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Lectures on the equivalence of Heegaard Floer and
Seiberg–Witten Floer homologies

Çağatay Kutluhan

Abstract. This article gives a detailed account of the lectures delivered by the author
on the construction, in joint work with Yi-Jen Lee and Clifford H. Taubes, of an

isomorphism between Heegaard Floer and Seiberg–Witten Floer homologies of closed,

connected, and oriented 3-manifolds.

1. Introduction

Over the last three decades, many breakthrough ideas have emerged from gauge theory
and symplectic geometry with applications to topology. In the early 1980s, Donaldson
revolutionized our understanding of the smooth topology of 4-manifolds using solutions
of the anti-self-dual Yang–Mills equations [6]. In the late 1980s, Floer introduced the idea
of generalizing Morse homology to certain infinite dimensional spaces. In this vein, Floer
developed what came to be known as Lagrangian Floer homology [9] which associates to a
pair of transversally intersecting Lagrangian submanifolds inside a symplectic manifold a
relatively graded module. He also introduced an invariant of integer homology 3-spheres
from Yang–Mills gauge theory, called instanton Floer homology [8], which he conjectured
to be isomorphic to the Lagrangian Floer homology of the character varieties arising
from a Heegaard decomposition. A more general version of this conjecture is known as
the Atiyah–Floer Conjecture. Meanwhile, Donaldson introduced polynomial invariants
of smooth 4-manifolds [7]. Instanton Floer homology carries Donaldson’s invariants into
a topological quantum field theory framework. In general, a topological quantum field
theory (TQFT) in dimension n associates a module to every closed, oriented, and smooth
n-manifold, and to every compact, oriented, and smooth (n+ 1)-manifold with boundary
it assigns an element in the module associated to its boundary. These assignments are
subject to certain axioms laid out by Atiyah [1]. As a consequence of these axioms, a
TQFT associates to every closed, oriented, and smooth (n + 1)-manifold an element of
the ground ring. Even though the latter perspective has become useful in understanding
the structure of Donaldson’s invariants, these are still fairly hard to compute. This is why
Donaldson’s invariants were largely abandoned after the introduction of Seiberg–Witten
equations in the mid 1990s [29].
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Much like in Donaldson’s theory, solutions of the Seiberg–Witten equations are used to
define invariants of closed, oriented, and smooth 4-manifolds, called the Seiberg–Witten
invariants, and a TQFT-like structure exists within Seiberg–Witten gauge theory as well.
Namely, Seiberg–Witten Floer homology, developed by Kronheimer and Mrowka [17],
associates to a given closed, connected, oriented, and smooth 3-manifoldM three “graded”

Abelian groups denoted by HM ∗(M), ĤM ∗(M), and

̂

HM ∗(M). These are invariants of
smooth 3-manifolds, and they can be used to recapture, through homomorphisms induced
by cobordisms, the Seiberg–Witten invariants of closed, oriented, and smooth 4-manifolds.

Even though the Seiberg–Witten invariants are more user-friendly than Donaldson’s
invariants, these are also defined using geometric PDEs. Therefore, finding efficient ways
to compute these invariants has been a challenging task. Twelve years ago, in order to
give a differential topological description of the Seiberg–Witten invariants, and motivated
by the Atiyah–Floer Conjecture, Ozsváth and Szabó developed Heegaard Floer homology
[26, 27]. Heegaard Floer homology is an invariant of closed, connected, oriented, and
smooth 3-manifolds which appears as a version of Lagrangian Floer homology arising from
a Heegaard decomposition of the 3-manifold. Similar to Seiberg–Witten Floer homology,
Heegaard Floer homology of a closed, connected, oriented, and smooth 3-manifold M has
three flavors, denoted by HF∞(M), HF−(M), and HF +(M), and these are used to define
invariants of closed, oriented, and smooth 4-manifolds.

Despite their different origins, Heegaard Floer homology and Seiberg–Witten Floer
homology have the same formal properties—such as the existence of a module structure
over the ring Z[U ]⊗ ∧∗(H1(M ;Z)/torsion) and a long-exact sequence relating the three
flavors—and they yield identical results where they can both be calculated; for example,

HF∞(S3) ∼= Z[U,U−1] ∼= HM ∗(S
3), HF−(S3) ∼= Z[U ] ∼= ĤM ∗(S

3),

HF +(S3) ∼= Z[U,U−1]/UZ[U ] ∼=

̂

HM ∗(S
3).

Furthermore, the groups in each theory decompose into a direct sum over the set of
isomorphism classes of Spinc structures on M , which is a H2(M ;Z)-torsor. Ozsváth and
Szabó conjectured that these two invariants are in fact the same. Our main result settles
this conjecture:

Theorem 1.1 (Main Theorem in [18]). Let M be a closed, connected, and oriented
3-manifold and s be a Spinc structure on M . Then, there exists a commutative diagram

· · · −→ HF−(M, s) −→ HF∞(M, s) −→ HF +(M, s) −→ · · ·y y y
· · · −→ ĤM ∗(M, s, cb) −→ HM ∗(M, s, cb) −→

̂

HM ∗(M, s, cb) −→ · · ·
where the top and the bottom rows are the standard long-exact sequences for Heegaard
Floer homology and Seiberg–Witten Floer homology with balanced perturbations, while the
vertical arrows are isomorphisms that preserve the relative gradings and intertwine the
Z[U ]⊗ ∧∗(H1(M ;Z)/torsion)-module structures.
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The precise form of the conjectured relationship between Heegaard Floer and Seiberg–
Witten Floer homologies, as stated in the above theorem, was first presented by Lee in
[23]. Furthermore, she outlined a proof of the above theorem which essentially follows
the same line of thought described in this article. The main difference, and the technical
difficulty Lee ran into at the time, lies where one needs to handle the problems arising
from the indefinite critical points of a self-indexing Morse function that is used to obtain
a Heegaard decomposition of the 3-manifold.

The purpose of this expository article is to explain the content of the above theorem
and to give an overview of its proof, which is joint work with Lee and Taubes, based on
lectures delivered by the author at the 19th Gökova Geometry and Topology Conference.
It is intended to serve as a guide for those who would like to read [19, 20, 21, 22] for more
details. Our approach in the proof is to exploit the relationship between Seiberg–Witten
theory and the theory of pseudo-holomorphic curves as established by Taubes. Roughly
speaking, this relationship is based on the observation that, in a neighborhood of a pseudo-
holomorphic curve, smooth sections of a particular line bundle belonging to solutions of
the Seiberg–Witten equations are very close to being holomorphic and therefore their
zero loci can be used to approximate the pseudo-holomorphic curve through some limit
as the size of canonically chosen perturbations get large. That said, the construction
of the isomorphisms in Theorem 1.1 requires the use of an auxiliary manifold Y and
a particular type of geometry on it. The latter is used to define a twisted version of
Hutchings’s embedded contact homology (ECH), which we denote by ech. The proof of
Theorem 1.1 is then broken into three parts. This is explained schematically as follows:

ech of Y ←→ Seiberg −Witten Floer cohomology of Yxy xy
Heegaard Floer homology of M ∼= Seiberg −Witten Floer homology of M

The organization of this paper is as follows: Section 2 describes the auxiliary manifold
Y and its geometry. Section 3 defines ech and outlines the proof of its equivalence with
Heegaard Floer homology. Section 4 describes a twisted version of Seiberg–Witten Floer
cohomology and explains its equivalence with ech. Section 5 discuses a connected sum
formula for Seiberg–Witten Floer homology and how it is used to relate the Seiberg–
Witten Floer cohomology of Y with the Seiberg–Witten Floer homology of M . Finally,
in Section 6, we conclude with some remarks.

Remark 1.2. Colin, Ghiggini, and Honda recently proved that ECH is isomorphic to
HF +(−M) using open book decompositions [2, 3, 4, 5]. Together with Taubes’s recent
result on the equivalence of Seiberg–Witten Floer cohomology and ECH [34, 35, 36, 37, 38],

their result provides an alternative way to see that

̂

HM ∗(M) and HF +(M) are isomorphic.
In fact, it might be possible to see, more directly, how the two approaches compare if one
implements the construction described in the next section using a Heegaard diagram
arising from an open book decomposition adapted to a contact structure. This way, one
could try to relate the ECH and ech chain complexes in a natural way.
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2. The auxiliary manifold and its geometry

Let M be a closed, connected, and oriented 3-manifold. We start by choosing a self-
indexing Morse function f : M → R with a single pair of definite critical points. In
other words, f is a Morse function whose value at a critical point is equal to the index
of that critical point. Such a function yields a Heegaard decomposition M = U0 ∪Σ U1

where U0 = f−1[0, 3/2] and U1 = f−1[3/2, 3] are genus-g handlebodies, and Σ is a closed,
connected, and oriented surface of genus g oriented as ∂U0. Next, fix a gradient-like
vector field for f , that is, a smooth vector field v defined in the complement of the critical
point set of f satisfying df(v) > 0. We rescale v so as to satisfy df(v) = 1. The flow lines
of v that emanate from index-1 critical points of f intersect the surface Σ in g disjoint
simple closed curves A = {A1, . . . , Ag}. Similarly, the flow lines of −v that emanate
from index-2 critical points of f intersect the surface Σ in g disjoint simple closed curves
B = {B1, . . . , Bg}. We further choose v so that Ai t Bj for each i, j ∈ {1, . . . ,g}. Then
the ordered tuple (Σ,A,B), called a Heegaard diagram, determines the manifold M up
to diffeomorphism.

A Heegaard diagram for M is part of the data that is required to define the Heegaard
Floer homology groups. The remaining part of the data consists of a base point and a
Spinc structure. A base point is a fixed point z ∈ Σ\

⋃
(A∪B). A Heegaard diagram with

a base point is called a pointed Heegaard diagram. The relevance of a pointed Heegaard
diagram can be explained as follows: a Spinc structure on M , in the sense of Turaev [40],
is a nowhere vanishing vector field on M up to homotopy outside a 3-ball. Since a base
point lies outside all the A and B curves, there exists a unique integral curve η0 of v that
connects the definite critical points of f and intersects Σ transversally at this base point.
On the other hand, any g-tuple of intersection points {x1, . . . , xg}, where xi ∈ Ai ∩Bσ(i)

for σ a permutation of {1, . . . ,g}, gives rise to a g-tuple of integral curves {η1, . . . , ηg} of
v connecting pairs of indefinite critical points of f . One can change v in a neighborhood
of the curves η0, η1 . . . , ηg so that the resulting vector field is nowhere vanishing. In this
way, one assigns a Spinc structure to {x1, . . . , xg}. As a result, the set of g-tuples of
intersection points is partitioned into Spinc equivalence classes.

Now, let s be a Spinc structure on M . The A and B curves divide the surface Σ into
regions {D0,D1, . . . ,DN} where D0 denotes the region containing the base point z. A
2-chain P that is an integer linear combination of D1, . . . ,DN and whose boundary is an
integer linear combination of A and B curves is called a periodic domain. Every periodic
domain P determines an element H(P) ∈ H2(M ;Z), and every element of H2(M ;Z)
can be represented by a periodic domain. A pointed Heegaard diagram (Σ,A,B, z) is
called strongly s-admissible if for every periodic domain P with 〈c1(s), H(P)〉 = 2n ≥ 0,
there exists a coefficient in P larger than n. This condition ensures that there are finitely
many pseudo-holomorphic curves, up to translation, that enter into the definition of
the Heegaard Floer differential. The following lemma claims that strong admissibility is
equivalent to existence of a certain area form on Σ.
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Lemma 2.1 (Lemma 1.1 in [19]). A pointed Heegaard diagram (Σ,A,B, z) is strongly
s-admissible if and only if there exists an area form wΣ on Σ such that

•
∫

Σ
wΣ = 2,

•
∫
P wΣ = 〈c1(s), H(P)〉 for each periodic domain P.

Proof. The proof is similar to the proof of Lemma 4.12 in [26], except here we use
s-renormalized periodic domains. See also the proof of the second bullet in Lemma 5.3
in [25]. �

Our aim in this section is to outline the construction, as in Sections 1 and 2 of [19], of
an auxiliary manifold Y and a particular kind of geometry starting from the data provided
by the strongly s-admissible Heegaard diagram (Σ,A,B, z). We start by describing the
manifold Y . First, fix a pairing Λ of index-1 and index-2 critical points of f , i.e., each
p ∈ Λ is a pair p = (p1, p2) where pi is an index-i critical point of f . Assume, without
loss of generality, that the pairing respects the indexing of the A and B curves. Use p
to denote the index-0 critical point of f , and use q to denote the index-3 critical point
of f . The Morse Lemma tells us that, for some δ∗ ∈ (0, c−1

0 ) where c0 >> 1, there exist
coordinate balls centered at index-1 and index-2 critical points of f on which f can be
written respectively as

f = 1 + x2 + y2 − 2z2,

f = 2− x2 − y2 + 2z2,

where (x2 + y2 + z2)
1
2 ≤ 10δ∗. Denote by (r+, θ+, φ+) and (r−, θ−, φ−) the spherical

coordinates in coordinate balls respectively centered at an index-1 and an index-2 critical
point of f . Fix R > −100 ln δ∗, and for each p = (p1, p2) ∈ Λ, consider the spherical shell
Hp centered at the origin with coordinates (r, θ, φ) defined by e−R(7δ∗)

−1 ≤ r ≤ eR7δ∗.
After deleting the r+ < e−2R(7δ∗)

−1 and r− < e−2R(7δ∗)
−1 parts of the respective

coordinate balls centered at p1 and p2, identify the respective e−2R(7δ∗)
−1 ≤ r+ ≤ 7δ∗

and e−2R(7δ∗)
−1 ≤ r− ≤ 7δ∗ parts with Hp via

(r+, θ+, φ+) = (e−Rr, θ, φ),

(r−, θ−, φ−) = (e−Rr−1, π − θ, φ). (1)

Similarly, there exist coordinate balls centered at p and q on which f can be written
respectively as

f = x2 + y2 + z2,

f = 3− x2 − y2 − z2,

where (x2 + y2 + z2)
1
2 ≤ 10δ∗. Denote by (r+, θ+, φ+) and (r−, θ−, φ−) the spherical

coordinates in coordinate balls respectively centered at p and q. Consider the spherical
shell H0 with coordinates (r, θ, φ) defined by e−R(7δ∗)

−1 ≤ r ≤ eR7δ∗ centered at the
origin. After deleting the r+ < e−2R(7δ∗)

−1 and r− < e−2R(7δ∗)
−1 parts of the respective

coordinate balls centered at p and q, identify the respective e−2R(7δ∗)
−1 ≤ r+ ≤ 7δ∗ and
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e−2R(7δ∗)
−1 ≤ r− ≤ 7δ∗ parts with H0 via (1). The resulting manifold Y is diffeomorphic

to M#g+1S
1 × S2, the connected sum of M with g + 1 copies of S1 × S2.

