

.

Remark 3.5. Let e be an edge of a Minkowski Laurent polynomial of integral length n.
Its unique Minkowski expansion to irreducible summands is the expansion to n segments
of integral length 1. Thus the coefficient of the monomial associated to the i’th integral
point of e (from any end) is

(
n
i

)
.

Remark 3.6. Toric Landau–Ginzburg models of Hori–Vafa type or toric Landau–
Ginzburg models from [5] are Minkowski Laurent polynomials.

Example 3.7 (Ilten–Vollmert construction, [8]). Consider an integral polytope
∆ ⊂ N = Zn. Let the origin of N lie strictly inside ∆. Let X = T∆ be the toric variety
whose fan is the face fan for ∆. Denote the dual lattice toN byM = N∨. PutN ′ = N⊕Z,
M ′ = M ⊕ Z. Let C be the cone generated by (∆, 1). Then X = Proj C[C∨ ∩M ′] with
grading given by d = (0, 1) ∈M ′. For any primitive r ∈M ′, consider the map r : N ′ → Z.
Let Lr = ker(r). Let sr be a retract (cosection) of the inclusion i : Lr → N ′, that is,
a map N ′ → Lr such that sri = IdLr

. It is unique up to translations along Lr. Let
C+ = sr({p ∈ C|〈p, r〉 = 1}), and C− = sr({p ∈ C|〈p, r〉 = −1}) be two “slices” of C cut
out by evaluating function at r.

Choose r such that r = (r0, 0) ∈M ′ and such that C− is a cone with its single vertex
a lattice point. Consider a Minkowski decomposition C+ = C1+C2 to (possibly rational)
polytopes such that for any vertex v of C+, at least one of the corresponding vertices in
C1 and C2 is a lattice point. Let D be the cone in Lr ⊕ Z generated by (C−, 0), (C1, 1),
and (C2,−1). Denote X ′ = Proj C[D∨ ∩ (Lr ⊕ Z)∨)] where the grading is now given by
(sr(d), 0).

Proposition 3.8 (Remark 1.8 and Theorem 4.4 in [8]). There is an embedded degenera-
tion of X ′ to X.

Example 3.9 (Ilten). Let ∆ ⊂ Z2 be the convex hull of the points (−1, 2), (1, 2), and
(0,−1). Then X = P(1, 1, 4). Let r = (0, 1, 0). Then sr is given by the matrix

(
1 0 0
0 1 1

)
.

We are in the setup of Example 3.7 (see Figure 1). The vertex of {p ∈ C|〈p, r〉 = −1}
is (0,−1, 1) and goes to a vertex (0, 0) under sr and the vertices of {p ∈ C|〈p, r〉 = 1}
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are (± 1
2 , 1,

1
2 ) and goes to vertices (± 1

2 ,
3
2 ) under sr. That is, we have a Minkowski

decomposition drawn on Figure 2.
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Figure 1. Deformation of P(1, 1, 4).

C+ C1 C2

(1/2,1/2)(0,1)(−1,1)(−1/2,3/2) (1/2,3/2)

Figure 2. Decomposition of C+.

The polytope for X ′ is a convex hull of points (−1, 1), (0, 1), and (1,−2) since the
second coordinate becomes to be equal to 1 not on (C2,−1) but on (2C2,−2). Its face
fan is a fan of P2. Thus we get a deformation of P2 to P(1, 1, 4).

The following proposition shows that the degenerations given by Example 3.7 give
cluster transformations for Minkowski polynomials.

Proposition 3.10. Let ∆ = ∆f be the Newton polytope of a Minkowski polynomial f .
Let ∆′ be a polytope obtained from ∆ by the procedure described in Example 3.7 given by
integral Minkowski summands agreeing with the Minkowski decompositions of the faces of
∆. Then ∆′ = ∆f ′ for some Minkowski polynomial f ′.
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Proof. Let f ∈ C[x±1
0 , . . . , x±1

n ]. After toric changes of variables we can assume that sr
is the projection on coordinates x1, . . . , xn. Then

f = f+(x1, . . . , xn)x0 + f0(x1, . . . , xn) +
f−(x1, . . . , xn)

x0
.

As f is a Minkowski polynomial we have f+ = f1f2. Thus after change of variables
x0 → x0/f2 we get a Minkowski polynomial

f ′ = f1(x1, . . . , xn)x0 + f0(x1, . . . , xn) +
f−(x1, . . . , xn)f2(x1, . . . , xn)

x0

with Newton polytope ∆′. �

Remark 3.11. Example 3.9 shows that the statement of Proposition 3.10 holds for
non-integral case as well. This example is the first non-trivial cluster transformation
given by Proposition 2.16.

Example 3.12. Let ∆ be the convex hull of points (−1, 1), (1, 1), and (0,−1). Then X
is a quadratic cone P(1, 1, 2). (A unique) Minkowski polynomial for ∆ is

f =
(x+ 1)2y

x
+

1

y
.

After cluster change of variables y → y
x+1 we get a polynomial

(x+ 1)y

x
+

x+ 1

y
.

It is (a unique) Minkowski polynomial for the polytope ∆′ — the convex hull of points
(−1,−1), (0,−1), (1,−1), and (0,−1). These points generate the fan of a smooth
quadric X ′.

4. Degenerations and wall crossings

In the previous section we have established certain combinatorial structures — cluster
transformations connected to wall crossings. We will relate these combinatorial structures
to the moduli space of stability conditions. We do this in two steps:

Step 1. First we relate the combinatorial structures to the “moduli space of Landau–
Ginzburg models”.

Step 2. Next we describe hypothetically how the “moduli space of Landau–Ginzburg
models” fits in a “twistor family” with generic fiber the moduli space of stability conditions
of a Fukaya–Seidel category.

