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Abstract. The purpose of this expository article is to make an introduction to rep-
resentation theory for Lie groups/algebras by focusing on the branching of a repre-
sentation from Spin7 to SL3 through subgroups Spin6, and G2.

1. Introduction

This manuscript is an expanded version of the lecture notes of the first author delivered
during the 20th Gökova Geometry-Topology Conference. The last part of the manuscript
includes some calculations from the joint investigation on branching problems of both
authors. However, the first author is responsible for all mistakes, typos, or any false
claims that may appear in the manuscript.

Let Φ denote the configuration of vectors in R2 depicted as in Figure 1. To each of
these twelve vectors in Φ, we assign variables: αi! Xi for i = 1, . . . , 6, and −αi! Yi

for i = 1, . . . , 6. In addition, we introduce two more variables H1 and H2 and form the
14-dimensional C-vector space g2 with basis

V = {X1, X2, X3, X4, X5, X6, Y1, Y2, Y3, Y4, Y5, Y6, H1, H2}.
Our focus here is on a particular algebra structure on the space g2 whose multiplicative
structure is determined by Table 1 below, and the requirement that A ∗ B = −B ∗A for
all A,B ∈ g2. This multiplication table, essentially, is imposed by our careful choice of
initial conditions a) X1 ∗ Y1 = H1, b) X2 ∗ Y2 = H2, and by the diagrammatic rule

Zi ∗ Zj = ci,jZk, ci,j ∈ Z

whenever (Zi, Zj, Zk) ∈ V × V × V corresponds to the triple (αi, αj , αk) ∈ Φ × Φ × Φ
satisfying αi + αj = αk.

The overarching goal of our manuscript is to introduce the basic ideas of the repre-
sentation theory of g2 by studying the behavior of its modules under restrictions. To
elaborate on it in more familiar terms, let us pass to the group setting: A linear algebraic
group G is a closed subgroup of the general linear group of n× n invertible matrices over
the field of complex numbers C. The Lie algebra g = Lie(G) of G is, by definition, the
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• α1−α1

α2

−α2

α3 = α1 + α2

−α3

α6 = 3α1 + 2α2

−α6

α4 = 2α1 + α2

−α4

α5 = 3α1 + α2

−α5

Figure 1. A configuration of twelve vectors from R2

∗ H2 X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6

H1 0 2X1 −2Y1 −3X2 3Y2 −X3 Y3 X4 −Y4 3X5 −3Y5 0 0
H2 −X1 Y1 2X2 −2Y2 X3 −Y3 0 0 −X5 Y5 X6 Y6

X1 H1 X3 0 2X4 −3Y2 −3X5 −2Y3 0 Y4 0 0
Y1 0 −Y3 3X2 −2Y4 2X3 3Y5 −X4 0 0 0
X2 H2 0 Y1 0 0 −X6 0 0 Y5

Y2 −X1 0 0 0 0 X6 −X5 0
X3 H1 + 3H2 −3X6 2Y1 0 0 0 Y4

Y3 −2X1 3Y6 0 0 −X4 0
X4 2H1 + 3H2 0 −Y1 0 −Y3

Y4 X1 0 X3 0
X5 H1 +H2 0 −Y2

Y5 X2 0
X6 H1 + 2H2

Table 1. Multiplicative structure of g2

linear space consisting of left-translation-invariant vector fields on G with multiplication
given by [X,Y ] := XY − Y X . Although it is not immediate from its above definition, g2
is the Lie algebra of a linear algebraic group, which we denote by G2. Here, we investi-
gate the interactions between G2 and the some other well known classical groups, namely,
SLn (special linear group), SOn (special orthogonal group), and Spinn (spin group; the
universal covering of SOn). More precisely, let V be a representation of Spin7, meaning
that V is a vector space and there exists a group homomorphism σ : Spin7 → GL(V ).
We analyze V when it is viewed as an H-module for H one of the subgroups of G = Spin7

that are listed in Figure 2. In general, understanding this kind of branching problem for
an arbitrary pairs of groups (G,H) is a challenging problem, however, for certain pairs of
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classical groups satisfactory solutions exist. In our article, we make a modest introduc-
tion to this important topic in combinatorial representation theory, and while doing so,
we hope that our article serves useful as a quick introduction to the Lie theory through
small rank examples. To this end, we decided to split our paper into two parts, first of
which summarizes the basic principles of Lie theory and related representation theory. In
the second part of our paper, we present some well known branching theorems and their
applications to the groups of Figure 2.

