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Crowell’s state space is connected

Daniel Selahi Durusoy

Abstract. We study the set of Crowell states for alternating knot projections and
show that for prime alternating knots the space of states for a reduced projection is
connected, a result similar to that for Kauffman states. As an application we give
a new proof of a result of Ozsváth and Szabó characterizing (2, 2n + 1) torus knots
among alternating knots.

1. Introduction

Some of the many definitions of the Alexander polynomial of a knot is stated through
state sums. Kauffman has described and studied a state sum model for the Alexander
polynomial in great detail [Kau83]. In an earlier paper Crowell has described another state
sum model for the Alexander polynomial for the subclass of alternating knots ([Cro59],
Theorem 2.12).

In the next section we will recall the definition of Crowell states and examine some of
their properties. In Section 3 we will prove that

Theorem 1.1. If K is an alternating prime knot and D is a reduced knot diagram for

K, then any two states differ by a finite sequence of terminal edge exchanges.

This theorem is similar in nature to the Clock Theorem of Kauffman [Kau83] which
states that any two Kauffman states differ by a finite sequence of clockwise and counter-
clockwise moves, which was also proven in the language of graphs in section 4 of [GL86].
This work is independent of those mentioned because of the simple reason that Kauff-
man states and Crowell states do not correspond to each other in any natural way as
observed from the fact that the space of Crowell states do not form a lattice in general
(see Proposition 2.6).

In section 4, as an application we will give an alternative proof that (2, 2n+ 1) torus
knots are characterized by their Alexander polynomials among alternating knots, which
was originally proven by Ozsváth and Szabó (Proposition 4.1 in [OS05]).

2. A state model

In this section we will review the definition of the state sum model for alternating links
given by Crowell [Cro59] and investigate some properties of the states.
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Crowell’s state space is connected

Given a knot K and an oriented alternating diagramD ofK with n crossings we obtain
a weighted labeled directed planar graph G(D) as follows: replace a small neighborhood
of each crossing by a degree 4 vertex according to the following figure (k is the vertex
label):

1
k

-treplace

by

knot

orientation

Figure 1. From a knot diagram to a directed graph.

Proposition 2.1. This definition orients all edges and these orientations are compatible

with orientations coming from a checkerboard coloring of the regions in the complement

of D.

Proof. Each edge gets an orientation since while traveling around a region the strands
traveled alternate between under strand and over strand. Hence at each crossing if an
edge is coming in, the boundary of the region will continue along the over strand, which
becomes an under strand at its other end, hence we get an orientation on that edge as well,
consistent with the previous edge. These orientations are compatible with a checkerboard
coloring since crossing a region to another across an edge we get opposite orientations in
the plane. �

Choose a vertex v0 of G(D), called the root. Directed paths starting at v0 that don’t
contain cycles will be called rooted simple paths. Trees with edges oriented away from v0
will be called rooted trees. Spanning rooted trees will be called states. Let Tr(v0) be the
space of states and w(T ) be the product of weights of all edges in a state T . According
to [Cro59, Theorem 2.12] we get the renormalized Alexander polynomial as a sum of
monomials corresponding to each state by

∆K(t) = (−t)m ·
∑

T∈Tr(v0)

w(T ) (1)

where m is chosen so that the term with the least power of t is a positive constant.

Proposition 2.2. For any vertex v, there is a rooted simple path from v0 to v in G(D).

Proof. Since K is a knot, G(D) as an unoriented graph is connected. Pick an unoriented
path e1, e2, . . . , em starting at v0, ending at v. If ei is not oriented away from the root,
pick edges ei,1, ei,2, . . . ei,mi

that go around one of the two regions adjacent to ei. Due to
Proposition 2.1, we get compatible orientations on this sequence of edges. At the end we
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get a rooted path which might visit some vertices more than once. For each vertex that
is visited more than once, remove all edges between the first and last visits. �

Corollary 2.3. Any rooted tree T can be extended to a rooted spanning tree T̃ .