We start with step one — collecting all Landau–Ginzburg models in a moduli space.
The idea is to record wall crossings as relations in the mapping class group and then
relations between relations and so on. This suggests a connection with Hodge theory and
higher category theory. We will start with a rather simple approach which we will enhance
later in order to serve our purposes. Nearly ten years ago it was discovered that, while
the symplectic mapping class group of a curve equals the ordinary (oriented) mapping
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class group, these two groups differ greatly for higher dimensional symplectic manifolds.
Understanding the structure of these groups has been a goal of many researchers in
symplectic geometry. The initial purpose of the construction below was to obtain a
presentation of the symplectic mapping class group of toric hypersurfaces. Along the way
we have obtained a characterization of the zero fiber of a Stability Hodge Structure.

To explain our approach, we recall some notation and constructions. Assume A ⊂ Zd is
a finite set, XA is the polarized toric variety associated to A with ample line bundle L. In
[9], the secondary polytope Sec(A) parameterizing regular subdivisions was constructed
and shown to be the Newton polytope of the EA determinant (a type of discriminant).
We realize the toric variety associated to Sec(A) as the coarse moduli space of a stack
XSec(A) defined in [10]. We observe that the stack XLaf(A) constructed in [10] has a
proper map π to XSec(A) whose fibers are degenerations of XA, and we constructed a
polytope Laf(A) which is dual to the fan defining XLaf(A). The zero set HSec(A) of a
section of the associated line bundle parameterizes sections of L and degenerated sections
are hypersurfaces in the associated degenerated toric variety. Upon restriction, we obtain
a proper map π : HSec(A) → XSec(A) with non-singular fibers symplectomorphic to any
non-degenerate section of L.

Since π : HSec(A) → XSec(A) is a proper map, we may consider symplectic parallel
transport of the non-singular fibers along paths in the complement of the zero set ZA

of the EA determinant. Denote by Hp the fiber of π. We observe that the subset of
the fibers meeting the toric boundary H are horizontal in the sense that if q ∈ ∂Hp

then the symplectic orthogonal (TqHp)
⊥ω ⊂ Tq(∂HSec(A)), where ω corresponds to a

restriction of Fubini–Study metric. That is, parallel transport is a symplectomorphism
that preserves the boundary of the hypersurfaces. Choosing a base point p of XSec(A)\ZA,

we obtain a map from the based loop space ρ : Ω(XSec(A)\ZA)→ Symp∂(Hp) and a group
homomorphism

ρ∗ : π1(XSec(A) \ ZA)→ π0(Symp∂(Hp)),

where π0(Symp∂(Hp)) is a mapping class group. However, from a field theory perspec-
tive, this homomorphism in imprecise; one should consider not only symplectomorphisms
preserving the boundary, but also those that preserve the normal bundle of the bound-
ary. In this way, we can glue two hypersurfaces together without creating an ambiguity
in the symplectomorphism groups. We call such a symplectomorphism boundary framed
morphism and denote the corresponding group Symp∂,fr(Hp). For toric hypersurfaces,

this group is a central extension of Symp∂(Hp). It is not generally the case, however, that
parallel transport preserves the framing, but the change in framing can be controlled by
keeping track of the homotopies in Ω(XSec(A) \ZA) or by passing to the loop space of an
auxiliary real torus bundle E → XSec(A) \ ZA, giving a homomorphism

ρ̃∗ : π1(E)→ π0(Symp∂,fr(Hp)).

In many cases, this homomorphism is surjective.
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The stack XSec(A) is as complicated combinatorially as the secondary polytope Sec(A),
which is computationally expensive to describe. While the Newton polytope of EA was
found in [9], ZA is far from smooth and there are open questions about its singular struc-
ture. We bypass these difficulties by considering only the lowest dimensional boundary
strata of XSec(A) where non-trivial behavior occurs. Thus the first and main case we
examine are the one dimensional boundary strata of XSec(A). Combinatorially, these are
known as circuits.

A circuit A is a collection of d+2 points in Zd, such that there are exactly two coherent
triangulations (see [9]) of A, so the secondary polytope is a line segment and the secondary
stack a weighted projective line P(a, b). ZA is either two or three points; two of the points
are the equivariant orbifold points {0,∞} and the possible third is an interior point. Both
the constants, a, b and the number of points in ZA depends on the convex hull and affine
positioning of A — for more details see [2]. When ZA consists of three points, their
complement retracts onto a figure eight and the fundamental group is free on two letters.
In this case, we have the based loops δ1, δ2, δ3 = δ−1

2 δ−1
1 encircling the three points.

The symplectic monodromy Ti = ρ̃∗(δi) is computable from known results in symplectic
geometry as either spherical Dehn twists or as twists about a tropical decomposition. The
image via ρ̃∗ gives the relation

T1T2T3 = T∂Hp
, (1)

where T∂Hp
is the central element determined by twisting the framing about the toric

boundary. One of the most elementary examples isXA = P1×P1 with polarizationO(1, 1),
and the circuit is the four vertices of a unit square with the two diagonal triangulations.
Here the hypersurface is P1 with four boundary points and the relation obtained above
yields a classical relation in the mapping class group called the Lantern relation.

When ZA consists of two points, one is an orbifold point and the other is a point with
trivial stabilizer. If δ1, δ2 are based paths encircling ZA and T1, T2 are the associated
symplectomorphisms, we obtain a relation

(T1T2)
a = T∂Hp

. (2)

A basic example of this relation arises as the homological mirror to P2 which is the set
A = {(0, 0), (1, 0), (0, 1), (−1,−1)}. The constant a occurring above is 3 and the relation
is in fact another classical mapping class group relation known as the star relation.