Spin7 ⊂ SO7

Spin6 ⊂ SO6G2

SL3

Figure 2. Two paths

We should mention that all of the branching computations we present in the last part
of our paper have been performed in some form in the literature before. See, [GaSh] and
[Wyb] as well as the references in these papers. However, we still hope that our resulting
computations look somewhat cleaner and hopefully helpful for some other purposes.

2. Part I

2.1. Notation and Preliminaries

Throughout our paper, G denotes a linear algebraic group and we consider only finite
dimensional representations of G. Furthermore, we restrict our attention to rational
representations ρ : G → GL(V ), that is to say, after choosing an ordered basis for the
space V , the entries of all matrices ρ(g) ∈ GLm

∼= GL(V ) are rational functions of the
co-ordinates on G (these are restrictions of the co-ordinate functions from GLn).

A regular function on an algebraic variety X (hence on a linear algebraic group X = G)
is a collection of pairs (U, f/g), one for each point x ∈ X , where x ∈ U ⊂ X is an open
set and f/g : U → C is a well defined rational function. Of course there has to be a
compatibility condition on these pairs and it is a good exercise to figure it out. With
respect to point-wise multiplication of the rational functions, the collection of all regular
functions on X forms a ring. A derivation on the ring O[G] of regular functions on G is a
linear map ν : O[G] → O[G] such that ν(f1f2) = ν(f1)f2+f1ν(f2) for f1, f2 ∈ O[G]. The
set of all derivations on O[G], which we denote by Der(G) forms a vector space. Then
the Lie algebra g = Lie(G) of G is defined to be the subspace g ⊂ Der(G) consisting of
ν ∈ Der(G) such that

Lxν = νLx, for all x ∈ G
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where Lx : O[G] → O[G] is the “left-translation by x” defined by Lx(f)(y) = f(x−1y)
for f ∈ O[G] and y ∈ G. The multiplicative structure on g is given by the “bracket”
[·, ·] : g× g → g defined by [ν, µ] = ν ◦ µ− µ ◦ ν, ν, µ ∈ g. Here, circle means composition
of functions. When GLn is viewed as the general linear group GL(R2n) over the field
of real numbers, the group G ⊆ GLn becomes a Lie group and moreover its Lie algebra
can be identified with the Lie algebra of left invariant vector fields on G in the sense of
differentiable manifolds.

Abstractly, a Lie algebra is nothing more than a vector space g endowed with a bilinear
multiplication [·, ·] : g× g → g such that

• [x, x] = 0 for all x ∈ g,
• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.

Example 2.1. On g = R3 we have the “cross-product” of calculus: e1 × e2 = e3,
e3×e1 = e2, and e2×e3 = e1, where e1, e2, e3 are the standard basis elements. Remember
that ei × ej = −ej × ei for all i, j = 1, 2, 3. Extended by linearity to all of R3, it is easy
to check that the cross product satisfies the defining properties of a Lie bracket.

Of course, there are many different Lie algebra structures on a fixed vector space for
Lie brackets reflect the behavior of the underlying groups.

Example 2.2. The Heisenberg algebra is the three dimensional Lie algebra

H3(R) = SpanR{x, y, z} ∼= R
3

with respect to the Lie bracket [x, y] = z, [x, z] = 0, [y, z] = 0. Clearly, H3(R) is not
isomorphic to the “cross-product algebra” from Example 2.1.

The Lie algebra of GL(V ) is denoted by gl(V ), which, as a vector space is isomorphic
to the space of all n×n matrices. The bracket on gl(V ) is given by [X,Y ] = X ◦Y −Y ◦X
for X,Y ∈ gl(V ).