Proof. For any vertex v not in T , find a rooted simple path α from v0 to v using Propo-
sition 2.2. Add enough of the final segment of α to the current tree so that the union will
be connected without creating cycles. �

Proposition 2.4. Given a reduced alternating diagram for a prime knot, any edge in

G(D) except those ending at v0 appear as a teminal edge in at least one state.

Proof. Call the given edge e0 starting at vertex w0, ending at vertex w1. We will find a
rooted simple path from v0 to w0, add the edge e0, and extend this path into a rooted
spanning tree.

Use Proposition 2.2 to construct a rooted simple path Γ from v0 to w0. There are two
possible cases:
(a) Γ doesn’t go through w1: Do nothing extra.
(b) Γ goes through w1 before reaching w0: Adding e0 to Γ produces a cycle. To avoid
this problem we will go around as follows. Assume Γ contains an edge e′ going from v′ to
w1 and an edge e′′ going from w1 to v′′. We need to connect v′ to v′′ by a directed simple
path avoiding e′ and e′′. To achieve this, let R be the region bounded on two sides by
e′ and e′′ and R̂ be the union of regions adjacent to R along edges other than e′ and e′′.
Then starting at v′, following edges on the boundary of R̂ that are not on the boundary
of R, we get a directed path α ending at v′′. Since K is prime and D is reduced, this
new path α does not include e′ and e′′ since otherwise we could draw a separating circle
passing through the e′ or e′′ and another common edge of R and R̂. Replacing e′ and e′′

by α in Γ, we get a rooted path from v0 to w0 avoiding w1. It could include cycles, which
can be eliminated as in the proof of Proposition 2.2.

Next we need to extend the rooted simple path Γ∪e0 to a rooted spanning tree, keeping
e0 a terminal edge. Consider the two edges coming out from w1, call them e′1 and e′′1 ,
with terminal vertices w′

1 and w′′

1 . Using a similar argument as in the proof of case (b)

above, consider R being the region bounded by e0 and e′1, and R̂ the union of regions
adjacent to R except along e0 and e′1, and removing cycles we get a directed path β from
w0 to w′

1 avoiding w1. Starting at w′

1, add enough edges from the final segment of β so
that w′

1 is connected to a vertex in Γ ∪ e0 without creating a cycle. Do similarly for w′′

1 .
Now, use Corollary 2.3 to extend this rooted tree to a rooted spanning tree. During

this process e0 stays a terminal edge since adding e′1 or e′′1 would create a cycle. �

The state sum in Equation 1 resembles the state sum defined by Kauffman [Kau83].
Kauffman has studied an operation called a clock move (transposition) that transforms a
state to another that differs only at two crossings and showed that all states differ from
one another by a sequence of clock moves. With that in mind we define the following
operation for reduced alternating diagrams:
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Definition 2.1. A state T2 is obtained from a state T1 by a terminal edge exchange move
(edge exchange for short) if replacing a terminal edge in T1 by the other incoming edge
at the terminal vertex gives T2.

k
1

k
-tpositive

negative

Figure 2. Terminal edge exchange.

Proposition 2.5. At any terminal edge, an edge exchange gives a new state, except at

edges ending at a kink.

Proof. If there is a kink at v, there is a unique edge that connects to v in any spanning
tree, since the opposite edge is a loop. At any other vertex, it is easy to check that one
still gets a rooted spanning tree. �

Edge exchange gives a partial order on the set of states by defining the covering relation
of the partial order as T1 comes immediately before T2 if T2 is obtained from T1 by one
positive edge exchange.

Comparing these states with the black trees for Kauffman states, even though states
are rooted spanning trees in both models, in Kauffman states the orientations on the
edges are chosen after a spanning tree of the black graph is chosen, so the same edge can
inherit different orientations in different states. Furthermore, consider the graph whose
vertices are Crowell states and any two vertices are connected by an edge if there is a
terminal edge exchange that takes one state to the other. The following proposition shows
that edge exchanges do not correspond to clock moves under any bijection between the
Crowell and Kauffman states since Kauffman states form a distributive lattice [Kau83].