Next, we describe the particular type of geometry on Y that will enable us to establish
the equivalence between Heegaard Floer and Seiberg–Witten Floer homologies.

2.1. A stable Hamiltonian structure on Y

Our aim is to construct a geometric structure on Y that will be consistent with the
Heegaard Floer data on M . As Taubes has already established a relationship between
Seiberg–Witten Floer cohomology and embedded contact homology, the appropriate sort
of geometric structure here is a stable Hamiltonian structure. A stable Hamiltonian
structure on Y is a pair (a,w) of a smooth 1-form a and a closed 2-form w on Y such
that

• da = hw for a smooth function h : Y → R,
• a ∧ w is a volume form on Y .

On one end of a spectrum, contact structures are an example of stable Hamiltonian
structures with a being a contact 1-form and w = da, while surface bundles over the
circle are another example on the other end. The stable Hamiltonian structure we will
describe on Y combines the two.

We start by defining the stable Hamiltonian structure on Hp for each p ∈ Λ. In order
to do this, first introduce a new variable by u = ln r where u ∈ [−2R+ln 7δ∗, 2R− ln 7δ∗].
Then fix positive numbers δ < c−1

0 δ∗ and x0 < δ3. With δ and x0 chosen, we may also
need to increase the lower bound for the parameter R, namely, R > −c0 ln x0. Next, fix
a smooth non-increasing function χ : R→ [0, 1] that equals 1 on (−∞, 0] and equals 0 on
[1,∞). Also define the following three functions:

x(u) = x0χ(|u| −R− ln δ − 12),

χ+(u) = χ(−u− R

4
), χ−(u) = χ(u− R

4
)

whose graphs are illustrated in Figure 1.
Now, consider the following contact 1-form on Hp:

a = (1− 3 cos2 θ)du−
√

6 cos θ sin2 θdφ1,

and define a 1-form on Hp by

a = x(u)a− 2
√

6(χ+e
2(u−R) + χ−e

−2(u+R)) cos θ sin2 θdφ+ df∗, (2)

where

f∗ = (χ+e
2(u−R) + χ−e

−2(u+R))(1− 3 cos2 θ).

With the choice of the parameters δ, x0, and R as above, a ∧ da is non-vanishing where
|u| ≤ R+ ln x0 − c0. Hence, we set w = da.

1This is the contact 1-form that appears on the boundary of a tubular neighborhood of a zero circle for
a near-symplectic structure (see [32], also [12].)
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Figure 1. The functions x, χ−, and χ+.

In what follows, we describe the pair (a,w) on the complement in M of radius δ
coordinate balls around all critical point of f . Denote the latter manifold by Mδ. For
each index-1 or index-2 critical point of f , introduce new variables by u± = ln r±. We
will use an area form wΣ on Σ, but with the opposite of the orientation of ∂U0, supplied
by Lemma 2.1 to construct the 2-form w on f−1([1, 2]) ∩Mδ. To be more precise, use
the integral curves of v to identify f−1(1, 2) with (1, 2) × Σ. Then pull back wΣ via the
projection from [1, 2] × Σ onto Σ, and use the aforementioned identification to define a
2-form on f−1([1, 2]) ∩Mδ. The latter agrees with w on the ln δ < u± < ln 7δ∗ part of a
coordinate ball around a given index-1 or index-2 critical point of f , therefore it extends
w on

⋃
p∈ΛHp to the union of the latter with f−1([1, 2]) ∩Mδ.

In order to extend the 1-form a to the union of
⋃

p∈ΛHp with f−1([1, 2])∩Mδ, we need
the following lemma.

Lemma 2.2 (Lemma 1.2 in [19]). There exists a set of b1, the first Betti number of M ,
points in Σ \

⋃
(A ∪B) and a 1-form aΣ defined on the complement of the base point z

and these points such that

• daΣ = wΣ,
• The integral of aΣ on each Ai or Bi is zero.

Proof. We repeat the proof here for completeness. Consider the cohomology Mayer–
Vietoris exact sequence for the Heegaard decomposition of M :

0→ H1(M ;R)
ϕ→ H1(Σ;R)

ψ→ HomZ(FA∪B,R)
δ→ H2(M ;R)→ 0,

where FA∪B denotes the free Z-module generated by A∪B. The map ϕ is simply induced
by the restriction of cochains, ψ is the map that sends the cohomology class of a closed
1-form on Σ to the hom-dual of FA∪B defined by integrating this closed 1-form on curves
in A∪B, and δ(T ) for T ∈ HomZ(FA∪B,R) is defined by δ(T )(H(P)) = T (∂P). With the
preceding understood, there exists a smooth 1-form az defined in the complement of the
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point z such that wΣ|Σ\{z} = daz, since H2(M \ {z};R) ∼= 0. Integrating az along curves
in A ∪B defines an element Taz of HomZ(FA∪B,R). If δ(Taz ) = 0, then by exactness of
the above sequence, there exists a closed 1-form on Σ such that the integral of the sum
of the latter and az vanishes on curves in A ∪ B. Any given (r1, . . . ,rN ) ∈ RN gives
rise to an element of H2(M ;R) by sending a homology class represented by a periodic

domain P =
∑N
i=1 ciDi to

∑N
i=1 ciri. Therefore, we have a surjective homomorphism

Φ : RN → H2(M ;R). Now, choose a b1-dimensional subspace of RN whose restriction
to Φ is an isomorphism. Fix points {zi}i=1,...,b1 in the interiors of the corresponding
regions. Denote by ri the integral of az on the boundary of the region Di. As a result,
δ(Taz ) = Φ(r1, . . . ,rN ), and we can modify az in Σ \ {z, z1, . . . , zb1} so that the resulting
1-form a′z has an associated Ta′z ∈ HomZ(FA∪B,R) with δ(Ta′z ) = 0. �

With the 1-form aΣ in hand, we can find a 1-form âΣ on Σ that is zero near the base
point z and the set of b1 points as in Lemma 2.2, that agrees with aΣ outside a collection
of disjoint disks with small area centered at the same points, and dâΣ = hwΣ for some
smooth function h : Σ→ R that equals 1 on the complement of these disks. Then Part 7
in Section 1c of [19] explains how to extend the 1-form a to the union of

⋃
p∈ΛHp with

f−1([1, 2])∩Mδ so that its restriction to f−1([1, 2])∩Mδ can be written as âΣ+h(t)dt+dϕ
where t denotes the Euclidean coordinate on [1, 2], h is a function on [1, 2] that equals 1
near t = 1 and t = 2, and ϕ is a compactly supported t-dependent function on Σ.
Furthermore, da = hw on f−1([1, 2]) ∩Mδ.

In order to extend (a,w) to the remainder of Y , first extend (a,w) to the union of⋃
p∈ΛHp with a neighborhood of f−1([1, 2]) ∩ Mδ. This can be done by identifying

neighborhoods of Σ1 := f−1(1) ∩Mδ and Σ2 := f−1(2) ∩Mδ with [1− 2δ2, 1 + δ2]× Σ1

and [2−δ2, 2+2δ2]×Σ2 respectively via the integral curves of v, since the latter is tangent
to the boundary of the radius δ coordinate balls centered at index-1 and index-2 critical
points of f . With the preceding understood, w can be extended so as to be equal to wΣ

on these neighborhoods. On the other hand, a can be extended by Lie transport via the
gradient-like vector field v. Then a construction similar to the extension of (a,w) to the
union of

⋃
p∈ΛHp with f−1([1, 2]) ∩Mδ extends the pair to (

⋃
p∈ΛHp) ∪Mδ. Finally,

(a,w) extends to the union of (
⋃

p∈ΛHp)∪Mδ with H0 so as to restrict on H0 as follows:

• a = 2(χ+e
2(|u|−R) + χ−e

−2(|u|+R))du+ â0,
• w = sin θdθ ∧ dφ,

where â0 is a certain smooth 1-form on S2. To be more explicit, the latter is equal to
1

2π sin θdθ ∧ dφ outside disks of small radius centered at points that are identified with
the b1 + 1 points in Lemma 2.2 via the flow of v.

We orient the manifold Y so that a ∧ w > 0. Therefore, the inclusion of Mδ into Y
is an orientation reversing embedding. By way of a summary, the stable Hamiltonian
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structure (a,w) and the associated Reeb vector field R2 have the following properties:

(a) On H0, w = sin θdθ ∧ dφ and R = 1
2(χ+e2(u−R)+χ−e−2(u+R))

∂
∂u .

(b) On Mδ, w restricts to each constant f slice as an area form, and the vector
field R on Mδ agrees with the gradient-like vector field v.

(c) Fix p ∈ Λ. Then on Hp:

– a = (x + g′)(1− 3 cos2 θ)du−
√

6f cos θ sin2 θdφ+ 6g cos θ sin θdθ,

– w = 6x cos θ sin θdθ ∧ du−
√

6d(f cos θ sin2 θdφ),

– R = 1

(f(x+g)(1+9 cos4 θ))
1
2

(f(1− 3 cos2 θ) ∂
∂u −

√
6x cos θ ∂

∂φ + f′ cos θ sin θ ∂∂θ ),

where

f = x + 2(χ+e
2(u−R) + χ−e

−2(u+R)), g = χ+e
2(u−R) − χ−e−2(u+R).

(d) Having written H2(Y ;Z) ∼= H2(M ;Z) ⊕ H2(H0;Z) ⊕ (⊕p∈ΛH2(Hp;Z)), we
have

– 〈[w], [S2]〉 = 2 for [S2] the positive generator of H2(H0;Z),
– 〈[w], [S2]〉 = 0 for [S2] the positive generator of H2(Hp;Z) for some p ∈ Λ,
– 〈[w], F 〉 = 〈c1(s), F 〉 for any F ∈ H2(M ;Z).



(3)

There is also a closed 1-form ν on Y which extends df on Mδ. To be more precise, the
1-form ν equals df on Mδ, it is given by 2(χ+e

2(|u|−R) + χ−e
−2(|u|+R)) on H0, and it is

given by df∗ on each Hp. Furthermore, it satisfies ν ∧ w ≥ 0 with equality only where
u = 0 and 1− 3 cos2 θ = 0 on each Hp. The 1-form ν is used to define an auxiliary 1-form
â on Y as follows: let χδ(u) = χ(|u| − R − ln δ − 10). Then â is equal to ν on Mδ ∪ H0

and it is equal to χδa+ (1− χδ)ν on each Hp. The 1-form â satisfies â(v) = 1 on Mδ and
â ∧ w > 0.

2.2. Closed integral curves for the stable Hamiltonian structure

Here, we characterize closed integral curves of R that are relevant to our story. We
describe these curves via their intersections with various parts of the manifold Y . In this
regard, let K−1 denote the oriented 2-plane field that is the kernel of a and is oriented by
w. It follows from properties (a) and (d) in (3) that the Euler class eK−1 of K−1 satisfies:

• 〈eK−1 , [S2]〉 = 2 where [S2] is the positive generator of H2(H0;Z),
• 〈eK−1 , [S2]〉 = −2 where [S2] is the positive generator of H2(Hp;Z) for some p ∈ Λ.

There exists a unique Γ ∈ H1(Y ;Z) and a Spinc structure s on Y which satisfy
c1(s) = eK−1 + 2PD(Γ), and

• 〈PD(Γ), [S2]〉 = 0 where [S2] is the positive generator of H2(H0;Z),
• 〈PD(Γ), [S2]〉 = 1 where [S2] is the positive generator of H2(Hp;Z) for some p ∈ Λ,
• The Spinc structure s on Y restricts to the Spinc structure s on M .

2This is the vector field that spans the kernel of w and is normalized by a, i.e., ιRw = 0 and a(R) = 1.

9
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Since c1(s) = eK−1 + 2PD(Γ), the second bullet implies that s restricts to the trivial
Spinc structure on each Hp. This is an important fact that will come up naturally as we
proceed.

With Γ ∈ H1(Y ;Z) as above, let Zech denote the set of all finite collections Θ of pairs
(γi,mi) where γi is a closed integral curve of R, and mi is a positive integer such that
Γ =

∑
imi[γi]. Additional constraints are required to determine the set of generators for

the embedded contact homology chain complex. In order to explain these constraints, we
consider the linearized return map of the Reeb flow around a closed integral curve of R.
Having fixed a closed integral curve γ of R and a point x0 ∈ γ, the latter is a linear
map Pγ,x0

: K−1|x0
→ K−1|x0

which can be regarded as an element of SL(2,R) when a
trivialization of K−1 over γ is chosen. The curve γ is called non-degenerate if no power
of Pγ,x0

has an eigenvalue equal to 1. For a non-degenerate closed integral curve γ, either
both eigenvalues of Pγ,x0 are real, in which case γ is called hyperbolic, or both eigenvalues
are on the unit circle, in which case γ is called elliptic. The constraint on a closed integral
curve γi to be a part of a generator for the embedded contact homology chain complex is
that it is non-degenerate, and the constraint on mi is that mi = 1 if γi is hyperbolic. We
shall denote by Zech,M the subset of Zech with these additional constraints. An element
of the set Zech,M is called an admissible orbit set.

We now characterize closed integral curves of R that belong to a collection from Zech.
First of all, such a closed integral curve γ of R would have empty intersection with
H0. Here is why: if γ were to intersect H0, then it follows from property (a) in (3)
that it would do so as [−R − ln δ∗, R + ln δ∗] × {point ∈ S2}, and therefore has positive
intersection with every constant u cross-sectional 2-sphere of H0 oriented by w. As a
result, 〈PD(Γ), [S2]〉 > 0 where [S2] is the positive generator of H2(H0;Z), contrary to
what is said in the first bullet above. In fact, γ lies in the union of f−1(1, 2) and

⋃
p∈ΛHp

because otherwise γ would eventually have to intersect H0. Before we proceed, note that
there exists a unique closed integral curve of R which intersects the Heegaard surface Σ
at the base point z. We denote this closed integral curve by γz. It lies in Mδ ∪ H0 and
intersects each level set of f as well as each constant u cross-sectional 2-sphere of H0

exactly once. The significance of the closed integral curve γz will be explained in the next
section.

