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Tube formula for self-similar fractals with

non-Steiner-like generators

Ali Deniz, Şahin Koçak, Yunus Özdemir and Adem Ersin Üreyen

Abstract. We give a pointwise proof for the tube formula of Lapidus-Pearse for
self-similar fractals, where we extend the types of generators beyond the piecewise
polynomial case. We illustrate the new approach on several examples.

1. Introduction

M. Lapidus and E. Pearse proved in [5] a tube formula for higher dimensional fractals,
extending the earlier work of Lapidus and his coworkers [4]. They associate certain tilings
with fractals and express the volume of the inner ε-neighborhood of the tiling in terms
of residues of a certain associated function, called the tubular ζ-function. The residues
thereby are taken at the complex dimensions of the fractal, a notion introduced and
elaborated by Lapidus and his coworkers.

By a “tube formula” it is understood a formula giving the sum of Lebesgue measures of
the inner ε-neighborhoods of the open sets constituting a tiling associated with a fractal as
explained in Section 2. (The union of the inner ε-neighborhoods is also regarded as “the
inner ε-neighborhood of the tiling”.) It should be noted that this Lebesgue measure of
the inner ε-neighborhood of the tiling is generally different from the Lebesgue measure of
the ε-neighborhood of the fractal itself. But a recent work of E. Pearse and S. Winter [8]
clarifies the relationship between the inner ε-neighborhood of the tiling and the genuine
ε-neighborhood of the fractal in a very satisfactory way: If the boundary of the convex
hull of the fractal is a subset of the fractal, then the volume of the ε-neighborhood of the
fractal is the sum of the volumes of the inner ε-neighborhood of the tiling and the outer
ε-neighborhood of the convex hull of the fractal.

As the volume of the outer ε-neighborhood of the convex hull is rather trivial, the tube
formula in terms of residues gives effectively the true volume of the ε-neighborhood of the
fractal if the Pearse-Winter condition is fulfilled. This circumstance attributes a higher
value to the utility of the tube formula.

The original proof of the tube formula of Lapidus-Pearse was distributional, but there-
after pointwise proofs have been given in [2],[3] and [6].

Key words and phrases. Self-similar fractals, tube formula, complex dimensions, self-similar tiling,
zeta functions.
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In [2], we generalized part of their theory to the graph-directed fractals, defined complex
dimensions for them and gave a general scheme of summation yielding tube formulas for
self-similar as well as graph-directed fractals.

The original setting of Lapidus-Pearse assumed the generators of the tiling to be plu-
riphase, i.e., the volumes of the inner tubes of the generators should be piecewise polyno-
mial. In [3] and [6] the theory has been extended to more general types of generators, but
the conditions and the terminology differ in the two approaches. We consider generators
of the following type: Volumes of the inner tubes of generators should be polynomial
on a range between zero and a certain value less than the inradius and then arbitrarily
piecewise continuously differentiable on the range between this intermediary value and
the inradius. Historically, the adjective “Steiner” refers to the theorem that the volume
of the ε-neighborhood of a convex body in Rd is a polynomial of ε. We prefer to use the
term “Steiner-like” for a generator with a piecewise polynomial inner tube volume, as a
synonym of “pluriphase” and reserve the term “non-Steiner-like” for other types of gen-
erators. We note that in [6] the term “Steiner-like” is used essentially for all (bounded)
open sets. Our goal is to give a pointwise proof of a tube formula for self-similar fractals
with non-Steiner-like generators of the above type and illustrate it on several examples.

2. The Tube Formula for Self-Similar Tilings

Let

F =

J⋃

j=1

ϕj(F ) =: Φ(F ) ⊂ Rd

be a self-similar fractal, where ϕj : Rd → Rd are similitudes with scaling ratios 0 < rj < 1,
j = 1, . . . , J . Let C := [F ] be the convex hull of the fractal (for which we assume
dimC = d). We assume that the system {ϕj} satisfies the so-called “tileset condition”
of [8]: The open set condition with intC a feasible open set. Additionally we assume the
non-triviality condition of [8]:

intC * Φ(C) =

J⋃

j=1

ϕj(C).

This condition amounts to intF = ∅, [8, Proposition 2.11].
Now define T1 = int(C \ Φ(C)) and its iterates Tn = Φn−1(T1), n = 2, 3, . . . (see [7]).