Proposition 2.6. The space of Crowell states is not a lattice in general with any choice

of a partial order compatible with terminal edge exchanges even for reduced alternating

diagrams for prime alternating knots.

Proof. Figure 3 illustrates the graph of Crowell states for the knot 76 in Rolfsen’s table.
Let us assume that there is a partial order compatible with this graph, i.e., an edge
between two states exist if one is an immediate successor of the other. Then any degree
one vertex is either a local maximum or a local minimum. Since this graph has three
degree 1 vertices and in a finite lattice there is only one local maximum and only one
local minimum, this particular graph can not be a lattice. �
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Figure 3. The knot 76, the chosen root, and its space of states.

3. Proof of Theorem 1.1

In this section we will assume that K is a prime knot and D is a reduced alternating
projection for K. Choose a root vertex v0 in G(D). We will provide an algorithm to go
from one rooted spanning tree T1 to another rooted spanning tree T2 through a sequence
of edge exchanges. We will label vertices v of G(D) with distinct integers.

An initial segment IS(v, T ) of a rooted spanning tree T is the sequence of vertices on
the unique rooted path from the root to v in T . For v 6= v0, let φ(v, T ) denote the vertex
that points to v through an edge not in T . Let Bel(v, T ) be a small neighborhood of the
set of vertices below v in T , i.e., those that can be reached from v via directed paths in
T , the edges between them (not necessarily in T ) and the elementary regions surrounded
by those edges. Let Bel1(w, T ) be the connected component of Bel(w, T ) containing the
successor of w in T with the smaller label. When the tree T is obvious from the context,
we will suppress T from these notations. The rooted meet of two rooted trees T1 and T2

is the connected component of the root in T1 ∩ T2 and will be denoted by T1 ∩r T2.

1 5

4

6 10

7

9 3

2 8
v0 w

v Bel(w)

φ(v)

Figure 4. The knot diagram D and a state T in G(D) marked by thick
edges, and the region Bel(w) for the vertex labeled by 5.
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In order to prove Theorem 1.1, we will show that for any given two states T1 and T2,
we can persistently enlarge T1 ∩r T2.

Lemma 3.1. Given a state T and a vertex w other than the root v0, if φ(w, T ) is not in

Bel(w, T ), then there is a sequence of edge exchanges that converts the incoming edge for

w into a terminal edge, removing edges only below w.

Lemma 3.2. Under the conditions of Lemma 3.1, there is a vertex w′ ∈ Bel(w, T ) with
φ(w′) /∈ Bel(w, T ).

w

φ(w)

root

IS(φ(w))

Bel1(w)

w′

φ(w′)

Bel(w′)

v0

Bel2(w)

Figure 5. Thick edges belong to the spanning tree T .

Proof of Lemma 3.2. Assume Bel(w) is nonempty. Given w, consider D ∩ ∂Bel1(w).
Since K is prime and D is reduced, ∂Bel1(w) is not a separating circle, hence there are at
least 4 intersections. Since the orientations of adjacent regions alternate, we get at least
two edges entering into Bel1(w).

Pick a vertex w′ among all terminal vertices of edges in G entering into Bel1(w) not
originating from w. This choice implies that φ(w′) /∈ Bel1(w). Furthermore the union
IS(w)∪{w → φ(w)}∪ IS(φ(w)) contains an unoriented circuit of edges and vertices that
separate Bel1(w) from Bel2(w) (see Figure 5), hence going from w′ to a vertex in Bel2(w)
would take at least two edge exchanges. We conclude that φ(w′) /∈ Bel2(w) as well. �

Proof of Lemma 3.1. If Bel(w) is empty, then w is already a terminal vertex. Otherwise,
we will use induction on the depth d of the tree Bel(w).

For d = 1, Bel(w) could contain up to two vertices. If there is only one vertex, it is a
terminal vertex and an edge exchange empties Bel(w). If there are two vertices, Bel(w)
has two components, which as in the proof of Lemma 3.2, are not adjacent to one another.