There are exactly two closed integral curves of R that sit entirely in Hp for each p ∈ Λ.
These are denoted by γ+

p and γ−p , defined respectively by u = 0, cos θ = 1√
3

and u = 0,

cos θ = − 1√
3

(see Figure 2). Both of these curves are hyperbolic and their associated

linearized return maps have positive eigenvalues. On the other hand, if γ intersects Hp

but does not lie entirely in it, then γ∩Hp lies where cos2 θ < 1
3 , otherwise it would intersect

f−1((0, 1)∪ (2, 3))∩Mδ and eventually H0. Moreover, it follows from property (c) in (3)
that γ intersects each constant u cross-sectional sphere of Hp exactly once positively,
and either cos θ = 0 or 0 < cos2 θ < 1

3 along γ ∩ Hp. In fact, if θ+ and θ− denote the
polar angle coordinates at which γ intersects respectively the boundaries of the radius δ∗
coordinate balls centered at the index-1 and the index-2 critical points of f belonging to p,

10
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Figure 2. Integral curves that lie entirely in Hp.

then θ+ = θ−; and the net change ∆φ in value of the azimuthal angle coordinate as γ
travels through the |u| ≤ R+ ln δ∗ part of Hp can be computed via the integral

∆φ = −
√

6

∫
[−R−ln δ∗,R+ln δ∗]

x(u)

f(u)

cos θ(u)

1− 3 cos2 θ(u)
du,

where θ(u) is the unique solution of the equation

cos θ sin2 θ = 2δ∗
2 cos θ± sin2 θ±

1

f(u)

with 1− 3 cos2 θ(u) > 0.
Finally, we characterize the intersection of γ with Mδ. In this regard, let p+ be an

index-1 critical point and p− be an index-2 critical point of f , and η denote a closed
connected segment of γ that runs from the boundary of the radius δ coordinate ball
centered at p+ to the boundary of the radius δ coordinate ball centered at p−. Suppose
that η ⊂ Mδ. Then η is in close proximity of an integral curve of v that connects p+ to
p−. The fundamental reason behind this is the fact that R agrees with v in Mδ. With the
preceding understood, a closed integral curve γ of R from a collection in Zech is broken
into 2N closed connected segments {ηp1 , η1, . . . , η

pN , ηN} where 1 ≤ N ≤ g and

• ηpi = γ ∩ Hpi is a connected segment that starts from the index-2 critical point end
of Hpi and stops at the index-1 critical point end of Hpi ,

• ηi is a connected segment that lies in Mδ. It starts from the index-1 critical point end
of Hpi and stops at the index-2 critical point end of Hpi+1

for 1 ≤ i ≤ N − 1, while
ηN connects the index-1 critical point end of HpN to the index-2 critical point end
of Hp1

.

(see Figures 3 and 4.) The above observations bring up the following definition to be used
in the upcoming structure theorem for elements of the set Zech,M . An index 1-2 cycle
is a non-empty, finite, cyclically order set {υ1, . . . υN} consisting of closures of integral
curves of v that connect index-1 critical points of f to index-2 critical points of f in
such a way that for 1 ≤ i ≤ N − 1 and the end point of υi and the starting point of

11
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υi+1 as well as the end point of υN the starting point of υ1 define distinct pairs from
Λ. The above observations point out that any closed integral curve of R that belongs
to a collection from the set Zech,M specifies an index 1-2 cycle. Conversely, we have the
following statement:

Proposition 2.3 (Proposition 2.7 in [19]). Given an index 1-2 cycle {υ1, . . . υN}, the set
of closed integral curves of R that correspond to it enjoy a 1-1 correspondence with the
set ZN . To be more precise, a closed integral curve of R corresponding to {υ1, . . . υN}
undergoes a change of ∆φi + 2πmi, where 0 ≤ ∆φi < 2π and mi ∈ Z, in its azimuthal
angle coordinate as it travels through Hpi . Moreover, all of these closed integral curves are
non-degenerate, hyperbolic, and the sign of the eigenvalues for the corresponding linearized
return maps are (−1)N times the product of the orientation signs of the integral curves
{υ1, . . . υN}. These signs are determined by comparing the orientation of Σ with the
orientation determined by the A and B curves. Two pairs of an index 1-2 cycle and an
N -tuple of integers specify the same closed integral curve if and only if they differ by an
action of a cyclic permutation of {1, . . . , N} on the indices.

Figure 3. For each i ∈ {1, . . . ,g}, the index-1 critical point pi+ is paired
with the index-2 critical point pi−. Hence, the two segments on the left
belong to a single closed integral curve, while the one on the right to
another.

3. ech and its equivalence with Heegaard Floer homology

This section describes a twisted version of embedded contact homology for the stable
Hamiltonian structure (a,w) on Y constructed from a strongly s-admissible Heegaard
diagram (Σ,A,B, z) arising from a self-indexing Morse function f on M as in the previous
section, and justifies its equivalence with the Heegaard Floer homology of M .

3.1. The ech chain complex

The embedded contact homology chain complex is a free Z-module generated by a
set described as follows: Let Θ0 be a 1-chain which represents Γ and does not inter-
sect any closed integral curve from a collection in Zech,M . Given Θ ∈ Zech,M , con-
sider the relative homology classes of surfaces with boundary Θ − Θ0. The latter is a

12
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Figure 4. The intersection of a closed integral curve with a handle Hp,
as seen respectively (left to right) through the z-, y-, and x- axes.

H2(Y ;Z)-torsor, denoted by H2(Y,Θ,Θ0). Next, consider pairs of the form (Θ, Z) con-
sisting of Θ ∈ Zech,M and Z ∈ H2(Y,Θ,Θ0). Two such pairs (Θ, Z) and (Θ, Z ′) are
deemed equivalent if [Z − Z ′] · [γz] = 0. We denote the set of equivalence classes under

this relation by Ẑech,M . The latter admits an identification with Zech,M × Z via the
surjection H2(Y,Θ,Θ0)→ Z sending Z to its algebraic intersection number with γz.

With the above understood, let ecc∞ denote the free Z-module generated by Ẑech,M .
We can define a submodule ecc− as the one generated by the subset Zech,M×{. . . ,−2,−1}
and denote the quotient of ecc∞ by ecc− by ecc + . Then, there exists a natural short-exact
sequence of free Z-modules:

0 −→ ecc−
i−→ ecc∞

π−→ ecc + −→ 0. (4)

The relative grading and the differential on these free Z-modules are defined with the
help of a suitable almost complex structure J on R× Y . The latter is an automorphism
of T (R × Y ) whose square is the negative of the identity, and it is subject to additional
constraints. In this regard, let s denote the Euclidean coordinate on R. Then,

• J ∂
∂s = R.

• J is invariant under translations along the R-factor.
• J preserves the kernel of the 1-form â, and is compatible with the restriction

of w on this plane field.
• J is invariant under translations of the azimuthal angle coordinate φ on each
Hp.

• Let

e1 = −6g cos θ sin θ
∂

∂u
+ (x + g′)(1− 3 cos2 θ)

∂

∂θ
, e2 =

∂

∂φ
+
√

6χδf cos θ sin2 θR.

Then Je1 = σ−1e2 with σ a positive function of u and θ on each Hp.



(5)

A few remarks are in order. First of all, for any v ∈ Ker(a) we have v − â(v)R ∈ Ker(â).
Hence, w(·, J ·) is positive definite on the kernel of a. Furthermore, it follows from the
latter that there exists r ≥ 1 such that the 2-form ω = ds∧a+ rw tames J . On the other
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hand, J is compatible with the 2-form ω̂ = ds ∧ â + w. In particular, ω̂(·, J ·) defines an
s-independent Riemannian metric on R× Y .

Having fixed an almost complex structure J on R×Y satisfying the above constraints, a
J-holomorphic curve is a smooth map u : (S, j)→ (R×Y, J) where (S, j) is a (punctured)
compact Riemann surface and du◦j = J ◦du. A J-holomorphic curve is called somewhere
injective if there exists a point x ∈ S such that u−1(u(x)) = {x} and the linear map
du|x : TS|x → T (R × Y )|u(x) is injective. A somewhere injective curve is an embedding
in the complement of finitely many points, and is determined by its image. On the
other hand, a J-holomorphic curve is called multiply covered if it can be written as the
composition of a somewhere injective curve u : (S′, j′) → (R × Y, J) and a holomorphic
(branched) covering map ϕ : (S, j)→ (S′, j′). In either case, the image C is a closed subset
of R × Y with finite 2-dimensional Hausdorff measure having no totally disconnected
components, and the complement of finitely many points in C is a submanifold with
J-invariant tangent space. We impose the following additional constraints on C:

• The integral of w over C is finite.
• There is an s-independent bound for the integral of ds ∧ a over C ∩ [s, s+ 1]× Y for

any s ∈ R.

The above two constraints together with the fact that ω tames J imply that constant s
slices of C limit to a finite collection of closed integral curves of R as s tends to ±∞ (see
[11] and [30]). To be more precise, there exists s0 ≥ 1 such that the s > s0 part of C
is a disjoint union of embedded cylinders on which the projection to the R-factor has no
critical points, similarly for the s < −s0 part of C. Each such cylinder is called an end
of C. It is called a positive end if it belongs to the s > s0 part of C, and it is called a
negative end if it belongs to the s < −s0 part of C. Furthermore, constant s slices of
each end of C converge pointwise to a closed integral curve of R. With the preceding
understood, we consider J-holomorphic curves whose images have ends at elements of
Zech,M . We will refer to such J-holomorphic curves as admissible. Hutchings defined
the ech index for admissible J-holomorphic curves (see [13] and [14]). For a somewhere
injective J-holomorphic curve, the ech index constitutes a lower bound for the Fredholm
index of the associated deformation operator, and the two are equal if and only if the
J-holomorphic curve is embedded. Given an admissible J-holomorphic curve whose image
C has positive ends at Θ+ ∈ Zech,M and negative ends at Θ− ∈ Zech,M , the ech index
depends only on the relative homology class [C] ∈ H2(Y,Θ+,Θ−), and is denoted by
I([C]). The ech index endows the ech chain complex with a relative Z-grading that is
well-defined modulo a non-negative integer pM , the divisibility of c1(s). For low ech
index values Hutchings proved that admissible J-holomorphic curves consist of unions
of embedded J-holomorphic curves together with possibly multiply covered R-invariant
cylinders, namely, R×Θ for Θ ∈ Zech,M . Therefore, from now on, we shall use the term
J-holomorphic curve for finite collections of pairs {(C, n)} where C is the image of a
connected J-holomorphic curve in the above sense, and n is a positive integer indicating
the covering multiplicity. The moduli space of J-holomorphic curves is endowed with
the restriction of the weak∗-topology on the space of currents. More precisely, given
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a J-holomorphic curve C, a neighborhood basis at C is indexed by pairs of the form
(ε,$) where ε is a positive real number and $ is a smooth 2-form on R× Y such that a
J-holomorphic curve C ′ is in one of these open neighborhoods if and only if

• supx∈Cd(x,C ′) + supx∈C′d(x,C) < ε,
• |
∫
C
$ −

∫
C′
$| < ε,

where d(·, ·) is the metric on R × Y as defined by the Riemannian metric on T (R × Y ).
There exists a version of Gromov Compactness for J-holomorphic curves in the current
setting.

Theorem 3.1 (Proposition 5.5 in [19]). Let U ⊂ Y be an open set, I ⊂ R be a bounded,
open interval, L ≥ 1, and {(Ck, nk)} be a sequence of J-holomorphic curves in R × U .
Suppose that there exist s ∈ R and ε > 0 such that∫

Ck∩[s−2,s+2]×Uε
ω̂ ≤ L

for each k, where Uε denotes the set of points at a distance ε or less from the set U . Then,
there exists a J-holomorphic curve {(C, n)} and a subsequence of {(Ck, nk)} such that

• limk→∞(supx∈(∪C)∩I×Ud(x,∪Ck) + supx∈∪Ckd(x, (∪C) ∩ I × U) = 0,
• Let $ be a smooth bounded 2-form defined in a neighborhood of I × U . Then

lim
k→∞

|
∑

n

∫
C

$ −
∑

nk

∫
Ck

$| = 0.

Note that translating a J-holomorphic curve along the R-factor yields a J-holomorphic
curve. This is because J is invariant under translations along the R-factor. Therefore,
the group R acts on the moduli space of J-holomorphic curves. This action is free away
from the set of R-invariant cylinders. Having said that, we now define the differential on
the ech chain complex by describing the boundary of a generator [Θ+, Z]:

∂∞ech[Θ+, Z] =
∑

{Θ−∈Zech,M , W∈H2(Y,Θ+,Θ−) | I(W )=1}

#
(
M(W )/R

)
[Θ−, Z −W ]. (6)

The quantity #
(
M(W )/R

)
refers to a signed count of admissible J-holomorphic curves

(up to translation) representing the class W , which is finite thanks to the version of
Gromov Compactness provided by Theorem 3.1. There is also a degree −2 chain map U
on the ech chain complex that is defined by fixing a point x ∈ H0:

U [Θ+, Z] =
∑

{Θ−∈Zech,M , W∈H2(Y,Θ+,Θ−) | I(W )=2}

#Mx(W )[Θ−, Z −W ]. (7)

Here,Mx(W ) denotes the moduli space of admissible J-holomorphic curves representing
the class W that pass through the point (0, x) ∈ R × Y . Similarly, we can define the
action of ∧∗(H1(Y ;Z)/torsion) by choosing a suitably generic basis of cycles that generate
H1(Y ;Z)/torsion and by a weighted sum of the algebraic intersection number of ech
index-1 curves with these cycles in {0} × Y .
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Next we explain how admissible J-holomorphic curves foliate the complement in R×Y
of R×∪p∈Λ(γ+

p ∪γ−p ). This will be key to understanding the structure of the moduli space
of J-holomorphic curves that enter, in particular, into the definition of the differential for
the ech chain complex. We start by investigating admissible J-holomorphic curves that
arise from level sets of the Morse function f and the handle H0. Since J preserves the
kernel of â which restricts to df on Mδ, the intersection of level sets of f with Mδ are
admissible J-holomorphic curves if f ∈ (δ2, 1− 2δ2) ∪ (1 + δ2, 2− δ2) ∪ (2 + 2δ2, 3− δ2),
and are otherwise subsets of admissible J-holomorphic curves. These are described as
follows (see Section 3(b) of [19]):

• A componentM0 of the moduli space of admissible J-holomorphic curves consists of
embedded 2-spheres and is R-equivariantly diffeomorphic to R × (−1, 1). The part
of M0 that is parametrized by R × [− 1

2 ,
1
2 ] consists of 2-spheres that arise from the

constant u cross-sectional 2-spheres of H0 for u ∈ [−R − ln δ,R + ln δ]. The parts of
M0 that are parametrized by R× [ 1

2 , 1) and R× (−1,− 1
2 ] respectively correspond to

level sets of f for f ∈ [δ2, 1) and f ∈ (2, 3− δ2]. Each admissible J-holomorphic curve
from M0 has ech index 2.
• A componentMΣ of the moduli space of admissible J-holomorphic curves consists of

embedded closed surfaces of genus g arising from the f ∈ (1, 2) level sets of f , and it
is R-equivariantly diffeomorphic to R × (1, 2). Each admissible J-holomorphic curve
from MΣ has ech index 2− 2g.
• Two components, denoted by M1 and M2, of the moduli space of admissible
J-holomorphic curves each consists of properly embedded 2-spheres with 2g punc-
tures, and each are R-equivariantly diffeomorphic to R. An admissible J-holomorphic
curve fromM1 projects onto Mδ as f−1(1), while an admissible J-holomorphic curve
from M2 projects onto Mδ as f−1(2). These curves have 2g negative ends each at a
distinct γ+

p or γ−p , and no positive ends. Each admissible J-holomorphic curve from
M1 or M2 has ech index 2− 2g.