The tiling of the self-similar system is given by

T := {Tn}∞n=1

and the volume of the inner ε-neighborhood of the tiling T is defined by

VT (ε) :=
∞∑

n=1

VTn
(ε),

where VTn
(ε) is the volume of the inner ε-neighborhood of Tn.
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To state the tube formula we need some additional assumptions and definitions.
Assume that T1 is the union of finitely many (connected) components, T1 = G1∪· · ·∪GQ,
called the generators of the tiling. In the original work of Lapidus-Pearse (L-P) they as-
sume the generators to be Steiner-like in the following sense:

A bounded, open set G ⊂ Rd is called (monophase) Steiner-like if the volume VG(ε) of
the inner ε-neighborhood of G admits an expression of the form

VG(ε) =

d−1∑

i=0

κi(G)ε
d−i, for ε ≤ g,

where g denotes the inradius of G, i.e., supremum of the radii of the balls contained in G.
For ε > g we have VG(ε) = volume(G) which is denoted by −κd(G), the negative sign

being conventional [5].
To be precise, L-P consider also the “pluriphase” case, where VG(ε) is given piecewise

by different polynomials in the region 0 < ε < g. But this generalization brings no
essential complication.

Lapidus-Pearse introduce the following “scaling ζ-function”:

Definition 2.1. The scaling ζ-function of the self-similar fractal is defined by

ζ(s) =

∞∑

k=0

∑

w∈Wk

rsw,

whereWk is the set of words w = w1w2 · · ·wk of length k (with letters from {1, 2, . . . , J})
and rw = rw1

rw2
. . . rwk

.

The above series can be shown to converge for Re(s) > D, where D is the similarity

dimension of the system (i.e., the unique real root of the Moran equation 1−∑J
j=1 r

s
j = 0

which coincides with the Minkowski and Hausdorff dimensions if the open-set condition
holds). A simple calculation shows that ζ(s) can be expressed as [4, Theorem 2.4]

ζ(s) =
1

1−∑J
j=1 r

s
j

for Re(s) > D. (1)

ζ(s) can then be meromorphically extended to the whole complex plane. We will denote
this extension also by ζ(s).

Definition 2.2. The set D := {ω ∈ C | ζ(s) has a pole at ω} is called the set of complex
dimensions of the self-similar fractal.

Lapidus-Pearse define a second type of “ζ-function” associated with the tiling and
related to the geometry of the (monophase) Steiner-like generators. As the case of multiple
generators does not bring additional complications, we express their notion of tubular
ζ-functions and their tube formula for the case of a single generator G.
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DENİZ et al.

Definition 2.3. The tubular ζ-function ζT (s, ε) associated with the generator G is
defined by

ζT (s, ε) := ζ(s)εd−s
d∑

i=0

gs−i

s− i
κi(G).

The formula of Lapidus-Pearse for VT (ε) now reads as follows:

Theorem 2.1 (Tube formula for tilings of self-similar fractals, [5]).

VT (ε) =
∑

ω∈DT

res(ζT (s, ε);ω), (2)

where DT = D ∪ {0, 1, . . . , d− 1}.
Remark 2.1. A distributional proof for this formula is given in [5] that also holds for
fractal sprays which is a more general concept than self-similar fractals. It is shown in [2]
that the above formula holds pointwise for self-similar as well as graph-directed fractals.
Pointwise proofs were also given in [3] and [6].

The aim of this work is to extend the Lapidus-Pearse tube formula to the case where
the generators are non-Steiner-like in the sense below. The paper [6] deals with the
same question where the authors use other conditions on the generators and a different
terminology.

We shall assume the volume VG(ε) of the inner ε-neighborhood of a generator G to be
a continuous function of the following form:

VG(ε) =






d−1∑

i=0

κi(G)ε
d−i for 0 < ε < h

λG(ε) for h ≤ ε ≤ g

−κd(G) for ε > g,

(3)

where λG is a piecewise continuously differentiable function on [h, g] (g denotes the inra-
dius throughout). Vol(G) is denoted again by −κd(G).

For additional simplicity we also assume in our setting that there is a single generator
G. (In the case of multiple generators we have to apply the formula to each generator
separately and add them up.)

Remark 2.2. For any (not self-intersecting) polygon P in the plane, the volume of the
inner ε-neighborhood of P is given by a quadratic polynomial in ε for sufficiently small ε.
(A polygon has finitely many sides.) Let the polygon P have the vertices A1, A2, . . . , An

(with An+1 = A1) in a certain successive ordering. Denote the length of the edge AiAi+1

with ai and the inner angle at Ai by αi (i = 1, 2, . . . , n), see Fig.1. Then it can be shown
that for small ε

VP (ε) =

(
n∑

i=1

ai

)
ε−

(
n∑

i=1

δi

)
ε2,
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a1 a2

a3

A1

A2

A3

An

an−1

an
α1

α2

α3

αn−1

αn

Figure 1. Polygon with n vertices.

where

δi =





cot αi

2 for 0 < αi < π

π
2 − αi

2 for π ≤ α < 2π.