We call the boundary framed, symplectic mapping class group relation occurring in
equations 1 and 2 the circuit relation. In general, any complex line in XSec(A) yields a rela-

tion in Symp∂,fr(Hp) by homotoping the product of all the loops around the intersections
with ZA to the identity. However, each such line can be degenerated to a chain of equi-
variant lines which are precisely circuits supported on A. Thus every relation obtained
this way can be thought of as arising from a composition of circuit relations. As we saw
in the previous two sections Landau–Ginzburg mirrors of Fano manifolds are fibrations
of Calabi–Yau hypersurfaces. Therefore the above simple examples generalize to
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Theorem 4.1 ([2]). Landau–Ginzburg mirrors of Fano manifolds can be obtained by a
superposition of circuits described above.

Interpreting Landau–Ginzburg models as lines in the secondary stack we get

Theorem 4.2 ([2]). XSec(A) can be seen as moduli space of Landau–Ginzburg models. In
particular some wall crossings correspond to passing through ZA.

These two theorems complete Step 1.

5. Wall crossings and Stability Hodge Structures

We move to Step 2, building a “twistor family” with generic fiber the moduli space of
stability conditions for Fukaya–Seidel categories — see [11].

Stability Hodge Structures. We start with Stability Hodge Structures, an artifact
of Donaldson–Thomas (DT) invariants. We will mainly consider Fukaya–Seidel categories
but discussion in this section applies in general.

The theory of Donaldson–Thomas invariants and wall crossing has become a central
subject of Geometry and Physics. In a nutshell DT invariants are virtual numbers of
stable objects in three dimensional Calabi–Yau category. Kontsevich and Soibelman sug-
gested Donaldson–Thomas invariants applicable to triangulated category and Bridgeland
stability conditions — a refined version of so called motivic Donaldson–Thomas invariants
— MDT. The wall crossing formulae (WCF) of MDT are expressed in terms of factoriza-
tion of quantum torus. A connection with nonabelian Hodge structures comes naturally
here. WCF for the Hitchin system is connected to ODE with small parameter and its
asymptotic behavior. In fact the WCF relates to Stokes data at infinity for this ODE and
connects with the work of Ecalle and Voros on resurgence.

We will introduce a new geometric structure which seems to be present in many of
above considerations — Stability Hodge Structures. These structures seem to have a
huge potential of geometric applications some of which we discuss.

The moduli space of stability conditions of a category C is very complicated with
possibly fractal boundary. In the case of derived category of Calabi–Yau manifolds of
dimension three and higher there is not any hypothetical description. Still HMS predicts
that the moduli space of mirror dual Calabi–Yau manifolds is embedded in a locally closed
cone in the moduli space of stability conditions of a category C. So it is a big open question
how to characterize Hodge structures corresponding to mirror duals. Classically the
moduli space of pure Hodge structures has a compactification by Mixed Hodge Structures
(MHS). So it is natural to study limiting Donaldson–Thomas invariants and relate to
WCF.

In the case of three-dimensional Calabi–Yau manifolds there are different types of
MHS. The cusp case — the deepest degeneration — corresponds to t-structures which
is an extension of Tate motives. As a result we take a generating series of Donaldson–
Thomas rank one torsion free invariants. It is known that in this case this generating series
(modulo change of coordinates) is the classical Gromov–Witten series which satisfies the
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holomorphic anomaly equation. This translates into automorphic property for the DT
generating function. We expect that automorphic property holds for higher ranks and
plan to study it and show that WCF is necessary to assemble limiting data.

A different MHS corresponds to conifold points and non-maximal degeneration points.
The wall crossings and DT data give a family of Integrable Systems in the following way.
The vanishing cycles Γshort and the monodromy define a quotient category T /A with the
following sequence on the level of K–theory:

Γshort → K0(T )→ K0(T /A).
Using the Kontsevich–Soibelman noncommutative torus approach we define a super-

scheme

G = ⊕p∈Γshort
Gp → Tnon.

Consider the zero grade G0 of G over Z. The global sections of G0 define the Betti moduli
space — an integrable system

Γ(G0) = ⊕O(Mj).

In order to consider the interaction with the rest of the category we include global
WCF. In this case we obtain a torus action, which produces a stack over the Betti moduli
space:

X/(C∗)×n →M1 ×M2 × . . .×Mk.

All these stacks fit in a constructible sheaf.
To summarize we give a provisional definition, which covers the cases of Bridgeland,

geometric (volume forms), and generalized (log forms) stability conditions:

Definition 5.1. A Stability Hodge Structure (SHS) for a Fukaya–Seidel category F is
the following data:

i) The moduli space of stability conditions S for F .
ii) Divisor D at infinity giving a partial compactification of S and parametrizing the

degenerated limiting stability conditions — stability conditions for quotient cat-
egories, the category factored by the objects (vanishing cycles) on which stability
conditions vanish.

iii) Besides the degeneration we record the WCF — all recorded together. Over each
point of D we put the Betti moduli space locally produced by WCF. All these
moduli space fit in a constructible sheaf over S.

Let us illustrate these structures through two examples. We start with the category

Ã2 — the Fukaya category of the conic bundle {uv = y2 − x3 − ax− b}, a, b ∈ C. In this
case, the Stability Hodge Structure is a sheaf over C2 with coordinates a, b.

The points of the discriminant parameterize limiting stability conditions. The fibers
are Betti moduli spaces of vanishing cycles which generically over the discriminant are
the affine surface z(1− xy) = 1. The special fiber over the cusp is the moduli space M0,5

of rank two bundles over the projective line with one irregular singularity and five Stokes
directions at infinity (see Figure 3).
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M0,5

C
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z(1 − xy) = 1

t

Figure 3. Compactification of moduli space of stability conditions for

a category Ã2.