A linear map L : g1 → g2 between two Lie algebras is called a Lie algebra homo-
morphism, if L([x, y]g1

) = [L(x), L(y)]g2
for all x, y ∈ g. It is not difficult to see that

isomorphic linear algebraic groups have isomorphic Lie algebras. A (linear) representa-
tion of g is a Lie algebra homomorphism from g into gl(V ) for some vector space V . The
adjoint representation of g is the representation ad : g → gl(g) defined by x 7→ ad x,
where ad x is the linear map defined by ad x(y) := [x, y], y ∈ g. The kernel of ad is
called the center of g. If the center is all of g, then the Lie algebra is called abelian. The
kernel of a Lie algebra homomorphism ρ : g → gl(V ) is called an ideal of g. Equivalently,
a subspace a ⊆ g is called an ideal, if for every x ∈ g and a ∈ a, the element [x, a] ∈ g

lies in a. Observe that an ideal is a Lie subalgebra in a natural way. A non-abelian
Lie algebra is called simple, if it does not posses an ideal other than itself and the zero
subspace. g is called semi-simple, if it decomposes into a direct sum of its simple ideals.
We call an algebraic group G semi-simple, if its Lie algebra is semi-simple, G is called
(algebraically) simply-connected, if any surjective group homomorphism σ : H → G with
a finite kernel and H connected is an isomorphism of algebraic groups. Now, suppose G
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is a simply-connected group, and its Lie algebra Lie(G) = g is semi-simple. In this case,
any connected algebraic group with Lie algebra g is a quotient of G by a subgroup of the
center of G. In particular, G is the largest algebraic group with Lie algebra g.

A module V for a Lie algebra g is called irreducible if V contains precisely two sub-
modules: {0} and V itself. Two very important facts about irreducible representations
are :

• Schur’s Lemma: Let ρ : g → End(V ) be an irreducible representation. Then the
endomorphisms which commute with ρ(g) are the scaling linear transformations.

• Weyl’s Theorem: Let ρ : g → End(V ) be finite dimensional representation of a
semi-simple Lie algebra. Then ρ is completely reducible. In other words, V is a
direct sum of its irreducible g-submodules.

Finally, observe that the differential dπ : g → gl(V ) of a representation of an algebraic
group π : G → GL(V ) is a Lie algebra representation.

2.2. More on Lie algebras

The classification of semi-simple Lie algebras (over C) was achieved by the joint efforts

of Wilhelm Killing and Élie Cartan in the late 1800’s. Before we summarize the details
of the classification scheme, we make a brief interlude on “real forms.” Given a complex
semisimple Lie algebra (meaning that it is defined over C) g, a real Lie algebra g0 (meaning
that it is defined over R) is called a real form of g, if the complexified vector space g0⊗RC

is isomorphic to g. In general there are many real forms of a given complex Lie algebra.
However, if g is semisimple, there is a unique particularly important special case called
the “compact real form” of g, which is characterized by a bilinear form as follows.

The Killing form of a Lie algebra h defined over a field K is the unique symmetric
bilinear form B : h× h → K defined by

B(x, y) := Tr(ad x ◦ ad y) = Tr(ad y ◦ ad x), x, y ∈ h.

A real form g0 is called a compact real form for the complex semisimple Lie algebra g,
if the associated Killing form of g0 is negative-definite. The significance of a compact
real form is that it is the Lie algebra of a compact (in the topological sense) real Lie
group. Moreover, if G is a connected linear algebraic semisimple group over C, then
there is a one-to-one correspondence between the irreducible representations of G and
the irreducible representations of the compact real form g0 of the complex Lie algebra
g = Lie(G). This correspondence ties together the analysis on compact (real) Lie groups
and the representation theory of connected linear algebraic groups over C.

As it is noted above the Killing form is a bridge between complex and real Lie algebras.
In our exposition we focus on complex Lie algebras only, however, the Killing form is still
our primary tool for proving many structural results.

Lemma 2.1 (Cartan’s criterion). g is semi-simple if and only if its Killing form B is
non-degenerate, that is to say, B(x, y) = 0 for all y ∈ g, then x = 0.

Now we have a strategy for the classification of semi-simple Lie algebras:
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(1) Choose a maximal subalgebra h of g acting semisimply on g, which is unique up
to conjugacy by G.