1

Figure 2. Maps of Example 2.3.
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Figure 3. The attractor of Example 2.3.

Example 2.3. Consider the iterated function system Φ = {ϕj}24j=1 on R2 with scaling

ratios 1
6 as indicated in Figure 2. The associated self-similar fractal is shown in Figure 3.

This system satisfies the Pearse-Winter condition. The generator is a non-convex polygon
G (with ai = 1, i = 1, 2, . . . , 24; αi =

π
3 for odd i and αi =

4π
3 for even i), see Figure 4.

In Figure 5 the inner 1√
3
-neighborhood of G is shown.

By the formula above we have VG(ε) = 12ε− (6
√
3− π)ε2 for small ε. More precisely

one can compute

VG(ε) =






12ε− (6
√
3− π)ε2 for 0 < ε < 1√

3

λG(ε) for 1√
3
≤ ε ≤ 1

3
√
3 for ε > 1,

where λG(ε) = 3
√
3

2 + 3
2

√
4ε2 − 1 + (2π − 6 arccos 1

2ε )ε
2. (Note that κ0(G) = π − 6

√
3,

κ1(G) = 12 and κ2(G) = −3
√
3.) It can be checked that VG(ε) is continuously differen-

tiable on [0,∞) (see Figure 6).

We still use the notion of scaling ζ-function and the associated complex dimensions in
the sense of L-P. Since the tubular ζ-function depends on the geometry of the generators,
we want to define a new tubular ζ-function taking into account the type of generators
satisfying (3).
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π
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Figure 4. Generator G
of Example 2.3.

1√
3

1

Figure 5. The inner
ε = 1√

3
-neighborhood of

G.

1
√

3

1

3
√

3

0

ε
1
√

3

1

12

0

ε

Figure 6. The graph of VG(ε) (left) and V
′
G(ε) (right).

Definition 2.4. The tubular ζ-function ζT (s, ε) associated with the generator G satis-
fying (3) is defined by

ζT (s, ε) := ζ(s)εd−s

(
d−1∑

i=0

hs−i

s− i
κi(G) +

gs−d

s− d
κd(G) + Λ(s)

)
,

where Λ(s) is an entire function given by

Λ(s) =

∫ g

h

us−d−1λG(u)du. (4)
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Now we can state our version of the L-P tube formula for generators satisfying condition
(3):

Theorem 2.2 (Tube formula for tilings of self-similar fractals with non-Steiner-like gen-
erators).

VT (ε) =
∑

ω∈DT

res(ζT (s, ε);ω) for ε < h,

where DT = D ∪ {0, 1, . . . , d− 1}.

Remark 2.4. We note that Theorem 2.2 (as well as Theorem 2.1) holds for the more
general situation of [8] and even for more general sprays [4]. The specific Pearse-Winter
condition (that the boundary of the convex hull of the fractal be a subset of the fractal)
is not needed. But if this beautiful condition holds, then the tube formula yields a
formula for the volume of the genuine ε-neighborhood of the fractal as explained in the
introduction.

Remark 2.5. Note that d is not included in the set DT . The reason of this exclusion
will be clear from the proof of the theorem.

Lemma 2.3. Let the volume of the inner ε-neighborhood of a generator G ⊂ R2 be given
as in (3):

VG(ε) =





κ0ε
2 + κ1ε for 0 < ε < h

λG(ε) for h ≤ ε ≤ g

−κ2 for ε > g.

We assume additionally λG(ε) ∈ C3[h, g]. Then, using the notation

∆i(x) = jump of the i-th derivative of VG at x

= V i
G(x+) − V i

G(x−),

the tubular ζ-function

ζT (s, ε) = ζ(s)ε2−s

(
hs

s
κ0 +

hs−1

s− 1
κ1 +

gs−2

s− 2
κ2 +

∫ g

h

us−3λG(u)du

)

can be expressed as follows:

ζT (s, ε) = ζ(s)ε2−s

[
1

(s− 1)(s− 2)

(
∆1(h)hs−1 +∆1(g)gs−1

)

− 1

s(s− 1)(s− 2)

(
∆2(h)hs +∆2(g)gs +

∫ g

h

usλ′′′G (u)du

)]

Proof. Apply integration by parts. �

Remark 2.6. Similar formulas can be obtained if λG(ε) is piecewise C3 and also for
higher dimensions.
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Example 2.3 (continued). The scaling ζ-function of the system Φ of Example 2.3
is given by

ζ(s) =
1

1−
24∑

j=1

rsj

=
1

1− 24(16 )
s
.