151



DURUSOY

Lemma 3.2 tells that an edge exchange at either vertex decreases the size of Bel(w), and
we are led to the case of one vertex.

Assume the hypothesis is true for all trees Bel(w) of depth d and less. If Bel(w)
has depth d + 1, use Lemma 3.2 to find a w′ with the property φ(w′) /∈ Bel(w), in
particular φ(w′) /∈ Bel(w′). Therefore by the induction hypothesis w′ becomes a terminal
vertex after a finite sequence of edge exchanges only removing edges in Bel(w′). Then
performing an edge exchange at w′ decreases the size of Bel(w). Hence repeating this
process w becomes a terminal vertex while only edges below w being removed throughout
the process. �

Proof of Theorem 1.1. Given two distinct rooted spanning trees T1 and T2, pick a vertex
w adjacent to T1 ∩r T2 along an edge in T2. Note that w 6= v0 since v0 ∈ T1 ∩r T2 and
once w is a terminal edge, after an edge exchange w will be connected to v0 along the
same rooted Hamiltonian path as in T2.

Let v1, v2 be the vertices that lead to w in T1 and T2 respectively. By definition,
v2 = φ(w, T1) and v2 ∈ T1 ∩r T2. Hence IS(φ(w, T1), T1) ⊂ T1 ∩r T2, but w /∈ T1 ∩r T2,
hence w /∈ IS(φ(w, T1), T1), which means φ(w, T1) /∈ Bel(w, T1).

Applying Lemma 3.1, we get a sequence of edge exchanges that ends in a state where w
is a terminal vertex without removing any edges from the rooted meet. Now perform an
edge exchange at w, this enlarges the rooted meet. Since the rooted meet only enlarges
during this process, in finitely many repetitions of this process we reach T2. �

4. An application to (2, 2n+ 1) torus knots

In this section we will provide a different proof of the following result originally proved
by Ozsváth and Szabó:

Theorem 4.1. The (2, 2n+1) torus knots are characterized among alternating knots by

the Alexander polynomial.

Proof. Let D be a reduced alternating projection for a knot K with Alexander polynomial
∆K(t) = 1 + (−t) + (−t)2 + ... + (−t)2n. Since all coefficients of powers of −t are +1,
each state has a different weight and ∆K(t) is not a product of two alternating knot
polynomials (cf. [OS05, Prop. 4.1]), hence K is prime.

Let T0 be the state with the least t power. Since K is prime and the fact that each
edge exchange changes the power of −t by ±1, using Theorem 1.1 we get a linear ordering
on the 2n + 1 states starting at T0, reaching each next state by exchanging an edge of
weight +1 with an edge of weight −t.

According to Proposition 2.5 and due to this linear order, T0 and the top state T2n

have only one terminal edge each, hence they have no branching, whereas intermediate
states have 2 terminal edges.

Since Proposition 2.4 tells that each edge v (except the two that point to v0) can be
extended to a state having v as a terminal edge, and since we can reach that state from
T0 by positive edge exchanges, we see that all edges in T0 have weight +1. We conclude
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that T0 has 2n edges since each edge of weight +1 is used only once in an edge exchange
and no new edges emerge with weight +1 as we go from T0 to T2n.

Edge orientations and weights do not depend on the choice of the root vertex, hence,
after moving the root from v0 to v1, we still get a space of states with the same properties,
in particular, there will be a new state T ′

0 containing a linear directed chain of 2n vertices
starting at v1, ending at v0. Hence we get a cycle of length 2n+ 1 of edges of weight +1.
Similarly, all remaining edges have weight −t, form a cycle and are used in T2n, except
the one pointing at the root.

v0 v1

Figure 6. Thick edges have weight −t. On the right, orientations at a
typical node.

This information tells us that if there is an incoming edge of weight −t at a vertex v,
the next edge of weight −t has to be on the same side of the cycle of +1 edges due to the
cyclic alternating orientation of edges at a vertex. Since these edges with weight −t form
a cycle as well, they have to go between consecutive vertices. This gives us the diagram
for the (2, 2n+ 1) torus knot. �
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