A different example is the Fukaya–Seidel category A4. We start with a generic polyno-
mial p ∈ C[z] of degree 5. It defines a Riemann surface C = {p(z) = w} and 5:1-covering
ϕ : C → C. The ramification locus for ϕ are 4 points p1, . . . , p4— roots of p′. Consider
4 paths l1, . . . , l4 from pi’s to infinity. The polynomial p is generic, so the ramification is
as simple as it can be and ϕ−1(li) are thimbles covering li’s 2:1. They generate a Fukaya
category for C and correspond to vertices of the A4 quiver. “Neighbor” thimbles intersect
at infinity: i-th one intersects (i + 1)-th at one point. These intersections correspond to
arrows between vertices in the quiver.

In this example the divisor D at infinity parameterizes the semiorthogonal decompo-
sitions of the A4 category. The fibers of the constructible sheaf are moduli spaces of
stability conditions for A3 × A1 categories. Similarly on the singular points of D we get
as fibers moduli spaces of stability conditions for A2×A2 categories. This leads to a rich
mixed Hodge theory structure associated with D and monodromy action around it. In
the next section we will see that in the limit the stability conditions behave as coverings
so the above picture fits. This monodromy relates to the wall-crossings changes. In par-
ticular it sends the preferred set of thimbles generating the A4 category from a generator
consisting of the sum of 4 thimbles G = L1+L2+L3+L4 (with Hom(Li, Li+1) of rank 1)
to G′ = L′+L1+L3+L4 by a mutation. This mutation reduces the generation time (see
Section 7) from t(G) = 3 to t(G′) = 2. We will represent it as an invariant of of Stability
Hodge Structures in Section 7.

In the next section we build a twistor type of family where the generic fiber is a SHS.

6. Higgs bundles and stability conditions — analogy

In this section we proceed describing the analogy between Nonabelian and Stability
Hodge Structures. We build the “twistor” family so that the fiber over zero is the “moduli
space” of Landau–Ginzburg models and the generic fiber is the Stability Hodge Structure
defined above.

Noncommutative Hodge theory endows the cohomology groups of a dg-category with
additional linear data — the noncommutative Hodge structure — which records impor-
tant information about the geometry of the category. However, due to their linear nature,
noncommutative Hodge structures are not sophisticated enough to codify the full geomet-
ric information hidden in a dg-category. In view of the homological complexity of such
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categories it is clear that only a subtler non-linear Hodge theoretic entity can adequately
capture the salient features of such categorical or noncommutative geometries. In this
section by analogy with “classical nonabelian Hodge theory” we construct and study
from such a perspective a new type of entity of exactly such type — the Stability Hodge
Structure associated with a dg-category.

As the name suggests, the SHS of a category is related to the Bridgeland stabilities on
this category. The moduli space StabC of stability conditions of a triangulated dg-category
C is, in general, a complicated curved space, possibly with fractal boundary. In the
special case when C is the Fukaya category of a Calabi–Yau threefold, the space StabC

admits a natural one-parameter specialization to a much simpler space S0. Indeed, HMS
predicts that the moduli space of complex structures on the Calabi–Yau threefold maps
to a Lagrangian subvariety Stab

geom
C ⊂ StabC . (Recall the holomorphic volume form and

integrating it defines a stability condition and its charges.) The idea is now to linearize
StabC along Stab

geom
C , i.e., to replace StabC with a certain discrete quotient S0 of the total

space of the normal bundle of StabgeomC in StabC . Specifically, by scaling the differentials
and higher products in C, one obtains a one parameter family of categories Cλ with
λ ∈ C∗, and an associated family Sλ := StabCλ

, λ ∈ C∗ of moduli of stabilities. Using
holomorphic sections with prescribed asymptotic at zero one can complete the family
{Sλ}λ∈C∗ to a family S→ C which in a neighborhood of StabgeomC behaves like a standard
deformation to the normal cone. The space S0 is the fiber at 0 of this completed family
and conjecturally S→ C is one chart of a twistor-like family S → P1 which is by definition
the Stability Hodge Structure associated with C.

Stability Hodge Structures are expected to exist for more general dg-categories, in
particular for Fukaya–Seidel categories associated with a superpotential on a Calabi–Yau
space or with categories of representations of quivers. Moreover, for special non-compact
Calabi–Yau 3-folds, the zero fiber S0 of a Stability Hodge Structure can be identified with
the Dolbeault realization of a nonabelian Hodge structure of an algebraic curve. This is
an unexpected and direct connection with Simpson’s nonabelian Hodge theory which we
exploit further suggesting some geometric applications.

We briefly recall nonabelian Hodge theory settings. According to Simpson we have
one parametric twistor family such that the fiber over zero is the moduli space of Higgs
bundles and the generic fiber is the moduli space of representations of the fundamental
group — MBetti.

In this section we state that we expect similar behavior of moduli space of stability
conditions. The moduli space of stability conditions of a Fukaya–Seidel category can be
included in a one parameter twistor family, and we describe the fiber over zero in details
in the next subsection.

We give an example:

Example 6.1 (“twistor” family for Stability Hodge Structures for the category An). We
will give a brief explanation the calculation of the “twistor” family for the SHS for the
category An. We start with the moduli space of stability conditions for the category An,
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which can be identified with differentials epdz, where p ∈ C[z] is a generic polynomial of
degree n+ 1, see [1].

Let us denote one particular holomorphic form epdz by V ol. Locally there exists a
holomorphic coordinate w such that V ol = dw. Geodesics in the metric |V ol|2 are the
straight real lines in the coordinate w, the same as real lines on which V ol has constant
phase. Therefore they are special Lagrangians for V ol (and in fact for any real symplectic
structure).

Observe that these geodesics are asymptotic to infinity because the integral of
|V ol| = eRe(p)|dz| absolutely converges on them hence Re(p) approaches infinity, as these
lines are noncompact in the uncompactified plane z, and therefore |z| goes to infinity. To
compensate infinite length in the usual metric |dz|2 we use the fact that eRe(p) converges
to zero iff Re(p) converges to minus infinity.