(2) Using Killing’s form attach to h a finite system of vectors (called the “root system”
of (g, h)) in a Euclidean subspace of the dual vector space h∗.

(3) Classify all possible “irreducible” root systems.
(4) Show that there is a unique simple Lie algebra for each such root system.

It turns out that there are four countably-infinite families of irreducible root systems,
labeled by An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), and Dn (n ≥ 4). We list below the
corresponding Lie algebras, which are customarily called as the classical Lie algebras.

Type An (the special linear Lie algebra sln+1): Let gln+1 denote the Lie algebra of all
complex (n+ 1)× (n+ 1) matrices with the Lie bracket [x, y] = xy − yx. Since

Tr(xy) = Tr(yx) and Tr(x+ y) = Tr(x) + Tr(y)

for all x, y ∈ gln, we see that the vector subspace sln+1 ⊂ gln+1 consisting of x ∈ gln+1

such that Tr(x) = 0 is a Lie subalgebra. The unique simply-connected algebraic group
with Lie algebra sln+1 is SLn+1, the special linear group of (n + 1) × (n + 1) matrices
with determinant one.

Type Bn (the odd-dimensional special orthogonal Lie algebra so2n+1): For n ≥ 1, let
ωo denote the (2n+1)×(2n+1) matrix with 1’s along the anti-diagonal and 0’s elsewhere.
Then so2n+1 consists of x ∈ sl2n+1 such that x⊤ωo + ωox = 0. (Using any other non-
degenerate symmetric matrix instead of ω0 gives an isomorphic Lie algebra.) The unique
simply-connected algebraic group with Lie algebra so2n+1 is called the spin group, and
it is denoted by Spin2n+1. We are going to study the spin group in more detail in later
sections. We should mention that the Lie algebra of the familiar group SO2n+1 (the odd
orthogonal group) is also so2n+1, however, SO2n+1 is not simply-connected.

Type Cn (the symplectic Lie algebra sp2n): Let s denote the skew-symmetric matrix

s =

(

0 In
−In 0

)

, where In is the n× n identity matrix.

(Using any other non-degenerate skew-symmetric matrix instead of s leads to an isomor-
phic Lie algebra.) Then sp2n is the space of all x ∈ sl2n such that x⊤s + sx = 0. The
unique simply-connected algebraic group with Lie algebra sp2n is the symplectic group
defined as Spn = {g ∈ GLn : g⊤sg = s}.

Type Dn (the even-dimensional special orthogonal Lie algebra so2n): Similar to the
case of type Bn, let ωe denote the 2n× 2n matrix with 1’s along the anti-diagonal and 0’s
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elsewhere. (Using any other non-degenerate symmetric matrix gives an isomorphic Lie
algebra.) The even-dimensional special orthogonal Lie algebra so2n consists of x ∈ sl2n
satisfying x⊤s + sx = 0. The simply-connected group corresponding to so2n is another
spin group, denoted by Spin2n.

In addition to the above list of simple Lie algebras, there are five other “exceptional”
types, labeled by G2, F4, E6, E7, and E8. We are going to focus on G2 after we gain more
understanding of representation theory in the next several sections.

2.3. Roots, weights, and the generation of Lie algebras

An endomorphism x : V → V on a complex vector space is called semi-simple if it
is diagonalizable. An element x ∈ g is called semi-simple, if ad x : g → g is a semi-
simple endomorphism. A subalgebra h ⊆ g is called toral, if it consists of semi-simple
elements only. A maximal toral subalgebra in a semi-simple Lie algebra is called a Cartan
subalgebra.

Theorem 2.2. Let g be a semi-simple Lie algebra defined over C (or, more generally,
over a field of characteristic 0). Then any two Cartan subalgebras in g are conjugate to
each other via an inner automorphism 1 of g.