The set of complex dimensions is D = {D + inp | n ∈ Z} where D = log6 24 and
p = 2π

log 6 .

The tubular ζ-function is given by

ζT (s, ε) = ζ(s)ε2−s

(
hs

s
(π − 6

√
3) +

hs−1

s− 1
12 +

gs−2

s− 2
(−3

√
3) + Λ(s)

)
.

Applying the above lemma we obtain:

ζT (s, ε) = ζ(s)ε2−s −4
√
3

s(s− 1)(s− 2)

(
1 +

√
3

∫ 1

1√
3

us−1

(4u2 − 1)3/2
du

)
.

Thus by Theorem 2.2 we get

VT (ε) =
∑

ω∈D∪{0,1}
res(ζT (s, ε);ω)

= res(ζT (s, ε); 0) + res(ζT (s, ε); 1) +
∑

n∈Z

res(ζT (s, ε);D + inp)
=

6
√
3− π

23
ε2 − 4ε

− 4
√
3

log 6

∑

n∈Z

ε2−D−inp
(D + inp)(D − 1 + inp)(D − 2 + inp) (1 +√

3

∫ 1

1√
3

uD−1+inp
(4u2 − 1)3/2

du

)
.

3. Proof of Theorem 2.2

Our goal is to find a closed expression for VT (ε) =
∞∑

n=1

VTn
(ε) as stated in Theorem 2.2.

As we assumed a single generator for simplicity, the volume of the inner ε-tube of the
tiling T is, by the tileset condition, the sum of the volumes of the inner ε-neighborhoods
of all the scaled copies of G appearing in the tiling:

VT (ε) =
∞∑

k=0

∑

w∈Wk

VrwG(ε),
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where Wk and rw are as in Definition 2.1 and rwG is a copy of G scaled by rw. A simple
calculation shows that, if VG(ε) is given as in (3), then

VxG(ε) =






d−1∑

j=0

κj(G)x
jεd−j for ε < xh

xdλG(
ε
x) for xh ≤ ε ≤ xg

−xdκd(G) for ε > xg.

It will be more convenient for us to regard VxG(ε) as a two-variable function of x and ε:

VG(x, ε) := VxG(ε) =





−xdκd(G) for 0 < x < ε
g

xdλG(
ε
x ) for ε

g ≤ x ≤ ε
h

d−1∑

j=0

κj(G)x
jεd−j for x > ε

h .

Recall that the Mellin transform M[f ; s] of a function f : (0,∞) → R is given by

M[f ; s] = f̃(s) =

∫ ∞

0

xs−1f(x)dx.

For fixed ε, we take the Mellin transform of VG(x, ε) as a function of x:

ṼG(s, ε) =

∫ ε
g

0

xs−1(−xdκd(G))dx +

∫ ε
h

ε
g

xs−1xdλG(
ε

x
)dx

+

∫ ∞

ε
h

xs−1




d−1∑

j=0

κj(G)x
jεd−j



 dx

= −εs+d


g

−s−d

s+ d
κd(G) +

d−1∑

j=0

h−s−j

s+ j
κj(G)


 +

∫ g

h

εs+d u−s−d−1 λG(u)du,

for −d < Re(s) < 1− d. (In the second integral we made the change of variables ε
x → u.)

ṼG(s, ε) = −εs+d


g

−s−d

s+ d
κd(G) +

d−1∑

j=0

h−s−j

s+ j
κj(G) −

∫ g

h

u−s−d−1λG(u)du




= −εs+d


g

−s−d

s+ d
κd(G) +

d−1∑

j=0

h−s−j

s+ j
κj(G) − ΛG(−s)


 , (5)

where Λ(s) =

∫ g

h

us−d−1λG(u)du.
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Since VG(x, ε) is piecewise continuously differentiable as a function of x and therefore

of bounded variation, we can take the inverse Mellin transform of ṼG(s, ε) to obtain
([9, Theorem 28, p.46])

VG(x, ε) = M−1
[
ṼG(s, ε);x

]
=

1

2πi ∫ −c+i∞
−c−i∞ x−sṼG(s, ε)ds,

where d− 1 < c < d. For an additional purpose below, we choose c such that D < c < d.
(Note that the non-triviality condition implies D < d, [8, Corollary 2.13].)