As for the admissible J-holomorphic curves contained in R×Hp for some p ∈ Λ, we have
the following characterization:

• A component Mp+ consists of embedded open disks that lie where cos θ > 1√
3

and

is R-equivariantly diffeomorphic to R. These curves have one positive end at γ+
p ,

and no negative ends. They project onto Hp as the open disk defined by u = 0 and
cos θ > 1√

3
, and project onto R as the half infinite line [s,∞) for some s ∈ R. Each

admissible J-holomorphic curve from Mp+ has ech index 1.
• A component Mp− consists of embedded open disks that lie where cos θ < − 1√

3
and

is R-equivariantly diffeomorphic to R. These curves have one positive end at γ−p ,
and no negative ends. They project onto Hp as the open disk defined by u = 0 and
cos θ < − 1√

3
, and project onto R as the half infinite line [s,∞) for some s ∈ R. Each

admissible J-holomorphic curve from Mp+ has ech index 1.
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• A componentMp0 consists of embedded open annuli that lie where cos2 θ < 1
3 and is

R-equivariantly diffeomorphic to R. These curves have two positive ends at γ+
p and

γ−p , and no negative ends. They project onto Hp as the open annulus defined by u = 0

and cos2 θ < 1
3 . Each admissible J-holomorphic curve from Mp0 has ech index 0.

With the above understood, note that the only compact and connected admissible
J-holomorphic curves are the ones contained in M0 and MΣ. This is because any such
curve C has to intersect some curve from M0 or MΣ nontrivially. Since J-holomorphic
curves intersect with non-negative local intersection number and both C and the curve it
intersects inM0 orMΣ are compact, C has to intersect all curves fromM0 orMΣ. But,
this is possible only if the s-coordinate is unbounded on C, contradicting the assumption
that C is compact.

Next, we make some preliminary observations about the admissible J-holomorphic
curves that define the differential and various endomorphisms on the ech chain complex.
First, we call an admissible J-holomorphic curve C an ech-HF curve if it does not contain
any connected components from M0, MΣ, M1, M2, Mp+, Mp−, or Mp0. An ech-HF
curve C satisfies the following:

• C has empty intersection with R×H0 and with the parts of R×Mδ where f ≤ 1 or
f ≥ 2.
• C has empty intersection with the part of R×Hp where cos2 θ > 1

3 for each p ∈ Λ.

• A connected component of C intersecting R×Hp in the cos2 θ = 1
3 locus is either the

cylinder R× γ+
p or the cylinder R× γ−p .

• C has intersection number g with each curve from MΣ.

By way of an explanation, if C were to intersect R×H0, the part of R×Mδ where f ≤ 1
or f ≥ 2, or the part of R × Hp where cos2 θ > 1

3 for some p ∈ Λ, then it would have
to intersect a curve from M0 since it does not contain any connected components from
M0, M1, or M2. As a result, C must intersect each curve from M0, which is true even
if C is non-compact due to the fact that the ends of C are disjoint from H0, the part of
Mδ where f /∈ (1, 2), and the part of each Hp where cos2 θ > 1

3 . The latter reasoning
also explains why C has empty intersection with the curves from M0 located at {s} × Y
for sufficiently large values of |s|, contradicting the previous conclusion. On the other
hand, suppose C has a connected component that intersects R × Hp where cos2 θ = 1

3

and u = 0, and that it is neither R × γ+
p nor R × γ−p . Then it also intersects the part

of R ×Hp where cos2 θ > 1
3 , hence a curve from M0, Mp+, or Mp−. Since C does not

contain any connected components fromM0,Mp+, orMp−, this possibility is ruled out
by an argument similar to the one above. As for the claim in the last bullet, let C have
positive ends at Θ+ ∈ Zech,M and negative ends at Θ− ∈ Zech,M . Since the intersection
of Θ+ and Θ− with Mδ each determines a g-tuple of integral curves of the gradient-like
vector field v which intersect Σ in g distinct points, the part of C for sufficiently large
values of |s| intersects a unique curve from MΣ in g distinct points. Therefore, C has
intersection number g with every curve from MΣ by the fact the intersection numbers
are locally constant under small perturbations.
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Finally, we describe the intersection of an ech-HF curve with R × Hp for any p ∈ Λ.
Let C be an ech-HF curve and p ∈ Λ be fixed.

• If no end of C is at γ+
p or γ−p , then C has intersection number 1 with each

curve from Mp0.
• If one end of C is at either γ+

p or γ−p , then C has intersection number 1 with
each curve fromMp0 except for one, with which it has intersection number 0.

• If there are two ends of C one of which is at γ+
p and the other is at γ−p , then

C has intersection number 1 with each curve fromMp0 except for two, with
which it has intersection number 0.


(8)

To sum up, the intersection of an ech-HF curve with a given R×Hp is a J-holomorphic
strip with 0, 1, or 2 punctures.

Before we end this subsection, a few remarks are in order. First, since closed integral
curves of R that comprise elements of Zech,M are all hyperbolic, there are no multi-
ply covered admissible J-holomorphic curves in R × Y . Second, having fixed a point
x in H0, Hutchings’s characterization of the ech index-2 curves as unions of embedded
J-holomorphic curves with possibly multiply covered R-invariant cylinders lets us argue
that the only admissible ech index-2 curve that passes through (0, x) ∈ R×Y is the union
of an embedded R-invariant cylinder over an element of Zech,M and the unique embedded
2-sphere S2

x from M0 that passes through this point. As a result, the U -map in (7) can
be written as

U [Θ, Z] = [Θ, Z − [S2
x]].

3.2. The ech and Heegaard Floer homology equivalence

In order to establish the correspondence between Heegaard Floer homology and ech,
we use Lipshitz’s cylindrical reformulation of Heegaard Floer homology [25]. The latter
exploits the same data provided by a strongly s-admissible Heegaard diagram (Σ,A,B, z).
The generators of the Heegaard Floer chain complex appear as pairs of the form (υ, i)
where υ = {υk = [1, 2]×{xk}}gk=1 with xk ∈ Ak∩Bσ(k) for σ a permutation of {1, . . . ,g},
and i ∈ Z. Having identified f−1(1, 2) with (1, 2)×Σ via the gradient-like vector field v,
each υk corresponds to an integral curve of v whose closure connects an index-1 critical
point of f to an index-2 critical point of f . Therefore, if we decompose σ into cycles,
each cycle corresponds to what we formerly called an index 1-2 cycle. Let us denote
the set of generators for the Heegaard Floer chain complex by ZHF , and introduce a set
with four elements o = {0, 1,−1, {1,−1}}. Then, by Proposition 2.3, there exists a 1− 1
correspondence

Zech,M ↔ ZHF ×
∏
p∈Λ

(Z× o). (9)

The above correspondence is canonical when the Z-factors on the right-hand side are
considered as affine spaces over Z. For each p ∈ Λ, a Z-factor on the right-hand side is
related to the net change in the azimuthal angle coordinate as a closed integral curve from
a given element of Zech,M traverses Hp, and an identification with Z is fixed once a lift
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of the azimuthal angle coordinate to R is chosen3; whereas the o-factor signifies whether
a given element of Zech,M contains none of, exactly one of, or both of γ+

p and γ−p . The
above correspondence lifts to a 1− 1 correspondence

Ẑech,M ↔ ZHF × Z×
∏
p∈Λ

(Z× o), (10)

where the identification of Ẑech,M with Zech,M × Z, as is explained in the previous sub-
section, is used.

The differential and various endomorphisms of the Heegaard Floer chain complex de-
fined by Lipshitz require the choice of an almost complex structure on R × [1, 2] × Σ
subject to a number of constraints. Having identified f−1(1, 2) with (1, 2) × Σ via the
gradient-like vector field v, these constraints translate as follows: JHF be an almost com-
plex structure on R× f−1(1, 2), and s denote the Euclidean coordinate on the R-factor.
Then, we require

• JHF
∂
∂s = v.

• JHF is invariant under translations along the R-factor.
• JHF preserves the kernel of the 1-form df , and it is compatible with the

restriction of w on this plane field.
• JHF is invariant under translations along integral curves of the gradient-

like vector field v near R× (A ∪D) where A denotes the union of ascending
manifolds of the index-1 critical points and D denotes the union of descending
manifolds of the index-2 critical points of f .


(11)

Note that the first three constraints in (11) agree on R× (Mδ ∩ f−1(1, 2)) with the first
three constraints in (5). Moreover, these constraints indicate that JHF is compatible with
the symplectic form ds∧df+wΣ, which restricts to ω̂ on R×(Mδ∩f−1(1, 2)). In addition
to the above constraints, we require that

JHF
∂

∂φ+
=

∂

∂h+
and JHF

∂

∂φ−
=

∂

∂h−
,

where

h+ = 2e2u+ cos θ+ sin2 θ+ and h− = 2e2u− cos θ− sin2 θ−

on the intersection of f−1(1, 2) and the radius 8δ∗ coordinate ball centered at respectively
an index-1 and an index-2 critical point of f . Note also that this last constraint is
consistent with the last two constraints listed above. With the preceding understood,
Lipshitz considers JHF -holomorphic curves S0 in R × (1, 2) × Σ satisfying the following
properties:

• S0 is the interior of a properly embedded surface S in R× [1, 2]×Σ with 2g boundary
components half of which lie on R× {1} ×A, and the other half lie on R× {2} ×B.

3However, there is no canonical lift. This is partly why the isomorphisms in Theorem 1.1 fail to be
canonical.
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• S is the complement of 2g distinct points in the boundary of a compact surface S̄
with boundary. The s coordinate tends to +∞ on sequences of points that limit to
any one of g of these points, while it tends to −∞ on sequences of points that limit
to any one of the remaining g points.
•
∫
S0
wΣ is finite, and there exists a constant κS ≥ 1 such that for any s ∈ R we have∫

S0∩([s,s+1]×(1,2)×Σ)
ds ∧ dt < κS .

• The set of constant s slices of S converge pointwise to elements of ZHF as s tends to
±∞.
• The associated deformation operator DS : L2

1(NS) → L2(NS ⊗ T 0,1S), where NS
denotes the normal bundle to S, has trivial cokernel.

The boundary of a given generator (υ+, i) of the Heegaard Floer chain complex is given
by

∂∞HF (υ+, i) =
∑

{υ−∈ZHF [S]∈π2(υ+,υ−) | ind(DS)=1}

#
(
M([S])/R

)
(υ−, i− nz([S])), (12)

where ind(DS) denotes the Fredholm index of S, #
(
M([S])/R

)
is a signed count, modulo

translations along the R-factor, of JHF -holomorphic curves in the relative homology class
[S], and nz([S]) is the algebraic intersection number of S with R × [1, 2] × {z}, which is
non-negative. A degree −2 chain map U on the Heegaard Floer chain complex is defined
by

U(υ, i) = (υ, i− 1). (13)

Having established a correspondence between generators of the Heegaard Floer and ech
chain complexes, we briefly explain how to relate the respective differentials. Given
two generators Θ+,Θ− ∈ Zech,M which can be written respectively as (υ+, (m+, o+))
and (υ−, (m−, o−)) using the identification in (9), and a JHF -holomorphic curve S of
Fredholm index 1 that limits to υ+ at +∞ and to υ− at −∞, we first construct a canonical
approximation C0 = {CS0, {Cp0}p∈Λ} to the desired admissible J-holomorphic curve C
with positive ends at Θ+ at +∞ and negative ends at Θ− at −∞. Here, CS0 denotes a
J-holomorphic curve with 2g boundary components in R× f−1(1, 2) ∩Mδ and each Cp0

is a J-holomorphic curve with 2 boundary components in R×Hp. The boundaries do not
match, but there is a canonical 1−1 correspondence between the boundary components of
CS0 and the boundary components of

⋃
p∈Λ Cp0. Moreover, the local boundary conditions

on the deformation operators corresponding to CS0 and Cp0s are coupled with respect
to this correspondence. The curve CS0 looks very much like a JHF -holomorphic curve
of Fredholm index at most 1, while each Cp0 is one of the curves described in (8). As
a matter of fact, CS0 arises as the image under the exponential map of a section of the
bundle NS . With the preceding understood, we construct a cobordism from the moduli
space of such approximations to the component of the moduli space of admissible ech
index 1 curves in R × Y . This cobordism maps to the interval [0, 1] in a smooth and
proper manner where the pre-image of 0 is the moduli space of approximations, while the
pre-image of 1 is the component of the moduli space of admissible ech index 1 curves; and
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it induces an R-equivariant diffeomorphism between the two spaces. To be more explicit,
we have the following possibilities:

• CS0 has Fredholm index 1 and (m+, o+) = (m−, o−),
• CS0 has Fredholm index 0, (m+, o+) 6= (m−, o−), and either

– m+ = m− and |o+| = |o−|+ 1, or
– m+ = m− ± 1 and o+ = o−.

Meanwhile, given a coherent system of orientations for the low index components of the
moduli space of JHF -holomorphic curves, there exists a canonical choice for a coherent
system of orientations for the corresponding components of the moduli space admissible
J-holomorphic curves. The latter is induced in part by canonical orientations on the
moduli space of holomorphic curves in R×Hp. Consequently, we get ∂∞ech = ∂∞HF+

∑
p∈Λ ∂∗

where ∂∗ denotes the differential on the free Z-module generated by Z × O defined as
follows:

• ∂∗(m, 0) = 0 for each m ∈ Z,
• ∂∗(m, 1) = (m, 0) + (m+ 1, 0) for each m ∈ Z,
• ∂∗(m,−1) = (m, 0) + (m− 1, 0) for each m ∈ Z,
• ∂∗(m, {1,−1}) = (m,−1)− (m, 1) + (m+ 1,−1)− (m− 1, 1) for each m ∈ Z.

As is easily checked, the homology of the chain complex (Z(Z × O), ∂∗) is isomorphic

to Z ⊕ Z. Denote the latter graded group by V̂. The chains (0, 0) and (0, 1) − (1,−1)
are closed and they represent two independent generators of the homology, the former in
degree 0 and the latter in degree 1. Therefore,

Theorem 3.2 (Theorem 2.4 in [18]). There exists a commutative diagram

· · · −→ ech− −→ ech∞ −→ ech + −→ · · ·y y y
· · · −→ HF−(M, s)⊗Z V̂⊗g −→ HF∞(M, s)⊗Z V̂⊗g −→ HF +(M, s)⊗Z V̂⊗g −→ · · ·

where the top row is the long-exact sequence for ech associated to (4) and the bottom row
is the standard long-exact sequence for the Heegaard Floer homology of M tensored with
V̂⊗g, while the vertical arrows are isomorphisms, induced by the correspondence (9), that
preserve the relative gradings and intertwine the Z[U ] ⊗ ∧∗(H1(M ;Z)/torsion)-module
structures.

For precise statements of the results summarized in this section that lead to a proof of
the above theorem, see Theorem 1.1 in [20].