From now on we assume that g is semi-simple. Let V be a g-module and let h be a
total subalgebra. Since h is abelian its elements are simultaneously diagonalizable linear
operators on V . (Recall: commuting endomorphism are simultaneously diagonalizable.)
Thus, as an h-module, V decomposes into generalized eigenspaces: V =

⊕

λ∈h∗ V (λ),

where V (λ) = {v ∈ V : h · v = λ(h)v for all h ∈ h}. If nonempty, V (λ) is called a
weight-space, and the corresponding eigenvalue-functional λ : h → C is called the weight
of V (λ). Note that there can only be finitely many weights for V is finite dimensional. We
have an important special case when h is a Cartan subalgebra of g, and the representation
V is the adjoint action of g on itself. In this case, the weight spaces are denoted by gλ
instead of V (λ) = g(λ). The root space decomposition is the corresponding weight space
decomposition:

g = h⊕
⊕

λ∈Φ⊂h∗−0

gλ, (1)

where gλ = {X ∈ g : [H,X ] = λ(H)X for all H ∈ h}, λ ∈ Φ.

The set of non-zero weights Φ of the adjoint representation has a fascinating combi-
natorial structure. Its elements are called the roots of g. We list some of the important

1Suppose x ∈ g is such that (ad x)k = 0 for some k > 0. Then exp ad x =
∑

k

i=1
(ad x)i/i! is a well

defined automorphism of g. The group generated by all such automorphisms is called the group of inner

automorphisms of g.
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properties and introduce some terminology to be used later. None of the observations
listed below is difficult to prove.

(1) The Cartan subalgebra h is the weight-space gζ for the zero eigenvalue-functional
that maps everything to 0.

(2) The set Φ spans h∗.
(3) If α ∈ Φ, then so is −α ∈ Φ.
(4) The weight spaces gα, α ∈ Φ are all one-dimensional, and they are called root

subspaces.
(5) [gα, gβ] ⊆ gα+β for all α, β ∈ Φ. The equality holds if α+ β is a root.
(6) For α ∈ Φ, let Tα ∈ h denote the dual of α with respect to the Killing form

(hence, α(H ′) = B(Tα, H
′) for all H ′ ∈ h) . Then for any X ∈ gα, Y ∈ g−α, we

have [X,Y ] = B(X,Y )Tα.
(7) Let X ∈ gα, Y ∈ g−α and let Hα ∈ [gα, g−α] be such that α(Hα) = 2. (Tα

and Hα are related to each other by Tα = 2Hα/B(Hα, Hα).) Hence, the triplet
X,Y,Hα generates a copy of sl2 ∼= gα ⊕ [gα, g−α]⊕ g−α in g.

(8) For all α, β ∈ Φ, the value of the functional β onHα is an integer, and furthermore,

β(Hα) = 2B(Hβ , Hα)/B(Hα, Hα).

(9) If α and β are roots such that β 6= ±α, then there are largest positive integers
p and r such that β + iα ∈ Φ for all −r ≤ i ≤ p, and β + jα /∈ Φ, if j < −r or
j > p. In fact, r − p = β(Hα).

Let R denote the root lattice, the free Z-module in h∗ that is spanned by Φ. Denote by
E ⊂ h the real vector subspace spanned by the corresponding vectors {Hα ∈ h : α ∈ Φ}.
In particular, h = E ⊗R C. It is not difficult to see now that the restriction of the Killing
form B|h×h to E is positive-definite. By dualizing we obtain an inner product on the dual
vector space E∗. Let ΩHα

denote the hyperplane ΩHα
= {β ∈ h∗ : β(Hα) = 0}. It is

easy to see that the line spanned by α in h∗ is orthogonal to ΩHα
, and this leads us to

define an important discrete invariant.
The Weyl group W = W (g, h) is the finite group generated by the set of reflections

sα : E∗ → E∗ with respect to hyperplanes ΩHα
, α ∈ Φ such that sα(α) = −α. It is easy

to see that such a linear transformation is explicitly given by

sα(β) = β − β(Hα)α, β ∈ E∗.