We shall now insert the above expression for VG(x, ε) into the sum

VT (ε) =
∞∑

k=0

∑

w∈Wk

VrwG(ε),

but for the ease of the computation, we order the scaling coefficients rw into a sequence
{xm}∞m=1:

VT (ε) :=
∞∑

m=1

VxmG(ε),

so that we get

VT (ε) =
∞∑

m=1

1

2πi ∫ −c+i∞
−c−i∞ x−s

m ṼG(s, ε)ds. (6)

Changing the order of the sum and the integral (a detailed verification of this can be
found in [3, p.12-15]), we obtain

VT (ε) =
1

2πi ∫ −c+i∞
−c−i∞ ∞∑

m=1

x−s
m ṼG(s, ε)ds

=
1

2πi ∫ −c+i∞
−c−i∞ ζ(−s)ṼG(s, ε)ds by Def.2.1.

Changing the variable of the integral by s′ = −s we find

VT (ε) =
1

2πi ∫ c+i∞
c−i∞ ζ(s)ṼG(−s, ε)ds.

By (5) we get

VT (ε) =
1

2πi ∫ c+i∞
c−i∞ ζ(s)εd−s



 gs−d

s− d
κd(G) +

d−1∑

j=0

hs−j

s− j
κj(G) + Λ(s)



 ds

=
1

2πi ∫ c+i∞
c−i∞ ζT (s, ε)ds.

The poles of ζ(s) are contained in a horizontally bounded strip Dℓ ≤ Re(s) ≤ D, for
some real number Dℓ, which can be assumed to be negative also (see [4, Theorem. 2.17]).
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DENİZ et al.

Let cℓ be chosen such that

i) cℓ < Dℓ (7)

ii) ζ(s) is bounded for Re(s) ≤ cℓ. (8)

(The second property is possible because |ζ(s)| → 0 as Re(s) → −∞.)

d

Dcℓ c

0

Dℓ

c− i∞
c+ i∞

cℓ − i∞
cℓ + i∞

Figure 7. All the poles of ζT are on the shaded strip.

We now proceed to show that (see Fig.7)

1

2πi ∫ c+i∞
c−i∞ ζT (s, ε)ds =

1

2πi ∫ cℓ+i∞
cℓ−i∞ ζT (s, ε)ds+

∑

ω∈D∪{0,1,...,d−1}
res(ζτ (s, ε);ω) (9)

and

1

2πi ∫ cℓ+i∞
cℓ−i∞ ζT (s, ε)ds = 0 for ε < h. (10)

Clearly, this will complete the proof of the theorem.
We begin with (9): First note that there exists a positive increasing sequence {τn}∞n=1

with {τn} → ∞ such that

|ζ(σ ± iτn)| ≤M for cℓ ≤ σ ≤ d and for all n, (11)

where M is some positive constant. (see [4, Theorem 3.26].)
Denote the rectangle with the corners c− iτn, c+ iτn, cℓ + iτn, cℓ − iτn (and with the

edges L1,n, L2,n, L3,n, L4,n) by Sn (see Figure 8). By the residue theorem

1

2πi ∫∂Sn

ζT (s, ε)ds =
∑

ω∈(D∪{0,1,...,d−1})∩Sn

res(ζT (s, ε);ω).

(Note that d lies outside the rectangles Sn and does not contribute to the above sum.)
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L1,n

L2,n

L3,n

L4,n

cℓ c

c− iτn
c+ iτn

cℓ − iτn
cℓ + iτn

Sn

d

Figure 8. The rectangle Sn.

Therefore

1

2πi (∫L1,n

ζT (s, ε)ds+

∫

L2,n

ζT (s, ε)ds+

∫

L3,n

ζT (s, ε)ds+

∫

L4,n

ζT (s, ε)ds

)
(12)

=
∑

ω∈(D∪{0,1,...,d−1})∩Sn

res(ζT (s, ε);ω).

Let us consider first the integral over L2,n. For s ∈ L2,n we have s = σ+iτn, cℓ ≤ σ ≤ c.

|ζT (s, ε)| =

∣∣∣∣∣∣
ζ(s)εd−s




d−1∑

j=0

hs−j

s− j
κj(G) +

gs−d

s− d
κd(G) + Λ(s)




∣∣∣∣∣∣

≤ Mεd−σ




d−1∑

j=0

hσ−j

|σ + iτn − j| |κj(G)|+
gσ−d

|σ + iτn − d| |κd(G)|+ |Λ(s)|




≤ Mεd−σ




d−1∑

j=0

hσ−j |κj(G)|
τn

+
gσ−d|κd(G)|

τn


 +Mεd−σ|Λ(s)|

≤ MM ′

τn
+Mεd−σ|Λ(s)|,

where M ′ = max
cℓ≤σ≤c

{
εd−σ

(∑d−1
j=0 h

σ−j |κj(G)| + gσ−d|κd(G)|
)}

, and we used (11) to

obtain the first inequality.
Now we consider the term Mεd−σ|Λ(s)|: Recall that

Λ(s) =

∫ g

h

us−d−1λG(u)du.
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Integrating by parts,