So after completion in the metric defined above (so the vertices are in the finite part
now) we enhance the polygon by assigning angles and lengths. These enhanced polygons
record our stability conditions. Indeed we have (2(n+1)−3)-dimensional space of polygons
plus one global angle — it is a real 2n dimensional space. In Example 6.2 we give a simple
example illustrating the polygons for the category A2 and a wall crossing phenomenon.
The stable objects correspond to edges and diagonals. In the picture in the example we
lose one stable object while crossing a wall.

Example 6.2 (stability for A2). For A2 category we have deg p = 3. The left part of
Figure 4 represents two of the stable objects for the A2 category. The third stable object
is the third edge of the triangle. The wall crossing makes the angle between the first two
edges bigger then π and as a result the third edge is not a stable object any more.

1 α2α
//

1

α2

α

Figure 4. Stability conditions for the A2 category.

Now we consider the “twistor” family — the limit of ep(z)/udz, where u is a complex
number tending to 0. Geometrically limit differential can be identified with graphs — see
Example 6.3.

Example 6.3 (limit of ep/udz). Take a limit of ep/udz with u tending to zero. The limits
of polygons are graphs. We record the length, angle, and monodromy and this defines a
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covering of the complex plane. Thus this construction identifies a limit of moduli space
of stability conditions for An category with some Hurwitz subspace — a subscheme of
coverings. In particular, these two spaces have the same number of components. Figure 5
represents a procedure of associating the monodromy of the covering to the vertices of
the graph.
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Figure 5. Building coverings out of limit.

Remark 6.4. Similarly one can compute the “twistor” family for the equivariant An

category and see appearance of gaps in spectra in connection with the weight filtration
of completions of special local rings — see Section 7. Observe that the idea of cover-
ings brings the Fukaya category of a Riemann surface of genus g very close to the A2g+1

category. Also product of Fukaya categories of curves in combination with Luttinger
surgeries gives many opportunities for stability conditions with many components as well
as many possibilities for the behavior of gaps and spectra. The interplay between cov-
erings and stability conditions suggests that one can have symplectic manifolds with the
same Fukaya categories but different moduli of stability conditions. We conjecture that
the moduli spaces of coverings obtained near different cusps being different algebraically
should imply that this different manifolds are nonsymplectomorphic.

The fiber over zero. The fiber over zero (described in what follows) plays an
analogous role to the moduli space of Higgs bundles in Simpson’s twistor family in the
theory of nonabelian Hodge structures. Constructing it amounts to a repetition of our
construction in Section 4 from a new perspective and enhanced with more structure.

The An example considered above is a simple example of more general Fukaya–Seidel
categories that arise in Homological Mirror Symmetry. Stability conditions associated to
the Fukaya–Seidel category are closely related to the complex deformation parameters, i.e.,
the moduli space of Landau–Ginzburg models. We begin by recalling the general setup
in the case of Landau–Ginzburg models. The prescription given by Batyrev, Borisov,
Hori, Vafa in [12], [13] to obtain homological mirrors for toric Fano varieties is perfectly

114



Landau–Ginzburg models — old and new

explicit and provides a reasonably large set of examples to examine. We recall that if Σ
is a fan in R

n for a toric Fano variety XΣ, then the homological mirror to the B model
of XΣ is a Landau–Ginzburg model w : (C∗)n → C where the Newton polytope Q of
w is the convex hull of generators of rays of Σ. In fact, we may consider the domain
(C∗)n to occur as the dense orbit of a toric variety XA, where A is Q ∩ Zn and XA

indicates the polytope toric construction. In this setting, the function w occurs as a
pencil Vw ⊂ H0(XA, LA) with fiber at infinity equal to the toric boundary of XA. Similar
construction works for generic non-toric Fanos. In this paper we work with the directed
Fukaya category associated to the superpotential w — Fukaya–Seidel categories. To
build on the discussion above, we discuss here Fukaya–Seidel categories in the context of
stability conditions. The fiber over zero corresponds to the moduli of complex structures.
If XA is toric, the space of complex structures on it is trivial, so the complex moduli
appearing here are a result of the choice of fiber H ⊂ XA and the choice of pencil
w respectively. The appropriate stack parameterizing the choice of fiber contains the
quotient [U/(C∗)n] as an open dense subset where U is the open subset of H0(XA, LA)
consisting of those sections whose hypersurfaces are nondegenerate (i.e., smooth and
transversely intersecting the toric boundary) and (C∗)n acts by its action on XA. To
produce a reasonably well-behaved compactification of this stack, we borrow from the
works of Alexeev ([14]), Gelfand, Kapranov, and Zelevinsky ([9]), and Lafforgue ([10])
to construct the stack XSec(A) with universal hypersurface stack XLaf(A). We quote the
following theorem which describes much of the qualitative behavior of these stacks:

Theorem 6.5 ([2]). i) The stack XSec(A) is a toric stack with moment polytope
equal to the secondary polytope Sec(A) of A.

ii) The stack XLaf(A) is a toric stack with moment polytope equal to the Minkowski

sum Sec(A) + ∆A where ∆A is the standard simplex in R
A.

iii) Given any toric degeneration F : Y → C of the pair (XA, H), there exists a
unique map f : C→ XSec(A) such that F is the pullback of XLaf(A).

We note that in the theorem above, the stacks XLaf(A) and XSec(A) carry additional
equivariant line bundles that have not been examined extensively in existing literature,
but are of great geometric significance. The stack XSec(A) is a moduli stack for toric
degenerations of toric hypersurfacesH ⊂ XA. There is a hypersurface EA ⊂ XSec(A) which
parameterizes all degenerate hypersurfaces. For the Fukaya category of hypersurfaces
in XA, the complement XSec(A) \ EA plays the role of the classical stability conditions,
while including EA incorporates the compactified version where MHS come into effect.
We predict that the walls of the stability conditions occurring in this setup are seen as
components of the tropical amoeba defined by the principal A-determinant EA.