Notice, for β ∈ Φ, sα(β) is another root. In other words, W permutes the roots among
themselves. Consider the lattice P in h∗ consisting of linear functionals β ∈ h∗ such that
β(Hα) ∈ Z for all α ∈ Φ. We call P denote the weight lattice. It is clear that the root
lattice R is a a sublattice of the weight lattice P . It is also clear that both R and P are
W -invariant. Furthermore, since all Cartan subalgebras are conjugate, these lattices are
invariants of a semi-simple Lie algebra, and W is independent of the choice of a Cartan
subalgebra.
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2.4. Abstract root systems

Now let E denote an arbitrary real, finite dimensional vector space equipped a positive-
definite symmetric bilinear form (= inner product) (·, ·) : E × E → R. As before, for
α ∈ E, denote by sα : E → E the linear automorphism defined by reflecting with respect
to the hyperplane Ωα orthogonal to the line Rα. A root system Φ ⊂ E is a finite collection
of vectors such that

(1) E = SpanRΦ,
(2) for α ∈ Φ, the only other scaler multiple of α that is contained in Φ is −α,
(3) sαΦ = Φ for every α ∈ Φ,

(4) ratios 2(β, α)/(α, α) = 2 cos θ ||β||
||α|| for α, β ∈ Φ are all integers. Here, θ is the

angle between α and β.

For our Lie theory purposes, we take E as the dual of the real vector space spanned by
{Hα ∈ h : α ∈ Φ}, where Φ is the root system of the pair (g, h), and the inner product
is the one that is induced from the Killing form.

We call Φ irreducible, if it is not a union of two other root systems. The root systems
corresponding to the simple Lie algebras are in fact irreducible root systems. Because
of the fourth axiom above, the ratios of the lengths of the roots and the angles between
them cannot be arbitrary. Indeed, possible angles are easily seen to be

π/6, π/4, π/3, π/2, 2π/3, 3π/4, 5π/6.

This observation allows us to list all possible inequivalent, irreducible root systems.
The dimension of E is called the rank of the root system Φ ⊂ E. In Figure 3, we list all

possible rank one and rank two root systems. In Figure 4, after connecting each dot to
the center of the corresponding polytope, we have all irreducible rank three root systems.

Remark 2.3. In a G2 root system re-scaling short roots by multiplying each of them by 3,
and keeping the lengths of the long roots the same results in another G2 root system.

Let ≺ be a total ordering on E. (Total orders on a finite-dimensional vector space over
an ordered field always exist.) Let Φ+ ⊂ Φ denote the set of roots which are “positive”
with respect to this total ordering:

α ∈ Φ+, if 0 ≺ α.

Set of simple roots determined by Φ+ is the maximal subset ∆ ⊆ Φ+ consisting of those
positive roots which cannot be written as a sum of two other positive roots. Clearly, for
each set of simple roots ∆, there is exactly one set of positive roots such that ∆ ⊆ Φ+.

Example 2.4. For the root system G2 as depicted in Figure 1, {α1, · · · , α6} is a system
of positive roots, and the set {α1, α2} is a set of simple roots.
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A1•

The unique (irreducible) rank 1 root system

•

A2

Irreducible

•

B2

Irreducible

•

G2

Irreducible

•

A1 × A1

Reducible

Figure 3. All rank one and rank two root systems

Type A3 Type B3 Type C3

Figure 4. Irreducible roots systems of rank three.

Another characterization of simple roots is as follows:

(1) ∆ = {α1, . . . , αℓ} ⊂ Φ is a basis for E.
(2) Any root α in Φ has an expansion of the form α =

∑

i niαi with either all ni are
non-negative integers, or all non-positive integers.

Finally, let us remark that, in Lie theory setting there is a convenient way to pick positive
(hence, simple) roots. Suppose Φ is the root system of (g, h). Choose a linear functional
f : h∗ → C that takes irrational values on the weight lattice P . Then {α ∈ Φ : f(α) > 0}
is a system of positive roots.
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2.5. Serre’s Theorem

Let B be a finite set. The free Lie algebra on B is the Lie algebra F obtained from the
free tensor algebra generated by B by declaring A⊗(B⊗C)+B⊗(C⊗A)+C⊗(A⊗B) = 0
and A⊗B = −B ⊗A for all A,B,C ∈ F. We denote the resulting multiplication by the
bracket.