Λ(s) =
us−d

s− d
λG(u)

∣∣∣∣
g

h

−
∫ g

h

us−d

s− d
λ′G(u)du, (13)

whence we can write εd−σ|Λ(s)| ≤ M ′′

|s−d| ≤ M ′′

τn
by the assumption of continuity and

piecewise continuous differentiability of λG(u) and cℓ ≤ σ ≤ c. Thus we obtain

|ζT (s, ε)| ≤
MM ′

τn
+
MM ′′

τn
.

Therefore,

∣∣∣∣∣

∫

L2,n

ζT (s, ε) ds

∣∣∣∣∣ ≤
M(M ′ +M ′′)

τn
(c− cℓ) → 0 for n→ ∞,

since τn → ∞ as n→ ∞.
Similarly the integral over L4,n tends to 0 as n → ∞. Thus letting n → ∞ in (12)

gives (9).
Now, we will show (10): Let Ln be the line segment Ln(t) = cℓ + it, −n ≤ t ≤ n; Cn

be the semicircle Cn(t) = cℓ +neit, π
2 ≤ t ≤ 3π

2 and Γn = Ln+Cn (see Figure 9). By the
choice of cℓ, ζT (s, ε) is analytic on and inside Γn and therefore

∫

Ln

ζT (s, ε)ds = −
∫

Cn

ζT (s, ε)ds.

Ln

cℓ

cℓ − in
cℓ + in

Cn

Figure 9. The contour Γn = Ln + Cn.
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We will be done when we show that the right-hand side tends to 0 as n → ∞. Using
the parametrization of Cn, we obtain

∣∣∣∣
∫

Cn

ζT (s, ε)ds

∣∣∣∣ =

∣∣∣∣∣∣

∫ 3π
2

π
2

ζ(cℓ + neit)εd−cℓ−neit d−1∑

j=0

hcℓ+neit−j

cℓ + neit − j
κj(G)

+
gcℓ+neit−d

cℓ + neit − d
κd(G) + Λ(cℓ + neit)) ineitdt∣∣∣∣∣ .

By condition (8), ζ(s) is bounded for Re(s) ≤ cℓ, say |ζ(s)| ≤ K:

∣∣∣∣
∫

Cn

ζT (s, ε)ds

∣∣∣∣ ≤ Kεd−cℓ




d−1∑

j=0

nhcℓ−j

n− |cℓ − j| |κj(G)|
∫ 3π

2

π
2

(
h

ε

)n cos t

dt

+
n gcℓ−d

n− |cℓ − d| |κd(G)|
∫ 3π

2

π
2

(g
ε

)n cos t

dt

+n

∫ 3π
2

π
2

∣∣Λ(cℓ + neit)∣∣ ε−n cos tdt

)
.

Let us denote the right-hand side by I1 + I2 + I3. We have

I1 = Kεd−cℓ

d−1∑

j=0

nhcℓ−j

n− |cℓ − j| |κj(G)|
∫ 3π

2

π
2

(
h

ε

)n cos t

dt ≤ K1

∫ 3π
2

π
2

(
h

ε

)n cos t

dt,

where K1 is some constant.
The well-known Jordan Lemma [1] states that

lim
n→∞

∫ 3π
2

π
2

an cos tdt = 0,

for any fixed a > 1. Since we assumed ε < h for Theorem 2.2, we thus get I1 → 0 as
n→ ∞.

Similarly I2 → 0 as n→ ∞, since ε < g as h < g.
To deal with the term I3, recall that by (13)

Λ(s) =
us−d

s− d
λG(u)

∣∣∣∣
g

h

−
∫ g

h

us−d

s− d
λ′G(u)du.