To find the stability conditions associated to the directed Fukaya category of (XA, w),
one needs to identify the complex deformation parameters associated to this model. In
fact, these are precisely described as the coefficients of the superpotential, or in our
setup, the pencil Vw ⊂ H0(XA, w). Noticing that the toric boundary is also a toric
degeneration of the hypersurface, we have that the pencil Vw is nothing other than a map
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from P1 to XSec(A) with prescribed point at infinity. If we decorate P1 with markings
at the critical values of w and ∞, then we can observe such a map as an element of
M0,V ol(Q)+1(XSec(A), [w]) which evaluates to EA at all points except one and ∂XA at
the remaining point. We define the cycle of all stable maps with such an evaluation
to be WA and regard it as the appropriate compactification of complex structures on
Landau–Ginzburg A-models. Applying techniques from fiber polytopes we obtain the
following description of WA:

Theorem 6.6 ([2]). The stack WA is a toric stack with moment polytope equal to the
monotone path polytope of Sec(A).

The polytope occurring here is not as widely known as the secondary polytope, but
occurs in a broad framework of so called iterated fiber polytopes introduced by Billera
and Sturmfels.

In addition to the applications of these moduli spaces to stability conditions, we also
obtain important information on the directed Fukaya categories and their mirrors from
this approach. In particular, the above theorem may be applied to computationally find
a finite set of special Landau–Ginzburg models {w1, . . . , ws} corresponding to the fixed
points ofWA (or the vertices of the monotone path polytope of Sec(A)). Each such point
is a stable map to XSec(A) whose image in the moment space lies on the 1-skeleton of the
secondary polytope. This gives a natural semiorthogonal decomposition of the directed
Fukaya category into pieces corresponding to the components in the stable curve which is
the domain of wi. After ordering these components, we see that the image of any one of
them is a multi-cover of the equivariant cycle corresponding to an edge of Sec(A). These
edges are known as circuits in combinatorics (see [2]).

Now we put this moduli space as a “zero fiber” of the “twistor” family of moduli family
of stability conditions.

We do this in two steps:
1. The following theorem suggests the existence of a formal moduli spaceM of Landau–

Ginzburg models f : Y → CP1.

Theorem 6.7 (see [1]). There exists a formal moduli space M determined by the solutions
of the Maurer–Cartan equations for the following dg-complex:

· · · ←−−−− Λ3TY ←−−−− Λ2TY ←−−−− TY ←−−−− OY ←−−−− 0
−3 −2 −1 0

In the above complex the differential is df and we can restate it by saying that this
complex determines deformations of the Landau–Ginzburg model, and these deformations
are unobstructed. We also have a C∗-action on M with fixed points corresponding to
limiting stability conditions — see [1].

Over the moduli spaceM defined above we have a variation of Hodge structures defined
by the cohomologies of the perverse sheaf of vanishing cycles over Y . This defines local
system V over M and its compactification.

116



Landau–Ginzburg models — old and new

Conjecture 6.8 (see [1]). The relative completion with respect of V in the fixed points
of the C∗-action on the compactification of M has a mixed Hodge structure.

2. The above moduli space is too big. So we will cut its dimension down to the moduli
space of stability conditions. We introduce a new moduli space which embeds in M .

We study deformations of Y → CP1 with “fixing the fiber at infinity”. Deformation of
a smooth variety Y with fixed CP1 is controlled by the following sheaf of dg Lie algebras
on Y :

TY → f∗TCP1

(the differential is the tangent map).
By fixing the fiber at infinity we get a subsheaf of dg Lie algebras

TY ,Y∞

→ f∗TCP1,∞.

Theorem 6.9 ([1]). The subsheaf of dg Lie algebras

TY ,Y∞

→ f∗TCP1,∞

determines a smooth moduli stack. Its dimension is equal to the dimension of the moduli
space of stability conditions.

A geometric realization of this moduli space, which embeds in M was described above.
We will denote it by M(P1, CY ) (or M(Pk, CY ) for multipotential Landau–Ginzburg
models).

Remark 6.10. We can consider a bigger moduli space by fixing the vector fields only
over a part of the divisor at infinity. This corresponds to taking a Landau–Ginzburg
model through a point of non maximal degeneration. This defines a bigger moduli space
of stability conditions with more stable objects.

Remark 6.11. The moduli spaces we discuss could have many components. Such a
phenomenon would have many interesting implications. It produces possibilities of many
new birational and symplectic invariants.

In the same way as the fixed point set under the C∗-action plays an important role
in describing the rational homotopy types of smooth projective varieties we study the
fixed points of the C∗-action on F and derive information about the homotopy type of a
category. In the rest of the paper we will denote WA by M(P1,XSec(A)) (or M(Pk, CY ))
in order to stress the connection with Landau–Ginzburg models (here CY denotes the
moduli space of Calabi–Yau mirrors to the anticanonical section of the Fano manifold we
consider).

7. Spectra and holomorphic convexity

In this section we explain briefly how Orlov spectra are related to Stability Hodge
Structures.

Recall that noncommutative Hodge structures were introduced by Kontsevich and
Katzarkov and Pantev [15] as means of bringing the techniques and tools of Hodge theory
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into the categorical and noncommutative realm. In the classical setting, much of the
information about an isolated singularity is recorded by means of the Hodge spectrum,
a set of rational eigenvalues of the monodromy operator. The Orlov spectrum (defined
below), is a categorical analogue of this Hodge spectrum appearing in the work of Orlov
and Rouquier. The missing numbers in the spectra are called gaps.

Let T be a triangulated category. For any G ∈ T denote by 〈G〉0 the smallest full
subcategory containing G which is closed under isomorphisms, shifting, and taking finite
direct sums and summands. Now inductively define 〈G〉n as the full subcategory of
objects, B, such that there is a distinguished triangle, X → B → Y → X[1], with
X ∈ 〈G〉n−1 and Y ∈ 〈G〉0, and direct summands of such objects.