4. Seiberg–Witten Floer cohomology and its equivalence with ech

We start this section by reviewing some of the background in Seiberg–Witten Floer
homology. We encourage the uninformed reader to refer to the book by Kronheimer
and Mrowka [17] for an extensive treatment of the subject. After we cover some of
the background material, we move on to describing a twisted version of Seiberg–Witten
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Floer cohomology for certain Spinc structures on Y as in [21]. Finally, we explain the
proof of the equivalence of the latter with ech. This last part is along the same lines
as Taubes’s construction of a canonical isomorphism between ECH and Seiberg–Witten
Floer cohomology [34, 35, 36, 37, 38], and the reader should refer to [21] for further details.

4.1. Preliminaries in Seiberg–Witten Floer homology

Here, we describe the Seiberg–Witten Floer homology groups of M . Start by fixing a
Riemannian metric on M . Then a Spinc structure s on M consists of the following data:

• A rank-2 Hermitian bundle S over M , called spinor bundle,
• A Clifford multiplication, i.e., cl : T ∗M → EndC(S) an isometry onto the group of

traceless, skew-Hermitian endomorphisms such that cl(e1)cl(e2)cl(e3) = 1S for any
local oriented orthonormal basis {e1, e2, e3} for T ∗M .

The first Chern class of the bundle S is denoted by c1(s). With regard to the second part
of the data, given x ∈ M and any oriented orthonormal basis {e1, e2, e3} for T ∗xM , one
can choose a frame for the fiber Sx so that

cl(e1) =

[
i 0
0 −i

]
, cl(e2) =

[
0 −1
1 0

]
, cl(e3) =

[
0 i
i 0

]
.

Comparing the above definition to the definition of a Spinc structure from Section 2,
the orthogonal complement of a nowhere vanishing unit length vector field results in
an oriented 2-plane field L on M which can be seen as the kernel of a unique nowhere
vanishing smooth 1-form λ dual to that vector field. Then, the corresponding spinor
bundle splits as SL = C⊕ L, and the Clifford multiplication is defined by

cl(λ) =

[
i 0
0 −i

]
,

while for any smooth unit length 1-form µ orthogonal to λ, cl(µ)(1, 0) = (0, µ†) where µ†

denotes the vector field dual to µ. Conversely, the latter data defines a unique smooth
unit length 1-form λ on M with cl(λ) =

[
i 0
0 −i

]
, whose dual vector field is the nowhere

vanishing vector field we started with. The set of isomorphism classes of Spinc structures
on M is a principal homogeneous space for H2(M ;Z). The action of a class e ∈ H2(M ;Z)
on a Spinc structure s with spinor bundle S and Clifford multiplication cl results in a Spinc

structure s⊗ e with spinor bundle S⊗E where E is a Hermitian line bundle over M with
c1(E) = e, and with Clifford multiplication cl⊗ 1E .

Having fixed a Spinc structure s on M , consider the space C(M, s) consisting of pairs
of the form (A,Ψ) where A is a Spinc connection, i.e., a Hermitian connection on S that
satisfies the Leibniz rule

∇A(cl(λ)Ψ) = cl(∇λ)Ψ + cl(λ)(∇AΨ),

with ∇λ denoting the covariant derivative with respect to the Levi-Civita connection,
and Ψ is a smooth section of the spinor bundle S. A Spinc connection A on S induces
a Hermitian connection At on the determinant bundle det(S). Conversely, a Hermitian
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connection on det(S) together with the Levi-Civita connection on TM induce a Spinc

connection on S. The Lie group G = C∞(M,S1) acts on C(M, s) by the rule

G × C(M, s) → C(M, s)

(u, (A,Ψ)) 7→ (A− u−1du⊗ 1S, uΨ).

A configuration (A,Ψ) is called reducible if Ψ = 0, otherwise it is called irreducible. Note
that the action of G on (A,Ψ) has non-trivial stabilizer if and only if (A,Ψ) is reducible.

With the preceding understood, the Seiberg–Witten equations read:

∗FAt = Ψ†τΨ,

DAΨ = 0. (14)

Here, ∗FAt is the Hodge dual of the curvature form of At, Ψ†τΨ : T ∗M → iR is defined
by Ψ†τΨ(λ) = Ψ†cl(λ)Ψ, and DA is the Dirac operator defined to be the composition

C∞(M,S)
∇A−→ C∞(M,T ∗M ⊗ S)

cl−→ C∞(M, S).

The Seiberg–Witten equations arise as the variational equations of the Chern–Simons–
Dirac functional. Having fixed a base Spinc connection A0 on S, the latter can be written
as

csd(A,Ψ) = −1

8

∫
M

(At − A0
t) ∧ (FAt + FA0

t) +
1

2

∫
M

〈DAΨ,Ψ〉. (15)

Note that the moduli space of solutions to the Seiberg–Witten equations is invariant
under the action of G, while the value of the Chern–Simons–Dirac functional changes as
follows:

csd(u · (A,Ψ))− csd(A,Ψ) = 2π2(c1(s) ∪ [u]) ∩ [M ],

for every u ∈ G, where [u] ∈ H1(M ;Z) is represented by − i
2πu
−1du. In particular, the

Chern–Simons–Dirac functional is gauge invariant if and only if c1(s) is torsion.
One can perturb the Seiberg–Witten equations using a closed 2-form $:

∗FAt = Ψ†τΨ + i ∗$,
DAΨ = 0. (16)

The above perturbed Seiberg–Witten equations are obtained from a perturbed version of
the Chern–Simons–Dirac functional defined by

csd$(A,Ψ) = csd$(A,Ψ) +
1

4

∫
M

(At − A0
t) ∧ i$. (17)

The perturbed Chern–Simons–Dirac functional changes under the action of G as follows:

csd$(u · (A,Ψ))− csd$(A,Ψ) = 2π2((c1(s) +
1

2π
[$]) ∪ [u]) ∩ [M ].

The cohomology class c = 2π2(c1(s) + 1
2π [$]) ∈ H2(M ;R) is called the period class. Note

that if the period class is non-zero, then the perturbed Seiberg–Witten equations in (16)
have no reducible solutions. If $ is an exact 2-form, then the resulting perturbation is
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called an exact perturbation, otherwise it is called a non-exact perturbation. A non-exact
perturbation is called

• Balanced if c is zero.
• Positively/Negatively monotone if c = κ2π2c1(s) for some κ > 0 or κ < 0 respectively.

In order to define the Seiberg–Witten Floer chain complexes, Kronheimer and Mrowka
blow up (see Section of [17]) the quotient B(M, s) = C(M, s)/G along the singular locus
consisting of gauge equivalence classes of reducible solutions. Note that the latter set
is non-empty if and only if the period class is zero. In this case, the resulting Banach
manifold Bσ(M, s) with boundary admits a vector field induced by the L2-gradient of
the perturbed Chern–Simons–Dirac functional in (17). This vector field is tangent to the
boundary of Bσ(M, s) and its critical points are pre-images of gauge equivalence classes of
solutions to the equations in (16) under the blow-down map. The critical points that map
to gauge equivalence classes of reducible solutions to the equations in (16) fall into two
categories depending on whether or not the outward normal direction at a critical point on
the boundary is contained in the corresponding stable manifold. These are called boundary
stable and boundary unstable, respectively. The Seiberg–Witten Floer chain complexes

CM ∗(M, s, c[$]), ĈM ∗(M, s, c[$]), and

̂

CM ∗(M, s, c[$]) are the free Z-modules generated
respectively by boundary stable and boundary unstable critical points, irreducible and
boundary unstable critical points, and irreducible and boundary stable critical points;

the respective differentials ∂̄, ∂̂, and ∂̌ are defined via a suitable count of trajectories of
the aforementioned vector field. Here, c[$] indicates the period class of the perturbation
defined by the closed 2-form $. In order to ensure transversality, one may need to use
additional abstract perturbations. We will elaborate on this matter in the next subsection.

The homologies of the chain complexes (CM ∗(M, s, c[$]), ∂̄), (ĈM ∗(M, s, c[$]), ∂̂), and

(

̂

CM ∗(M, s, c[$]), ∂̌) are respectively denoted by HM ∗(M, s, c[$]), ĤM ∗(M, s, c[$]), and̂

HM ∗(M, s, c[$]). Each of these groups is relatively graded by Z/pM where pM denotes
the divisibility of c1(s), each has the structure of a Z(U)⊗∧∗(H1(M ;Z)/torsion)-module,
and they fit into a long exact sequence

· · · → ĤM ∗
p∗−→ HM ∗

i∗−→

̂

HM ∗
j∗−→ ĤM ∗ → · · ·

for each (M, s, c[$]), analogous to the homology long exact sequence for a pair of a man-
ifold and its boundary.

4.2. A twisted Seiberg–Witten Floer cohomology on Y

Having fixed a Spinc structure s on M , and a strongly s-admissible Heegaard diagram
(Σ,A,B, z) arising from a self-indexing Morse funcrion f and a gradient-like vector field v,
we described in Section 2 a 3-manifold Y 'M#gS

1×S2, a stable Hamiltonian structure
(a,w) with associated Reeb vector field R, and an auxiliary 1-form â on Y . Next, we
choose a Riemannian metric on Y so that

• ∗â = w,
• |R| = 1.
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Choosing such a Riemannian metric on Y is equivalent to choosing a compatible complex
structure on the 2-plane field K−1 = ker(â) oriented by w. The latter determines a
canonical Spinc structure s0 on Y satisfying

• 〈c1(s0), [S2]〉 = 2 where [S2] is the positive generator of H2(H0;Z),
• 〈c1(s0), [S2]〉 = −2 where [S2] is the positive generator of H2(Hp;Z) for some p ∈ Λ,
• s0 ⊗ PD(Γ) = s.

The corresponding spinor bundle S0 splits into ±i-eigenbundles of cl(â) as C ⊕ K−1,
where the left most summand is the +i-eigenbundle, and there exists a canonical (modulo
action of C∞(Y, S1)) Spinc connection A0 on S0 such that DA0(1C, 0) = 0. With the
preceding understood, the spinor bundle S associated to the Spinc structure s splits into
±i-eigenbundles of cl(â) as E ⊕ (E ⊗ K−1) where E is a Hermitian line bundle over Y
with c1(E) = PD(Γ), and for any Spinc connection A on S we can write At = At0 + 2A
where A is a Hermitian connection on E. Now, we introduce a perturbed version of the
Seiberg–Witten equations:

∗FA = r(ψ†τψ − i ∗ w)− ∗1

2
FA0

,

DAψ = 0, (18)

where r > 0 is a real number and ψ is a smooth section of S. If we write Ψ = (2r)1/2ψ, the
equations in (18) would become the same as the equations in (16) with $ = −2rw. Note
that since c1(s) = [w] in H2(Y ;R), the above equations admit no reducible solutions for
r > π; in fact, the equations are negatively monotone perturbed. In this case, a solution
(A,ψ) of the equations in (18) is non-degenerate if the kernel of the following first order,
elliptic, self-adjoint operator on C∞(Y ; iT ∗Y ⊕ S⊕ iR) has trivial kernel:

L(A,ψ)(b,η,φ) =

∗db− dφ−
(
r
2

)1/2
(ψ†τη+ η†τψ)

DAη+ (2r)1/2(cl(b)ψ + φψ)

∗d ∗ b−
(
r
2

)1/2
(η†ψ − ψ†η)

 . (19)

One can achieve non-degeneracy of all irreducible solutions to the perturbed Seiberg–
Witten equations in (18) via an additional exact perturbation with small norm from a
certain Banach space Ω of smooth 1-forms. Having chosen µ ∈ Ω, the resulting equations
would read

∗FA = r(ψ†τψ − i ∗ w)− i ∗ dµ− ∗1

2
FA0

,

DAψ = 0. (20)

Given a smooth section ψ of S, write ψ = (α, β). Recall that there exists a distinguished
closed integral curve of R that intersects the Heegaard surface Σ at the base point z,
denoted γz. Fix a Hermitian connection AE on E that is flat on H0 and has holonomy 1
around γz, and a smooth non-decreasing function ϕ : [0,∞)→ [0,∞) satisfying ϕ(x) = 0
for 0 ≤ x < 7

16 and ϕ(x) = 1 for x ≥ 9
16 . Then, given a pair (A,ψ) of a Hermitian
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connection A on E and a smooth section ψ of S, define

Â := A− 1

2
ϕ(|α|2)|α|−2(ᾱ∇Aα− α∇Aᾱ),

xz(A,ψ) :=

∫
γz

i

2π
(Â−AE).

The function xz is not invariant under the action of C∞(Y, S1), but it is invariant under
the action of a subgroup GMΛ

that is the kernel of the homomorphism C∞(Y, S1) → Z
sending u ∈ C∞(Y, S1) to

∫
γz

i
2πu
−1du. A pair (A,ψ) of a Hermitian connection A on

E and a smooth section of S is called holonomy non-degenerate if xz(A,ψ) − 1
2 /∈ Z.

There exists a residual set in Ω such that for every µ in this set and r ∈ (π,∞) in the
complement of a discrete countable set dependent upon µ, all solutions to the equations
in (20) are irreducible, non-degenerate, and holonomy non-degenerate. Moreover, the
set ZSW,r consisting of gauge equivalence classes of solutions to (20) is finite. With the

preceding understood, the set ẐSW,r consisting of GMΛ
-orbits of solutions to (20) admits

a 1− 1 correspondence

ẐSW,r ↔ ZSW,r × Z, (21)

where projection onto the Z-factor is defined by the function xz. Having said that, we
define twisted versions of the Seiberg–Witten Floer cohomology on Y as follows: let C∞SW,r
and C−SW,r denote the free Z-modules generated respectively by ẐSW,r and the subset of

ẐSW,r identified with ZSW,r × {· · · ,−2,−1} via (21); and let C+
SW,r denote the quotient

C∞SW,r/C
−
SW,r. The relative grading on C∞SW,r is defined to be the negative of the spectral

flow for a generic path of self-adjoint Fredholm operators starting and ending at the
version of the operator in (19) for a solution of the equations in (20). Roughly speaking,
the spectral flow of a generic path of self-adjoint Fredholm operators starting and ending
at the associated versions of the operator in (19) is the net number of negative eigenvalues
becoming positive.