By continuity and piecewise continuous differentiability of λG, we can write

|Λ(s)| ≤ 1

|s− d|
(
K1 g

Re(s)−d +K2 h
Re(s)−d

)
+

1

|s− d|

∫ g

h

uRe(s)−dK3 du

with some constants K1,K2,K3.
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For s = cℓ + neit, (π2 ≤ t ≤ 3π
2 ) we have Re(s) = cℓ + n cos t < 0 and uRe(s)−d is a

decreasing function on [h, g]. Thus,

|Λ(s)| ≤ K4
1

|s− d|h
Re(s)−d +K3

1

|s− d| (g − h)hRe(s)−d

≤ K5
1

|cℓ + neit − d|h
cℓ+n cos t−d

≤ K6
hn cos t

n− |cℓ − d| . (14)

Now we show that I3 → 0 as n→ ∞. Since

I3 = n

∫ 3π
2

π
2

∣∣Λ
(
cℓ + neit)∣∣ ε−n cos tdt,

using (14)

I3 ≤ K6 n

n− |cℓ − d|

∫ 3π
2

π
2

(
h

ε

)n cos t

dt → 0 as n→ ∞,

by Jordan Lemma. Hence the claim (10) is verified and thus the proof of Theorem 2.2 is
completed.

1

Figure 10. Maps of Example 4.1. Figure 11. The attrac-
tor of Example 4.1.
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4. Further Examples

4.1. An example with non-simply connected generator

Consider the iterated function system Φ = {ϕj}17j=1 on R2 with scaling ratios 1
5 as

indicated in Figure 10. The associated self-similar fractal is shown in Figure 11. This

h g

7 +
π

4

8

0

ε

h g

16

0

ε

Figure 12. The graph of VG(ε) (left) and V
′
G(ε) (right) of the generator

G of Example 4.1.

system satisfies the Pearse-Winter condition. The generator G is a non-simply connected
set, where the volume of the inner ε-tube is given by the following function:

VG(ε) =






16ε+ (π − 4)ε2 for 0 < ε < h

λG(ε) for h ≤ ε ≤ g

8 for ε > g,

where

λG(ε) = 4 + 8ε+ (π − 4)ε2 + 4(1− ε)
√
2ε− 1− 4ε2 arctan

(√
2ε− 1

1− ε

)
,

and h = 1
2 , g = 2−

√
2. Note that κ0(G) = π − 4, κ1(G) = 16, κ2(G) = −8. We remark

that the function VG(ε) is not differentiable (at ε = 1
2 ) (see Figure 12). The scaling

ζ-function of the system Φ is given by

ζ(s) =
1

1−∑17
j=1 r

s
j

=
1

1− 17
(
1
5

)s .

The set of complex dimensions isD = {D + inp | n ∈ Z}, whereD = log5 17 and p =
2π
log 5 .

The tubular ζ-function is given by

ζT (s, ε) = ζ(s)ε2−s

(
hs

s
(π − 4) +

hs−1

s− 1
16 +

gs−2

s− 2
(−8) + Λ(s)

)
,
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where Λ(s) is as in (4).
Applying Theorem 2.2 we get

VT (ε) =
∑

ω∈D∪{0,1}
res(ζT (s, ε);ω)

= res(ζT (s, ε); 0) + res(ζT (s, ε); 1) +
∑

n∈Z

res(ζT (s, ε);D + inp)
=

4− π

16
ε2 − 20

3
ε+

1

log 5

∑

n∈Z

ε2−D−inp( hD+inp
D + inp (π − 4) +

hD−1−inp
D − 1− inp 16+

+
gD−2−inp
D − 2− inp (−8) + Λ(D + inp)) .

4.2. A non-lattice example

1

φ
+

1

2

1

φ

φ φ

1

1

1

1

φ
+ 1

1 +
φ

2

1

Figure 13. Maps of Example 4.2. Figure 14. The attrac-
tor of Example 4.2.

A self-similar fractal F with scaling ratios rj , (j = 1, . . . , J) is called of lattice type

if the additive subgroup
J∑

j=1

(log rj)Z ⊂ R is discrete and otherwise of non-lattice type.
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Consider the iterated function system Ψ = {ψ}12j=1 on R2 with scaling ratios

r1 =
1

3
(

1
φ + 1

2

) =
2φ

3φ+ 6
,

r2 =

1
φ

3
(

1
φ + 1

2

) =
2

3φ+ 6
, (φ being the golden ratio)

and r3 = 1
3 as indicated in Figure 13. The associated self-similar fractal is shown in

Figure 14. This system satisfies the Pearse-Winter condition. The generator is a non-
convex set, with the following volume function for the inner ε-tube:

VG(ε) =






6ε−
(

4
√
4φ+3

2φ−1 − π
5

)
ε2 for 0 < ε < h

λG(ε) for h ≤ ε ≤ g

1
2
(2φ−1)

√
4φ+3

φ+1 for ε > g,

where

λG(ε) =






6ε−
(

4
√
4φ+3

2φ−1 − π
5

)
ε2 − 2ε2 arccos

(
φ−1
2φε

)
+ φ−1

φ

√
ε2 − 2−φ

4φ+4 , if h ≤ ε < h′

1
2
(φ−2)