Definition 7.1. Let G be an object of a triangulated category T . If there is an n with
〈G〉n = T , we set

t(G) := min {n ≥ 0 | 〈G〉n = T }.
Otherwise, we set t(G) := ∞. We call t(G) the generation time of G. If t(G) is finite,
we say that G is a strong generator. The Orlov spectrum of T is the union of all possible
generation times for strong generators of T . The Rouquier dimension is the smallest
number in the Orlov spectrum. We say that a triangulated category T , has a gap of
length s, if a and a+ s+ 1 are in the Orlov spectrum but r is not in the Orlov spectrum
for a < r < a+ s+ 1.

The first connection to Hodge theory appears in the form of the following theorem:

Theorem 7.2 ([16]). Let X be an algebraic variety possessing an isolated hypersurface
singularity. The Orlov spectrum of the category of singularities of X is bounded by twice
the embedding dimension times the Tjurina number of the singularity.

After this brief review of the theory of spectra and their gaps we connect them with
SHS. Let SHS(X) be the Stability Hodge Structure of Db(X) for a given Fano variety
X, M(P1, CY ) be its zero fiber.

Conjecture 7.3 ([1]). Let p be a point of the divisor D at infinity of the compactification
of M(P1, CY ). The mixed Hodge structures on the completion of the local ring Op, where
p runs over all commponnents of D, determines the spectrum of Db(X).

Remark 7.4. The above considerations suggests the existence of a Riemann–Hilbert
correspondence for SHS(X) for a Fano varietyX as well as deep and interesting analytical
interpretation of it by analogy with Yang–Mills–Higgs equations.

As a consequence of the above conjecture we have that SHS satisfy two important
properties — functoriality and strictness. We arrive at:

Conjecture 7.5. The infinite chain condition ([3]) can be ruled out for the universal
coverings of smooth projective surfaces.
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This is the strongest obstruction to Shafarevich conjecture [3] and SHS gives an ap-
proach proving that universal coverings of smooth projective varieties are holomorphically
convex.

Observe that the “twistor” family of compactified SHS depends on the choice of
Landau–Ginzburg model and still computes some purely categorical invariants. It is
natural to ask whether this family rigidifies the data. In particular we pose:

Question 7.6. Does the “twistor” family of compactified SHS of bounded derived category
of coherent sheaves of a smooth projective variety X recover the fundamental group of X?

8. Multipotential Landau–Ginzburg models and Hodge struc-

tures.

In this section we extend the correspondence among categories and Stability Hodge
Structures further. We underscore the idea that rich geometry of the Landau–Ginzburg
models gives a possibility of constructing interesting Stability Hodge Structures with
many filtrations.

8.1. Multipotential Landau–Ginzburg model for cubic fourfold

We describe fiberwise compactifications of multipotential Landau–Ginzburg models for
the cubic fourfold X. This example is representative and illustrates what we mean by a
multipotential Landau–Ginzburg model in general.

The Hori–Vafa toric Landau–Ginzburg for X is

w =
(x+ y + 1)3

xyt1t2
+ t1 + t2.

The cubic fourfold is of index 3. So there are two decompositions of its anticanonical
divisor: 3H = H +H +H and 3H = 2H +H. Multipotential Landau–Ginzburg models
correspond to such decompositions.

First we describe compactification for the first decomposition. We have the family

(x+ y + 1)3

xyt1t2
= w1, t1 = w2, t2 = w3,

where wi’s are complex parameters. After compactifying we get the family

(x+ y + z)3 = w1w2w3xyz

of elliptic curves over C3. After blowing up the point (0, 0, 0) we get a divisor over this
point. After that we resolve the rest of the singularities. The restriction of our family to
planes wj = const 6= 0 is the Landau–Ginzburg model for cubic threefold so we get the
following configuration of singularities.

(1) Ordinary double points along the surface w1w2w3 = 27.

(2) 7 lines forming a diagram of type Ẽ6 over planes w1 = 0, w2 = 0, and w3 = 0.
(3) 5 surfaces over axes w1, w2, w3.
(4) A divisor over (0,0,0).
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After projection on the diagonal C3 → C we get a fiberwise open part of the usual
Landau–Ginzburg model for cubic fourfold. Its fiber over zero consists of the divisor
described above and an elliptic fibration over the plane passing through the origin and
orthogonal to the diagonal. The intersection of these divisors is an elliptic K3 surface

with 3 fibers of type Ẽ6 corresponding to intersections of this orthogonal plane with
planes w1 = 0, w2 = 0, and w3 = 0.

Now we describe multipotential Landau–Ginzburg model for the second case 2H +H.
We have the family

(x+ y + z)3

xyzt1t2
= w1, t1 + t2 = w2.

In other words,

(x+ y + z)3 = w1(w2 − t)txyz

(we denote t1 by t for simplicity).
This family of surfaces can be obtained from the decomposition H + H + H by a

projection along w2+w3 = 0. Indeed, the equation of this family over C2 can be obtained
from the equation for the family over C3 by the coordinate change w2+w3 → w2, w3 → t.

So the singularities are the following.

(1) Ordinary double points along a curve.
(2) 5 surfaces over the axis w2 = 0.
(3) 17 surfaces over the axis w1 = 0. Their configuration can be described as follows:

configuration of curves of type Ẽ6 multiplied by a line and two examples of con-
figuration of 5 surfaces described above. Each of them are glued by intersection

of “pages” with a line of multiplicity 3 on Ẽ6 × pt.
(4) A divisor over (0,0,0).