The upcoming definition of the differential on the above defined Seiberg–Witten Floer
chain complexes use solutions to the following flow equations:

∂

∂s
A(s) = − ∗ FA(s) + r(ψ(s)†τψ(s)− i ∗ w)− ∗1

2
FA0 − i ∗ dµ,

∂

∂s
ψ(s) = −DA(s)ψ(s), (22)

A solution (A(s), ψ(s)) of the above equations with lims→±∞(A(s), ψ(s)) = (A±, ψ±)
being solutions to the equations in (20) is called an instanton. An instanton (A(s), ψ(s))
connecting two irreducible, non-degenerate solutions to the equations in (20) is called
non-degenerate if the operator ∂

∂s +L(A(s),ψ(s)) on C∞(R× Y ; iT ∗Y ⊕ S⊕ iR) has trivial
cokernel. In order to make sure that all instantons are non-degenerate, we need to use
certain generic perturbations from a Banach space P of tame perturbations as defined by
Kronheimer and Mrowka in Section 11 of [17]. These are smooth gauge invariant functions
on the configuration space with values in iT ∗M⊕S. In particular, Ω is contained in P. We
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suppress additional tame perturbations from the notation for sake of exposition. Given
r ∈ (π,∞) and µ ∈ Ω so that all solutions to the equations in (20) are irreducible and non-
degenerate, we may choose tame perturbations to vanish to second order on any solution
of the equations in (20) and at all points of a non-degenerate instanton with Fredholm
index at most 2. We denote the subset of such perturbations in P by Pµ. There exists a
residual subset of Pµ such that all instantons are non-degenerate. For the remainder of
this section, we assume that µ ∈ Ω, r ∈ (π,∞), and q ∈ Pµ are chosen so that all solutions
to the equations in (20) are irreducible, non-degenerate, holonomy non-degenerate, and
all instanton solutions to the equations in (22) are non-degenerate. Having said that,
a Fredholm index-0 instanton arises as a constant map from R to the moduli space of
solutions to the equations in (20). The differential on C∞SW,r is defined by

∂SW,r∞ [A+, ψ+] =
∑

[A−,ψ−]∈ẐSW,r

σ1([A+, ψ+], [A−, ψ−])[A−, ψ−],

where σ1([A+, ψ+], [A−, ψ−]) is a signed count, modulo the action of the Lie group GMΛ

and translations along the R-factor, of Fredholm index-1 instantons (A(s), ψ(s)) with
lims→+∞(A(s), ψ(s)) = (A+, ψ+) and lims→−∞(A(s), ψ(s)) = u · (A−, ψ−) for some u in
GMΛ . There exists a certain closed 2-form on Y representing the Poincaré dual of [γz]
such that

xz(A+, ψ+)− xz(A−, ψ−) =

∫
R×Y

i

2π
FÂ(s) ∧$z ≥ 0 (23)

(see Proposition 7.1 in [21]). Therefore, the differential ∂SW,r∞ preserves the filtration
induced by the function xz, and hence induces differentials on C−SW,r and C+

SW,r. The

resulting homologies are denoted respectively by H∞SW,r, H
−
SW,r, and H+

SW,r. The latter
fit into a long-exact sequence induced by the natural short-exact sequence

0 −→ C−SW,r
i−→ C∞SW,r

π−→ C+
SW,r −→ 0. (24)

Meanwhile, a degree 2 chain map on C∞SW,r is defined by

U [A+, ψ+] =
∑

[A−,ψ−]∈ẐSW,r

σ2,x([A+, ψ+], [A−, ψ−])[A−, ψ−],

where σ2,x([A+, ψ+], [A−, ψ−]) is a signed count, modulo the action of the Lie group GMΛ

and translations along the R-factor, of Fredholm index-2 instantons (A(s), ψ(s)) such that
lims→+∞(A(s), ψ(s)) = (A+, ψ+) and lims→−∞(A(s), ψ(s)) = u · (A−, ψ−) for some u in
GMΛ

, and ψ(0)(x) = (0, β(0)(x)). Similarly, we can define degree 1 chain maps on C∞SW,r
for any given element of H1(Y ;Z)/torsion by a weighted sum of the algebraic intersection

numbers of α(s)
−1

(0) from Fredholm index-1 instantons (A(s), ψ(s) = (α(s), β(s))) with
the cylinder over a cycle representing that element. As a result, H∞SW,r, H

−
SW,r, and H+

SW,r

each has the structure of a Z[U ]⊗ ∧∗(H1(Y ;Z)/torsion)-module.
For any one of the flavors H∞SW,r, H

−
SW,r, and H+

SW,r, there are canonical isomorphisms

between the homology groups corresponding to two different choices of data (r0, µ0, q0)
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and (r1, µ1, q1). In order to prove this, consider a generic path {(rs, µs, qs)}s∈[0,1] of
such data to be used with the equations in (20). Then, Kronheimer and Mrowka explain
in Section 25 of [17] how to construct a chain map between the corresponding versions
of the chain complexes by counting Fredholm index-0 instantons. These chain maps
induce isomorphisms on homology that are independent of the choice of the generic path
{(rs, µs, qs)}s∈[0,1]. Therefore, the homology groups corresponding to the perturbation
data (r0, µ0, q0) and (r1, µ1, q1) are canonically isomorphic; in particular, the subscript r
can be dropped from the notation. For the remainder of this article we denote the three
flavors of the twisted version of Seiberg–Witten Floer cohomology of Y by H∞SW , H−SW ,

and H+
SW , respectively.

With the preceding understood, the aim of this section is to explain what goes into
the proof of the following theorem:

Theorem 4.1 (Theorem 3.4 in [18]). There exists a commutative diagram

· · · −→ ech− −→ ech∞ −→ ech + −→ · · ·y y y
· · · −→ H−SW −→ H∞SW −→ H+

SW −→ · · ·
where the top row is the long-exact sequence for ech associated to (4) and the bottom row
is the long-exact sequence for the twisted version of the Seiberg–Witten Floer cohomology
of Y associated to (24) while the vertical arrows are canonical isomorphisms that reverse
the sign of the relative gradings and intertwine the Z[U ]⊗∧∗(H1(M ;Z)/torsion)-module
structures.

The proof of the above theorem is along the same lines as Taubes’s proof of the equivalence
between ECH and Seiberg–Witten Floer cohomology [34, 35, 36, 37, 38], but in many
ways it also borrows from the ideas involved in the proof of the equivalence between
periodic Floer homology and Seiberg–Witten Floer cohomology by Lee and Taubes [24].
In particular, a priori estimates on the energy of instanton solutions to (22) follow from
arguments that are exact analogs of those in the latter. The overarching idea is to
filter the embedded contact homology chain complex via the symplectic action and define
monomorphisms from each filtration level into the Seiberg–Witten Floer cochain complex.
The desired isomorphism then follows from taking the direct limit. Next we explain how
the aforementioned homomorphisms are constructed in the present setting. For precise
statements of the results summarized in this section that lead to a proof of Theorem 4.1,
see Theorem 1.5 in [21].

A filtration on the chain complex ecc∞ is defined by a Z-valued function on Ẑech,M .

For a given [Θ, Z] ∈ Ẑech,M where Θ is identified with (υ, {(mp, op)}p∈Λ) via (9), this
function assigns to it the integer

∑
p∈Λ |mp| + 2|op|o where |0|o = 0, | ± 1|o = 1, and

|{1,−1}|o = 2. Given a finitely generated subgroup H of H∞SW , there exists LH > 0 such
that for any L ≥ LH there exists L′ ≥ L with the following significance: suppose r > π is
sufficiently large and (µ, q) ∈ Ω×P is suitably generic subject to the constraints discussed
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in the previous subsection. Denote by ẐL′ech,M the subset of Ẑech,M consisting of elements

with filtration level less or equal L′ and by ecc∞,L
′

the free Z-module that it generates.
Then, there exists an injective Z-equivariant map Φ̂r : ẐL′ech,M → ẐSW,r that induces a
monomorphism

Lr : ecc∞,L
′
→ C∞SW,r,

which intertwines the respective differentials and the Z[U ]⊗∧∗(H1(Y ;Z)/torsion)-actions.
Furthermore, the image of the induced map on homology contains H. The assertion about
the respective differentials and the Z[U ]⊗∧∗(H1(Y ;Z)/torsion)-actions requires also the
construction of an R-equivariant map Ψr between the moduli spaces of J-holomorphic
curves and instantons. The latter map together with the interpretation of the right-hand
side of (23) as the algebraic intersection number of a J-holomorphic curve in R× Y with
the cylinder R× γz verifies the claim about the remaining two equivalences and the long-
exact sequences. The construction of both Φ̂r and Ψr make use of solutions to the vortex
equations on C. Next we talk about these equations and properties of their solutions.

4.3. Vortices on C
Given a pair of a smooth imaginary-valued 1-form A0 and a smooth complex-valued

function α0 on C, the vortex equations on C read:

∗dA0 = −i(1− |α0|2),

∂̄A0
α0 = 0. (25)

Here, we assume that the complex plane is equipped with the standard Euclidean metric,
and ∂̄A0

denotes the ∂-bar operator on smooth sections of the trivial complex line bundle
over C. Recall that a smooth imaginary valued 1-form on C determines a holomorphic
structure on the trivial complex line bundle over C. These equations are subject to a pair
of constraints:

• |α0|2 ≤ 1,
•
∫
C(1− |α0|2)dvol = 2πm for some positive integer m.

A few quick observations are in order. First, if (A0, α0) is a solution of the equations in
(25) subject to the constraint in the first bullet, then it follows from the strong maximum
principle that either |α0| < 1 or |α0| ≡ 1. Second, |α0| has no non-zero local minimum
unless |α0| ≡ 1. Assuming the contrary, in a neighborhood of a local minimum of |α0| we
can write |α0| = eu for a smooth function u < 0. Then, the top equation in (25) implies
that −∆u = 1−e2u. At a non-zero local minimum of |α0|, the right-hand side of the latter
equation is strictly positive, while the left-hand side is strictly negative. Therefore we get
a contradiction. On the other hand, using the constraint in the second bullet above, we

deduce that 1− |α0|2 ≤ c0e−
√

2dist(·,α−1
0 (0)) where c0 > 1 is a constant depending only on

the integer m.
The group C∞(C;S1) acts on the space C∞(C; iT ∗C ⊕ C) according to the following

rule:
u · (A0, α0) = (A0 − u−1du, uα0).
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Note that the set of solutions to the equations in (25) remain unchanged under this action.
Meanwhile, the zeroes of α0 are isolated and they appear as roots of the polynomial

zm + σ1z
m−1 + · · ·+ σm−1z + σm,

where each σk is a function on C∞(C; iT ∗C⊕ C) defined by

σk(A,α0) =
1

2π

∫
C
zk(1− |α0|2)dvol

Denote by Cm the space of C∞(C;S1)-orbits of solutions to the equations in (25) subject
to the above constraints. Then Cm is diffeomorphic to Cm via a map sending [A0, α0]
to (σ1(A0, α0), . . . , σm(A0, α0)). The tangent space to Cm at a point [A0, α0] is given
by pairs of smooth complex-valued L2 functions in the kernel of the following bounded
complex-linear Fredholm operator on C∞(C;C⊕ C),

ϑ(q, ζ) = (∂q + 2−1/2ᾱ0ζ, ∂̄A0ζ + 2−1/2α0q).

The tangent space admits a Hermitian inner product defined by

〈(q, ζ), (q′, ζ ′)〉 =
1

π

∫
C
(q̄q′ + ζ̄ζ ′)dvol .

which induces a Kähler metric on Cm. This metric coincides with the standard Kähler
metric on Cm if m = 1. The formal L2-adjoint of the operator ϑ is defined by

ϑ†(p, ξ) = (−∂̄p+ 2−1/2ᾱ0ξ,−∂A0
ξ + 2−1/2α0p).

Hence,

ϑϑ†(p, ξ) = (−∂∂̄p+ 2−1/2|α0|2ξ,−∂̄A0
∂A0

ξ + 2−1/2|α0|2p),
when (A0, α0) defines a solution of the equations in (25). For more details on properties
of solutions to the vortex equations, the reader is encouraged to refer to [39] and [15].

Given ν ∈ C∞(S1;R) and µ ∈ C∞(S1;C), we can define a Hamiltonian function h on
Cm as follows:

h([A0, α0]) =
1

4π

∫
C

(2ν|z|2 + µz̄2 + µ̄z2)(1− |α0|2)dvol .

The imaginary part of the Kähler metric on Cm defines a symplectic form, therefore the
function h defines a Hamiltonian vector field on Cm whose integral curves c(t) obey

i

2
c∗(

d

dt
)(1,0) +∇(1,0)h |c(t) = 0, (26)

where ∇(1,0) denotes the holomorphic part of the gradient. A solution c(t) of the equation
in (26) satisfying c(t + T ) = c(t) for some T > 0 is called periodic. Given a smooth
map c : S1 → Cm, the bundle c∗T1,0Cm admits a Hermitian connection arising from
the Levi-Civita connection on T1,0Cm. A periodic solution c of the equation in (26) is
called non-degenerate if the linearization of the Hamiltonian flow, namely the operator
on C∞(S1; c∗T1,0Cm) sending ζ to i

2∇S1ζ + (∇ζ∇(1,0)h)|c, has trivial kernel. Here ∇S1

denotes the covariant derivative for the Hermitian connection on c∗T1,0Cm.
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Now let γ be a closed integral curve of the Reeb vector field R, and fix a unitary
trivialization of K−1|γ . Using the latter and the exponential map, identify a tubular
neighborhood of γ in Y with a tubular neighborhood of γ × {0} in γ × C. Let % > 0
be the radius of the latter, and (t, z) denote the coordinates on γ × C where t is the
affine coordinate on γ with values in R/LγZ, Lγ being the length of γ, and z is the
complex coordinate on C. We can arrange that the linearization of the aforementioned

identification along γ × {0} sends ∂
∂t to

Lγ
2πR. In these coordinates, w can be written as

w =
i

2
dz ∧ dz̄ − 2(νz + µz̄)(dz̄ ∧ dt)− 2(νz̄ + µz)(dz ∧ dt) + · · · ,

where ν is a real-valued function on S1, since w is a closed 2-form, µ is a complex-valued
functions on S1, and the norms of the unwritten terms are bounded by c0|z|2. With the

preceding understood, the next lemma is crucial to the construction of the map Φ̂r.

Lemma 4.2 (Lemma 3.2 in [21]). Suppose that Θ ∈ Zech,M and γ is a closed integral
curve of R from Θ. Then for m = 1 there exists a unique periodic solution of the equation
in (26) associated to the pair (ν,µ) arising from a tubular neighborhood of γ as above.
This solution arises as the constant map from S1 to Cm represented by a pair (A0, α0) such
that α−1

0 (0) = 0, and it is non-degenerate. Moreover, for any p ∈ Λ and γ ∈ {γ+
p , γ

−
p },

there are no periodic solutions to the equations in (26) if m > 1.

4.4. Construction of the map Φ̂r

The map Φ̂r arises as the Z-equivariant covering of a map Φr from ZL′ech,M to ZSW,r.
The latter map is constructed in two steps. First, use periodic solutions to the equation
in (26) for m = 1 in order to associate to each Θ ∈ ZL′ech,M the gauge equivalence class of

a pair (AΘ, ψΘ) of a Hermitian connection on E and a smooth section of S that nearly
solves the equations in (20). Second, use perturbation theory for linear operators to
show existence and uniqueness, up to gauge, of an honest solution of the equations in
(20) associated to Θ. Various properties of the map Φr are summarized in the following
proposition.