√
4φ+3

φ+1 + 2ε
√
2φ+ 1− 2ε2 8φ+5√

4φ+3
, if h′ ≤ ε ≤ g,

and h = φ−1
2φ , h′ = φ−1√

4φ+3
and g =

√
4φ+3
4φ+2 .

h1 h2
g

(2φ−1)
√

4φ+3
2φ+2

0

ε

h h
′

h1 h2
g0

ε

h h
′

Figure 15. The graph of VG(ε) (left) and V
′
G(ε) (right) of the generator

G of Example 4.2.
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We remark that the function VG(ε) is differentiable (see Figure 15). The scaling
ζ-function of the system is given by

ζ(s) =
1

1−
(

2φ
3φ+6

)s
− 6

(
2

3φ+6

)s
− 5

(
1
3

)s .

The dimension D of this example is approximately 1.8689. As this example is of non-
lattice type, we can not exactly compute the complex dimensions [4, p.66], but we give
several approximations of the set of the complex dimensions in Figure 17 along the lines
of computation of [4].

The tubular ζ-function is given by

ζT (s, ε) = ζ(s)ε2−s

(
hs

s

(
4
√
4φ+ 3

2φ− 1
− π

5

)
+
hs−1

s− 1
6 +

gs−2

s− 2
k + Λ(s)

)
,

where k = 1
2
(2φ−1)

√
4φ+3

φ+1 and Λ(s) is as in (4).

Appendix

To determine the complex dimensions of a self-similar fractal, we have to solve the
Moran equation in the complex domain. As it is not possible to solve this equation in the
non-lattice case exactly, we can only approximate solutions. We want to explain briefly
the approach we used to plot the approximate complex dimensions for the last example.
The Moran equation in this case is

rs1 + 6rs2 + 5rs3 = 1,

where r1 = 2φ
3φ+6 , r2 = 2

3φ+6 , r3 = 1
3 .

We can rewrite this equation as follows:

es log r1 + 6es log r2 + 5es log r3 = 1

e−s log 3(− log
3
r1) + 6e−s log 3(− log

3
r2) + 5e−s log 3 = 1.

Now, we choose some appropriate rational approximations to log3 r1 and log3 r2, then
solve the resulting polynomial equation and find approximate complex dimensions. We
used for the pair (− log3 r1,− log3 r2) the following pairs of approximations:

(
10

9
,
3

2

)
,

(
11

10
,
17

11

)
,

(
65

59
,
20

13

)
,

(
76

69
,
97

63

)
.

To detail the first case, the pair
(
10
9 ,

3
2

)
leads to the equation

e−(s log 3)( 10

9 ) + 6e−s log 3( 3

2 ) + 5e−s log 3 = 1.

Setting z = e−
s
18

log 3, we get the polynomial equation

z20 + 6z27 + 5z18 = 1.
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0

p

2
≈ 51.4

-
p

2

−100

100

200

−200

−p

p

D ≈ 1.8843

Figure 16. Approximate complex dimensions of Example 4.2 for
(− log3 r1,− log3 r2) ≈

(
10
9 ,

3
2

)
.

We solved this equation using Maple. There are 27 distinct roots, one of which is real. In
terms of these roots, we can express the approximate complex dimensions as

s = −18 log z

log 3
+

18

log 3
2πin, n ∈ Z.

The real root z ≈ 0.8913 gives for n = 0 the approximate similarity dimensionD ≈ 1.8843.
The pairwise-conjugate 13 root pairs give rise to 13 vertical lines, so that all approx-

imate complex dimensions are located on 14 vertical lines with a period 18
log 32πi (see

Figure 16).
The other approximations lead to the polynomials

z121 + 6z170 + 5z110 = 1

z845 + 6z1180 + 5z767 = 1

z4788 + 6z6693 + 5z4347 = 1

and the corresponding approximate complex dimensions are plotted in Figure 17.
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p

p

p

10

p
100

D ≈ 1.8843 D ≈ 1.8668 D ≈ 1.8694 D ≈ 1.8689

(− log
3
r1,− log

3
r2) ≈

(

10

9
, 3

2

)

(− log
3
r1,− log

3
r2) ≈

(

11

10
, 17

11

)

(− log
3
r1,− log

3
r2) ≈

(

65

59
, 20

13

)

(− log
3
r1,− log

3
r2) ≈

(

76

69
, 97

63

)

Figure 17. Consecutive approximations of complex dimensions of Ex-
ample 4.2.
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