The restriction of this family to the line w1 = const 6= 0 is (up to a multiplication of a
potential by a constant) an open part of Landau–Ginzburg model for the cubic threefold.
Indeed,

(x+ y + z)3 − w1(w2 − t)txyz = (x+ y + z)3 − (
√
w1w2 − (

√
w1t))(

√
w1t)xyz =

(x+ y + z)3 − (w − t1)t1xyz,

where w =
√
w1w2 and t1 =

√
w1t.

The restriction to the line w2 = const 6= 0 is an open part of Landau–Ginzburg model
for the threefold complete intersection of a quadric and a cubic. Indeed,

(x+ y + z)3 − w1(w2 − t)txyz = (x+ y + z)3 − (w1w
2
2)

(
1− t

w2

)(
t

w2

)
xyz =

(x+ y + z)3 − w(1− t1)t1xyz,

where w = w1w
2
2 and t1 = t/w2.
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On the other hand, compactified (singular) Landau–Ginzburg model for the intersec-
tion of a quadric and a cubic is

(t1 + t2)
2(x+ y + z)3 − wt1t2xyz = t20(x+ y + z)3 − w(t0 − t1)t1xyz,

where t0 = t1 + t2. In the local chart t0 = 1 we get the family written down before.
Thus, after compactifying fibers of the family corresponding to 2H + H we get 4

additional surfaces over the w2 axis and all together 21 = 17 + 4 surfaces.

8.2. Hodge structures with many filtrations

We now utilize above construction of multipotential Landau–Ginzburg models from
the point of view of “twistor” families. This part of the paper is highly speculative.

It is expected that Fukaya–Seidel categories with many potentials can be defined sim-
ilarly to Fukaya–Seidel categories with one potential. In this case we have a divisor S of
singular fibers and thimbles involved reflect not only the geometry of the fibers but the
geometry of S as well. In a similar way we can associate to a Fukaya–Seidel category with
many potentials a Stability Hodge Structure with a formal scheme over M(Pk, CY ) as a
fiber over zero. The following conjecture (briefly explained in Table 2) suggests a way of
constructing Hodge structures with multiple filtrations.

Conjecture 8.1 (see [1]). The mixed Hodge structure over formal scheme over
M(Pk, CY ) as fiber over zero is a mixed Hodge structure with many filtrations.

Landau–Ginzburg moduli spaces Nonabelian Hodge structures

M(P1, CY )
Landau–Ginzburg model with one

potential:
The fiber over zero is a formal scheme
over M(P1, CY ), generic fibers are Stab.

Twistor family — Nonabelian Hodge
Structure with one weight filtration.

Landau–Ginzburg models with k
potentials

Generalized twistor families with k
parameters.

The zero fiber is a formal scheme over
M(Pk, CY ), fibers (over a point in Ck)

are Stab.

Generalized multi twistor family over a
k-simplex.

Extensions
M(P1, CY )⊠M(P1, CY )

Extending filtrations ui ⊠ uj .

Table 2. Creating Hodge structures with multiple filtrations.
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9. Birational transformations and Poisson varieties

Discussion from previous sections suggests that there is a connection between the
moduli space of Landau–Ginzburg models, generators and birational geometry.

Landau–Ginzburg model Stability

Usual Landau–Ginzburg model

Boundary divisor

Landau−Ginzburg model

Ω3
X

Boundary divisor

Landau−Ginzburg model
Singular

Ω3
X\D

D is a divisor with stratification of
singular set.

Boundary divisor

Normal Landau−Ginzburg model
where thimbles correspond to
vanishing cycles ΩD

Sing D stability conditions of the
vanishing cycles on D.

Table 3. Stability Clemens–Schmidt sequence.

Table 3 gives a version of noncommutative Clemens–Schmidt sequence for geomet-
ric stability conditions — log 3-forms. This table treats the case of three-dimensional
Calabi–Yau manifolds (four dimensional Landau–Ginzburg models) but the situation in
general should be rather similar. In the case at hand (three-dimensional Calabi–Yau man-
ifold) — the stability conditions are just holomorphic 3-forms. For the quotient category
(the category which produces stability conditions of the compactification) we get stability
conditions to be holomorphic 3-forms vanishing in a stratified way over a divisor D. The
vanishing cycles define a subcategory with its own moduli space of stability conditions
and the relative (with respect to this subcategory) WCF defining an integrable system
(in general a Poisson variety). The corresponding Landau–Ginzburg models can be seen
as follows:
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(1) The Landau–Ginzburg models associated with quotient categories are given by
monotonic maps passing through an intersection of many boundary divisors in
M(Pk, CY ).

(2) The local categories of vanishing cycles are given by Landau–Ginzburg models
totally within intersections of divisors.

From the perspective of generators the above splitting corresponds to splitting of the
generators into the union of generators associated with the subcategory of vanishing cycles
and the quotient category. In fact we get a sequence of splittings — a flag parallel to
Okounkov polytopes.

These observations suggest the following conjecture, treated in [2].

Conjecture 9.1. One-parameter families of Landau–Ginzburg models parameterize
Sarkisov links.

Recall that Sarkisov links [17] are birational maps (birational cobordisms) connecting
two Mori fibrations. In our interpretation Sarkisov links become families connecting
circuits. In fact we have a more general picture on the connections between moduli
spaces of Landau–Ginzburg models and birational geometry. Namely we conjecture that
the geometry of moduli spaces of Landau–Ginzburg models for the mirror of Fano manifold
X determines its birational geometry. In particular we see a connection with relations
between Sarkisov links and then relations between relations and so on. We summarize
our picture in Table 4. For more details see [2], [18], [19], [20].

Sarkisov programs
Changes in the spaces of stability

conditions

Commutative Sarkisov program:
Sarkisov faces.

Wall crossings inside a component of
stability conditions.

Non-commutative Sarkisov program:
non-commutative cobordisms.

Passing from one component of stability
conditions to another one.

Table 4. Birational geometry.
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