Proposition 4.3 (Proposition 3.1 in [21]). There exists κ > π such that for any e > 1
and L > κe, there exists κL > κ satisfying the following: fix r ≥ κL and µ ∈ Ω with small
norm. Then there exists an injective map Φr : ZLech,M → ZSW,r whose image contains

gauge equivalence classes of (A,ψ = (α, β)) with

m(A,ψ = (α, β)) = r

∫
Y

(1− |α|2)dvol < e.

Moreover, if (A,ψ = (α, β)) is a solution of the equations in (20) whose gauge equivalence
class is Φr(Θ) for some Θ ∈ ZLech,M , then

• (A,ψ = (α, β)) is both non-degenerate and holonomy non-degenerate.
• m(A,ψ = (α, β)) < 2π

∑
γ∈Θ Lγ + κ−1.
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• α−1(0) is a disjoint union of embedded closed curves which are in 1−1 correspondence
with components of Θ, and each lies in a κr−1/2 radius tubular neighborhood of its
partner from Θ.
• The map Φr extends to an injective map from ZLech,M × Z → ZSW,r × Z which is

identity when restricted to the Z-factors. The latter map defines a Z-equivariant map
Φ̂r : ẐLech,M → ẐSW,r via the identification in (9) and the one defined by xz.

A priori estimates on solutions to the equations in (20)—such as those in the next lemma—
are crucial to the proof of the above proposition.

Lemma 4.4 (Lemma 2.1 in [21]). There exists κ > 1 such that if r ≥ κ and µ ∈ Ω has
small norm, then a solution (A,ψ = (α, β)) of the equations in (20) satisfies the following:

• |α| ≤ 1 + κ
r ,

• |β|2 ≤ κ
r (1− |α|2) + κ3

r2 ,

• |∇Aα|2 ≤ κr(1− |α|2) + κ3,

• |∇At0+Aβ|2 ≤ κ(1− |α|2) + κ3

r .

Furthermore, for any i ≥ 1, there exists κi > 1 such that if r ≥ κi and µ ∈ Ω has small
norm, then

• |(∇A)iα|+ r1/2|(∇At0+A)iβ| ≤ κiri/2.

The proof of the above lemma is an application of the Bochner–Weitzenböck formula for
the Dirac operator and standard elliptic regularity arguments. The above estimates are
exact analogs of those in Lemmas 2.2-2.4 of [33] and in Section 2e of [31]. An improvement
over the above lemma’s estimates is stated as follows:

Lemma 4.5 (Lemma 2.3 in [21]). There exists κ > 1 with the following property: suppose
r ≥ κ and µ ∈ Ω has small norm. Let (A,ψ = (α, β)) be a solution of the equations
in (20), and Y∗ ⊂ Y denote the subset of points where 1− |α|2 ≥ κ−1. Then

|1− |α|2| ≤ e−
√
rdist(·,Y∗)

κ + κr−1.

In addition to the above a priori estimates on a solution (A,ψ = (α, β)) of the equations
in (20), we deduce several facts about the set α−1(0). What follows is part of the content
of Proposition 2.4 in [21]. There exists κ > π with the following property: suppose
r ≥ κ and µ ∈ Ω has small norm. Let (A,ψ = (α, β)) be a solution of the equations in
(20), and Yr ⊂ Y denote the subset of points with distance κ2r−1/2 from the curves in
∪p∈Λ{γ+

p , γ
−
p }. Then, α is transversal to the zero section of the Hermitian bundle E over

the closure of Yr. Moreover, α−1(0) consists of at most g components each of which is
either a properly embedded arc or a circle, and it has the following peoperties:

• The tangent line to each component has distance at most κr−1/2 from the line along
the Reeb vector field R.
• The intersection of each component with any Hp lies where 1− 3 cos2 θ > 0.
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• The intersection of α−1(0) with Mδ ⊂ Yr consists of g properly embedded segments
that connect, in a 1−1 manner, the boundaries of the radius δ coordinate balls around
index-1 and index-2 critical points of the Morse function f .

Next we briefly explain how the map Φr as in Proposition 4.3 is constructed, following
the general philosophy due to Taubes. The first of the two steps in the construction
is to use non-degenerate periodic solutions to the equation in (26) to construct a pair
of a Hermitian connection on E and a smooth section of S on a neighborhood of each
component of Θ, and then extend it to the rest of Y in a canonical manner. This is made
possible by Lemma 4.2. The resulting pair nearly solves the equations in (20). In order
to explain how such a pair is constructed, we start with a preliminary digression. The
point in C1 identified with the origin in C via the identification described in the previous
subsection is called the symmetric vortex, because it is invariant under the action of S1 by
rotations on C. There exists a unique pair (A0, α0) which defines the symmetric vortex
and can be written as

• A0 = AC − 1
2a0(z−1dz − z̄−1dz̄),

• α0 = |α0| z|z| ,
where AC is the trivial flat connection on the trivial complex line bundle over C, and a0

is a real-valued function on C. Meanwhile, the following equation has a unique smooth
L2 solution

ϑϑ†(p, ξ) = −(
1√
2

(1− |α0|2), ∂A0α0),

which can be written as (p, ξ) = (21/2zα−1
0 ∂A0

α0,−z̄ᾱ−1
0 (1 − |α0|2). Now, given Θ in

ZLech,M and γ ∈ Θ, define a function rγ : C→ C by rγ(z) = (
Lγ
2π r)

1/2z. Fix ρ ∈ (0, 1
100%)

and let Uγ and U ′γ denote respectively the radius 4ρ and radius ρ tubular neighborhoods
of γ. We choose ρ in such a way that Uγ ∩ Uγ′ = ∅ for any distinct pair γ, γ′ ∈ Θ. Next,
denote by U0 = Y \ ∪γ∈ΘU

′
γ , and let χγ = χ(|z|/ρ − 1). Note that the restriction of the

Hermitian bundle E to any U ∈ {U0}∪{Uγ}γ∈Θ admits a Hermitian trivialization so that
the trivializing unit length section of the bundle E|U0 is identified with the section z

|z| of

the bundle E|Uγ under the corresponding trivialization. With the preceding understood,
write a Hermitian connection A on E|U as A = AC + aU where aU is an imaginary-valued
1-form on U , and a smooth section of S|U as (αU , βU ). We will define a pair (AΘ, ψΘ)
of a Hermitian connection on E and a smooth section of S via their restrictions to each
U ∈ {U0} ∪ {Uγ}γ∈Θ.

• If U = U0, then aU0 = 0 and ψ0 = (αU0 , βU0) = (1, 0).
• If U = Uγ for some γ ∈ Θ, then

aU = χγ
[
i21/2νr∗γp dt−

1

2
r∗γ
(
a0(z−1dz − z̄−1dz̄)

)]
− (1− χγ)u−1

r dur

and (αU , βU ) = (χγr
∗
γα0 + (1 − χγ)ur,χγiµr

−1/2r∗γξ) where ur = r∗γ(z/|z|). Denote
the corresponding pair of Hermitian connection on E|Uγ and smooth section of S|Uγ
by (Aγ , ψγ).
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Since the transition function between trivializations of E|U and E|Uγ for γ ∈ Θ is given
by z/|z| over U ∩ Uγ , the collection {(A0, ψ0), {(Aγ , ψγ)}γ∈Θ} defines the desired pair
(AΘ, ψΘ).

With (AΘ, ψΘ) in hand, write a solution (A,ψ) of the equations in (20) as

(A,ψ) = (AΘ, ψΘ) + ((2r)1/2b,η),

where b is an imaginary-valued 1-form on Y and η is a smooth section of S. The pair (A,ψ)
solves the equations on (20) if and only if b = (b,η,φ) ∈ C∞(Y ; iT ∗Y ⊕ S⊕ iR) solves a
certain linear first order elliptic differential equation. This equation can be written as

L(AΘ,ψΘ)b + r1/2b ∗ b = u,

where b 7→ b ∗ b is a quadratic bundle map of iT ∗Y ⊕ S ⊕ iR and u has bounded norm.
A careful investigation of the eigenvalue equation L(AΘ,ψΘ)b = λb yield a solution of the
above equations (See Appendix to [21] for details). The latter is used to define Φr(Θ) for
sufficiently large r > π.

We end this section with a few brief remarks as to the properties of the map Φr listed
in Proposition 4.3. The second and the third bullets of Proposition 4.3 follow from the
construction of the map Φr and a priori estimates from Lemmas 4.4 and 4.5. The assertion
in the first bullet of Proposition 4.3 that the image of the map Φr is represented by pairs
that are holonomy non-degenerate follows from Lemma 4.2 and the observation that Â is
flat with covariant constant section α/|α| near γz. Therefore, xz(A,ψ) is an integer since
the connection AE on E was chosen to have trivial holonomy around γz. As for the fourth
bullet, fix a cycle Z ∈ H2(Y ; Θ,Θ0) so that it has zero algebraic intersection number with
the curve γz. Then, the construction of the map Φr associates to the equivalence class
[Θ, Z] the GMΛ -orbit of a solution (A,ψ) of the equations in (20) with xz(A,ψ) = 0.

5. Back to the Seiberg–Witten Floer homology of M

The goal of this section is to explain the relation between the Seiberg–Witten Floer
homology of M and the twisted Seiberg–Witten Floer cohomology of Y as described in
Section 4.2. More precisely, we discuss the following filtered connected sum theorem for
Seiberg–Witten Floer homology:

Theorem 5.1 (Theorem 4.1 in [18]). There exists a commutative diagram

· · · −→ H−SW −→ H∞SW −→ H+
SW −→ · · ·y y y

· · · −→ ĤM ∗(M, s, cb)⊗Z V̂⊗g −→ HM ∗(M, s, cb)⊗Z V̂⊗g −→

̂

HM ∗(M, s, cb)⊗Z V̂⊗g −→ · · ·
where the top row is the long-exact sequence for the twisted version of the Seiberg–Witten
Floer cohomology of Y associated to (24) and the bottom row is the standard long-exact
sequence for the Seiberg–Witten Floer homology of M with balanced perturbations tensored
with V̂⊗g, while the vertical arrows are isomorphisms that reverse the sign of the relative
gradings and intertwine the Z[U ]⊗ ∧∗(H1(M ;Z)/torsion)-module structures.
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The above theorem follows from an S1-equivariant formulation of Seiberg–Witten Floer
homology and a connected sum formula. Before we state these results, we need some
notation and terminology. In this regard, let (C∗, ∂∗) be a chain complex of Z-modules
that admits a degree −2 chain map U . Then one may consider the mapping cone of the
U -map defined by

(SU (C∗), SU (∂∗)) := (C∗ ⊗Z Z[W ]/(W 2), ∂∗ ⊗ σ+ U ⊗W ),

where σ(p+ qW ) := p− qW and Z[W ]/(W 2) is graded so that W is of degree 1. Hence,
multiplication by 1⊗W defines a degree 1 chain map. Conversely, introduce the Z-modules

V∞ := Z[U,U−1],

V− := UZ[U ],

V+ := Z[U,U−1]/UZ[U ].

Suppose (C∗, ∂∗) is a chain complex of Z-modules that admits a degree 1 chain map W
with W 2 = 0. Then we can define the following chain complexes:

E∞(C∗) := C∗ ⊗Z V∞,

E− (C∗) := C∗ ⊗Z V− ,

E+ (C∗) := C∗ ⊗Z V+ ,

with the differential E(∂∗) := (∂∗ ⊗ 1 +W ⊗U) and the U -map defined as multiplication
by 1⊗ U which is of degree −2. Note that there exists a short-exact sequence

0→ V−
i→ V∞

π→ V+ → 0, (27)

which induces a short-exact sequence

0→ E− (C∗)
id⊗i−→ E∞(C∗)

id⊗π−→ E+ (C∗)→ 0,

with associated long-exact sequence of homologies

· · · → H∗(E
− (C∗))→ H∗(E

∞(C∗))→ H∗(E
+ (C∗))→ H∗(E

− (C))→ · · · . (28)

Now, the next result is a kind of Kozsul duality in the sense of [10].

Proposition 5.2 (Proposition 4.8 in [22]). Let (C∗, ∂∗) be a chain complex of Z-modules
that admits a degree −2 chain map U . Then there are isomorphisms

H∗(E
◦SU (C∗)) ∼= H∗(C∗ ⊗Z[U ] V◦),

where ◦ ∈ {∞,−,+}. Furthermore, these isomorphisms are natural with respect to the
associated long-exact sequences. On the other hand, let (C∗, ∂∗) be a chain complex of
Z-modules that admits a degree 1 chain map Y . Then there is an isomorphism

H∗(SUE
− (C∗)) ∼= H∗(C∗).

With the preceding understood, the first main ingredient in the proof of Theorem 5.1 is
the following S1-equivariant formulation of Seiberg–Witten Floer homologies due to Lee
(cf. [23]):
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Proposition 5.3 (Proposition 5.9 in [22]). Let (C∗, ∂∗) denote the Seiberg–Witten Floer

chain complex (ĈM ∗(M, s, cb), ∂̂) where cb indicates the use of a balanced perturbation.
Then there exists a commutative diagram

· · · −→ H∗(E
−SU (C∗)) −→ H∗(E

∞SU (C∗)) −→ H∗(E
+SU (C∗)) −→ · · ·y y y

· · · −→ ĤM ∗(M, s, cb) −→ HM ∗(M, s, cb) −→

̂

HM ∗(M, s, cb) −→ · · ·

where the top row is the long-exact sequence for equivariant homologies as in (28) and
the bottom row is the long-exact sequence for the Seiberg–Witten Floer homology of M
with balanced perturbations, while the vertical arrows are isomorphisms that preserve the
relative gradings and intertwine the Z[U ]⊗ ∧∗(H1(M ;Z)/torsion)-module structures.

Remark 5.4. Kronheimer and Mrowka prove that the chain complexes (ĈM ∗(M, s, cb), ∂̂)

and (ĈM ∗(M, s, c−), ∂̂), where c− denotes the period class for some negatively monotone
perturbation, are chain homotopy equivalent (see Theorem 31.5.1 in [17]). Therefore, in

the above proposition, one can also take C∗ to be (ĈM ∗(M, s, c−), ∂̂).

Next we discuss the second main ingredient in the proof of Theorem 5.1, which is a
connected sum formula for Seiberg–Witten Floer homology. Before we state the connected
sum formula, we need to introduce further notation. Let M1 and M2 be two closed,
connected, and oriented 3-manifolds. Fix Spinc structures s1 and s2 on M1 and M2

respectively. Denote by s# and st respectively the unique Spinc structures on M1#M2

and M1 t M2 induced by s1 and s2. Given Ω1 ∈ H2(M1;R) and Ω2 ∈ H2(M2;R)
the cohomology classes for perturbations of the Seiberg–Witten equations on M1 and
M2, denote by Ω# and Ωt the corresponding cohomology classes in H2(M1#M2;R) and
H2(M1 tM2;R) respectively.

Proposition 5.5 (Proposition 6.2 in [22]). Suppose that Ω# yields a negatively monotone
perturbation. Then the chain complexes

ĈM ∗(M1#M2, s#, cΩ#
) and SUt(ĈM ∗(M1 tM2, st, cΩt))

are chain homotopy equivalent. Furthermore, the induced isomorphism on homology in-
tertwines the Z[U ]⊗∧∗(H1(M1;Z)/torsion))⊗∧∗(H1(M2;Z)/torsion)-module structures
and preserves the relative gradings.

Kronheimer and Mrowka defined Seiberg–Witten Floer chain complexes for connected
3-manifolds. In the above proposition and in what follows, we abuse the notation to

denote by (ĈM ∗(M1 t M2, st, cΩt), ∂̂t) the tensor product of (ĈM ∗(M1, s1, cΩ1
), ∂̂M1

)

and (ĈM ∗(M2, s2, cΩ2
), ∂̂M2

), with Ut = U1⊗1−1⊗U2. This is acceptable since at least
one of Ω1 and Ω2 yields a negatively monotone perturbation.

Now, Theorem 5.1 follows from an application of Proposition 5.5 to the following two
cases:
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• Take M1 = S1×S2, s1 so that 〈c1(s1), [S2]〉 = 2, and w1 a nowhere zero closed 2-form
representing c1(s1) that is harmonic with respect to the product Riemannian metric
on S1 × S2. Meanwhile, take M2 = M , s2 any Spinc structure, and w2 a closed
2-form with non-degenerate zeros and c1(s2) = [w2] that is harmonic with respect to
a suitable Riemannian metric on M , and has non-degenerate zeros in the case c1(s2)
is non-torsion. Denote by Y0 the connected sum M#S1 × S2.
• Take M1 = Yi = M#i+1S

1 × S2 for i ∈ {0, 1, . . . ,g − 1}, s1 a Spinc structure with
c1(s1) non-torsion, and w1 a closed 2-form representing c1(s1) that is harmonic with
respect to a suitable Riemannian metric on Yi. Meanwhile, take M2 = S1 × S2, s2 is
the trivial Spinc structure, and w2 ≡ 0.

In either of the above cases, take Ω1 = rc1(s1), Ω2 = rc1(s2), and hence Ω# = rc1(s#)
for r > π sufficiently large. Note that in each Yi for i ∈ {0, 1, . . . ,g− 1} and in Y = Yg,
there exists a special simple closed curve γ that represents the generator of H1(S1×S2;Z)
for the S1 × S2 summand with non-trivial Spinc structure. This cycle introduces a local
system of coefficients Πγ (see Section 22.6 in [22]). With the preceding understood, there
is also a filtered variant of Proposition 5.5:

Proposition 5.6 (Proposition 6.2 in [22]). Let M1 and M2 be as in either of the above
two cases. Then for each ◦ ∈ {∞,−,+} there exists an isomorphism between

H∗(ĈM ∗(M1#M2, s#, cΩ#
; Πγ ⊗Z V◦) ∼= H∗(SUt(ĈM ∗(M1 tM2, st, cΩt ; Πγ ⊗Z V◦)).

Furthermore, these isomorphisms preserve the relative gradings, they intertwine the
Z[U ]⊗∧∗(H1(M1;Z)/torsion))⊗∧∗(H1(M2;Z)/torsion)-module structures, and are nat-
ural with respect to the long-exact sequences induced by (27).

In the case of the first bullet above, the equations in (20) on M1 have a unique solution
up to gauge. This solution can be written as (A, (α, β)) = (0, ((2r−1/2, 0)). Thus, for

each ◦ ∈ {∞,−,+} we have ĈM ∗(M1, s1, cΩ1 ; Πγ ⊗V◦)) ∼= V◦. Then the chain complex

SUt(ĈM ∗(S
1 × S2 tM, st, cΩt ; Πγ ⊗Z V◦)) = V◦ ⊗Z ĈM ∗(M, s2, cΩ2

)⊗Z Z[W ]/(W 2),

with differential SUt(∂̂t) = 1⊗ ∂̂M ⊗ σ + (U1 ⊗ 1− 1⊗ U2)⊗W, can be rewritten as

E◦(ĈM ∗(M, s2, cΩ2
)⊗Z Z[W ]/(W 2), ∂̂M ⊗ σ − U2 ⊗W ),

in other words, E◦SU2(ĈM ∗(M, s2, cΩ2
), ∂̂M ). Using Propositions 5.3 and 5.6, we obtain

isomorphisms

H∗(ĈM ∗(Y0, s#, cΩ#
; Πγ ⊗Z V∞) ∼= HM ∗(M, s, cb),

H∗(ĈM ∗(Y0, s#, cΩ#
; Πγ ⊗Z V− ) ∼= ĤM ∗(M, s, cb),

H∗(ĈM ∗(Y0, s#, cΩ#
; Πγ ⊗Z V+ ) ∼=

̂

HM ∗(M, s, cb),

which respect the associated long-exact sequences. To be more explicit, the long-exact
sequence for the groups on the left arises from the short-exact sequence in (27).
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With regard to the second bullet above, the Seiberg–Witten equations for the trivial
Spinc structure on S1 × S2 equipped with a constant curvature product Riemannian
metric have only reducible solutions, and the set of solutions modulo gauge is identified
with the circle H1(S1 × S2; iR)/2πiH1(S1 × S2;Z). Then, as is explained in Section 36

of [17], ĈM ∗(S
1 × S2, s2) ∼= Z[U2] ⊕ Z[U2][1] as graded Z-modules. Therefore, the chain

complex (SUt(ĈM ∗(Yi t S1 × S2, st, cΩt ; Πγ ⊗V◦)), SUt(∂̂t)) can be written as

ĈM ∗(Yi, s1, cΩ1
; Πγ ⊗Z V◦))⊗Z (Z[U2]⊕ Z[U2][1])⊗Z Z[W ]/(W 2),

with differential
∂̂Yi ⊗ 1⊗ σ − (U1 ⊗ U2)⊗W.

A straightforward computation shows that

H∗(SUt(ĈM ∗(Yi tS1×S2, st, cΩt ; Πγ ⊗Z V◦), )) ∼= H∗(ĈM ∗(Yi, s1, cΩ1
; Πγ ⊗Z V◦)⊗Z V̂.

In conclusion,

H∗(ĈM ∗(Yg, s#, cΩ#
; Πγ ⊗Z V∞) ∼= HM ∗(M, s, cb)⊗Z V̂⊗g,

H∗(ĈM ∗(Yg, s#, cΩ#
; Πγ ⊗Z V− ) ∼= ĤM ∗(M, s, cb)⊗Z V̂⊗g,

H∗(ĈM ∗(Yg, s#, cΩ#
; Πγ ⊗Z V+ ) ∼=

̂

HM ∗(M, s, cb)⊗Z V̂⊗g.

Here, Yg is diffeomorphic to the manifold Y , but with opposite orientation. It is equipped
with a closed 2-form and a Riemannian metric as induced by the initial data in the
second bullet above. Keeping in mind that there are canonical isomorphisms between
the Seiberg–Witten Floer cohomology groups described here on Y and the corresponding
filtered Seiberg–Witten Floer homology groups on Y , the orientation reversed copy of

Y , we have H∗(ĈM ∗(Yg, s#, cΩ#
; Πγ ⊗Z V◦) ∼= H◦SW , which follows by analyzing the

Seiberg–Witten equations on the product cobordism R×Y equipped with a suitable self-
dual 2-form and a Riemannian metric interpolating between the data on Yg and the stable
Hamiltonian structure data on Y . This last equivalence finishes our outline of the proof
of Theorem 5.1.

Remark 5.7. The orientation of the manifold Y fixed in this article and in [19, 20, 21] is
the opposite of the orientation used in [18] and in [22]. To be more precise, the convention
used in the latter is that the inclusion of Mδ into Y is an orientation preserving map.

6. Final Remarks

As is mentioned in the Introduction, both Heegaard Floer and Seiberg–Witten Floer
homologies fit in the general framework of topological quantum field theories, but for a
few important caveats. Having fixed a commutative ring with unity R, a TQFT F in
dimension 3 associates to every closed, oriented, and smooth 3-manifold M a module
F(M) over R, and to every compact, oriented, and smooth 4-manifold with boundary
M it associates an element F(Z) ∈ F(M). In particular, F associates the ground ring
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R to the empty 3-manifold. According to Atiyah [1], F should also satisfy the following
axioms:

(1) It is functorial with respect to orientation preserving diffeomorphisms of 3- and
4-manifolds.

(2) It is involutary, in other words, the module associated to −M is the dual of the one
associated to M .

(3) It is multiplicative.

Let us explain the multiplicative axiom. Suppose that Z is a cobordism from M1 to M2,
i.e., ∂Z = −M1 tM2. In this case, the multiplicative axiom requires that

F(Z) ∈ F(−M1)⊗R F(M2).

Using the involutary axiom, the latter can be rewritten as F(Z) ∈ HomR(F(M1),F(M2)).
The multiplicative axiom also requires that cobordism maps are transitive under the
composition of cobordisms. Note that if Z is a cobordism from ∅ to M , then F(Z)
is in HomR(R,F(M)) ∼= F(M); and if Z is closed, then F(Z) ∈ R. Alternatively,
given a closed, oriented, and smooth 4-manifold X, one cuts X open along a closed, ori-
ented, and smooth 3-manifold M so that it becomes the composition of two cobordisms
X = Z1∪M Z2 where Z1 is a cobordism from ∅ to M and Z2 is a cobordism from M to ∅.
Then, F(X) ∈ R is obtained via the pairing 〈F(Z1),F(−Z2)〉.

Here are a few points where Heegaard Floer and Seiberg–Witten Floer homologies
differ from the classical picture of a TQFT explained above. First of all, the homology
groups and the homomorphisms between them are defined only for connected 3-manifolds
and connected cobordisms between them. Second, neither the Heegaard Floer homology
groups HF∞(M), HF−(M), HF +(M) nor the Seiberg–Witten Floer homology groups

HM ∗(M), ĤM ∗(M),

̂

HM ∗(M) as defined by the unperturbed Seiberg–Witten equations
in (14) are functorial since an infinite number of Spinc structures on a given cobordism may
contribute non-trivially to its induced homomorphism. Hence, one should instead consider

the completions HF∞(M), HF−(M), HF+(M) and HM •(M), ĤM •(M),

̂

HM •(M)4 of
these groups with respect to the filtrations induced by their Z[U ]-module structures.
Even so, Heegaard Floer homology is not natural in any obvious way, i.e., it assigns to
a closed, connected, and oriented 3-manifold a trio of groups up to isomorphism. This
issue has recently been addressed by Juhász and Thurston in [16]. Granted naturality, the
invariants for closed, connected, oriented, and smooth 4-manifolds with b+2 > 0 obtained
via the above recipe using any of these groups are trivial. Therefore, a slightly different
recipe was employed by Ozsváth and Szabó to define the closed 4-manifold invariants.

4Having fixed a Spinc structure s on M , Kronheimer and Mrowka proved that there are isomorphisms

HM •(M, s) ∼= H∗(CM •(M, s, cb), ∂)

ĤM •(M, s) ∼= H∗(ĈM •(M, s, cb), ∂̂)̂

HM •(M, s) ∼= H∗(

̂

CM •(M, s, cb), ∂̌),

(see Theorem 31.1.1 in [17]).
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Given a closed, connected, and oriented 3-manifold M and a Spinc structure s on M ,
recall the long-exact sequence for the Heegaard Floer homology groups:

· · · → HF−(M, s)
i∗→ HF∞(M, s)

π∗→ HF +(M, s)
δ→ HF−(M, s)→ · · · .

The above long-exact sequence is induced by a short-exact sequence of chain complexes,
and δ is the connecting homomorphism. The image of δ, equivalently, the kernel of i∗, is a
finite rank subgroup of HF−(M, s) denoted by HF−red(M, s). The latter is isomorphic, by

exactness, to the cokernel of π∗, which is denoted by HF +
red(M, s). If Z is a cobordism from

M1 to M2 with b+2 > 0, then the map HF−(Z, t) : HF−(M1, s1) → HF−(M2, s2) factors
through HF−red(M2, s2), while the map HF +(Z, t) : HF +(M1, s1)→ HF +(M2, s2) factors

through HF +
red(M1, s1). With the preceding understood, let X be a closed, oriented, and

smooth 4-manifold with b+2 > 1 and s be a Spinc structure on X. Then, Ozsváth and
Szabó define the 4-dimensional invariant ΦX,s as follows: fix a closed, connected, oriented,
and smooth 3-manifold M embedded in X that separates X into two pieces each with
b+2 > 0, and such that H2(M ;Z) has trivial image in H2(X;Z). Upon excising an open
ball in each of these pieces, we obtain the cobordisms Z1 from S3 to M and Z2 from M
to S3. Finally, define ΦX,s as the composition of the maps

HF−(Z1, s|Z1) : HF−(S3)→ HF−red(M, s|M),

HF +(Z2, s|Z2) : HF +
red(M, s|M)→ HF +(S3),

while identifying HF−red(M, s|M) with HF +
red(M, s|M) via the connecting homomorphism

δ. An analog of the preceding construction, perhaps using a local system of coefficients,
can be repeated using the Seiberg–Witten Floer homology groups to capture the Seiberg–
Witten invariants of X, which are defined by a signed count of solutions of the Seiberg–
Witten equations on X (cf. Section 3.8 in [17]). As a matter of fact, Ozsváth and Szabó
conjectured the following:

Conjecture 6.1 ([28]). Let X be a closed, connected, oriented, and smooth 4-manifold
with b+2 > 1 and s be a Spinc structure on X. Then, the invariant ΦX,s agrees with the
Seiberg–Witten invariant for X in the Spinc structure s.

Granted the above claim about the Seiberg–Witten invariants of closed, connected,
oriented, and smooth 4-manifolds, and the fact that Heegaard Floer and Seiberg–Witten
Floer homologies are isomorphic, what remains to be shown to prove Conjecture 6.1 is the
naturality of these isomorphisms, i.e., that the isomorphisms between Heegaard Floer and
Seiberg–Witten Floer homology groups intertwine respective cobordism maps. In order
to prove naturality, one would like to define cobordism maps for ech and compare these
to cobordism maps for Heegaard Floer and Seiberg–Witten Floer homologies. In order to
do so, one needs to understand the component of the moduli space of pseudo-holomorphic
curves in cobordisms with ech index 0. In general, as explained by Hutchings, the latter
may have a very complicated structure as there may be ech index-0 broken curves with
negative ech index levels. Luckily, such complications do not arise in the context described
in this article thanks to the fact that all Reeb orbits in our setting are hyperbolic and
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the only homologically trivial Reeb orbits are positive hyperbolic. Therefore, contrary
to the case of embedded contact homology, it should be possible to give a definition of
cobordism maps for ech solely via pseudo-holomorphic curves. This is part of the content
of work in progress by the author.

Acknowledgements: The author would like to thank the anonymous referee for
numerous comments that helped improve the exposition.
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