Theorem 2.3. Let Φ be an irreducible abstract root system with a set of simple roots
∆ = {α1, . . . , αn}, and let F denote the free Lie algebra on the set of 3n variables
B = {H1, . . . , Hn, X1, . . . , Xn, Y1, . . . , Yn}. For 1 ≤ i, j ≤ n, define ni,j by setting
nij = 2(αi, αj)/(αj , αj), hence nij ∈ {0,−1,−2,−3} whenever i 6= j. Then the Lie
algebra obtained from F by further imposing the conditions below is a simple Lie algebra
with root system Φ.

(1) [Hi, Hj ] = 0 for all i, j,
(2) [Xi, Yi] = Hi for all i, and [Xi, Yj ] = 0 for all i 6= j,
(3) [Hi, Xj ] = njiXj and [Hi, Yj ] = −njiYj for all i, j,
(4) for all i 6= j,

(a) [Xi, Xj ] = [Yi, Yj ] = 0, if nji = 0;
(b) [Xi, [Xi, Xj ]] = [Yi, [Yi, Yj ]] = 0, if nji = −1;
(c) [Xi, [Xi, [Xi, Xj ]]] = [Yi, [Yi, [Yi, Yj ]]] = 0, if nji = −2;
(d) [Xi, [Xi, [Xi, [Xi, Xj ]]]] = [Yi, [Yi, [Yi, [Yi, Yj ]]]] = 0, if nji = −3.

In the light of Serre’s Theorem above, if we can identify a root system of a Lie algebra
inside the root system of another, then we can explicitly determine how these two Lie
algebras are interacting. It is very instructive to produce the root system of g2 via that
of so7. To this end, let a, b and c be three non-adjacent corners of the cube containing
all root vectors of so7, see Figure 5. The six roots lying on the edges emanating from the
corners a, b and c lie on a plane T that passes through the origin. Indeed, T is parallel
to the abc-plane. There are exactly 6 other roots on the edges of the cube, 3 of which lie
on one side of the plane T , and 3 on the other side. We project these roots orthogonally
onto T . It is easy to verify that the resulting configuration of projected vectors forms a
G2 root system. (To visualize, place the cube by its corner on table in such a way that
corners a, b and c have equal distance from the surface. Then project the root vectors
on the table and observe the configuration of G2. The parallel translation of the table
surface to the center of the cube is T , and it contains all the root vectors for G2.) In the
same vein, the root system A3 sits inside B3. Indeed, we simply remove the root vectors
that passes through the (centers of the) maximal faces of the cube. Finally, we see that
A2 lives on A3 as the indicated in Figure 6.

In the sequel, we are going to use these embeddings of root systems to study the
branchings of representations.

2.6. Representation Theory

Although we do not necessarily need it, for the sake of completeness we provide a
construction of all irreducible representations of a semi-simple Lie algebra.
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Figure 5. G2 in B3.

The universal enveloping algebra of a Lie group G is the algebra of left-invariant
differential operators of all orders on G. A more concrete description can be obtained by
passing to the Lie algebra of G. In fact, as we are going to see, the universal enveloping
algebra is unavoidable when studying the representation theory of g.

Let Ti = Ti(g) denote the space of i-tensors on the underlying vector space of the Lie
algebra g (over some field F), and denote by T(g) the tensor algebra of g:

T(g) =
⊕

i≥0

Ti(g).

We denote by J(g) ⊂ T(g) the two sided ideal that is generated by all elements of the
form

x⊗ y − y ⊗ x− [x, y], for x, y ∈ g.

The quotient algebra U(g) := T(g)/J(g) is the universal enveloping algebra of g, which is

a Lie algebra itself. Since J(g) is contained in
⊕

i>0 T
i(g) and since T0(g) = F, a copy

of F is contained in U(g). More importantly, a copy of g sits in U(g). This is a part of
important “Poincaré-Birkhoff-Witt Theorem” (abbreviated to PBW), which we explain
next:

Define Um = Um(g) ⊂ U(g) to be the image of T0⊕T1⊕· · ·⊕Tm in U(g). Notice that
Tm is mapped onto Um−Um−1. For m ≥ 0, we define the vector space Gm := Um/Um−1.
There is an obvious bilinear multiplication Gm × Gn −→ Gm+n. For notational consis-
tency, set U−1 := 0. Thus

Gr(g) =
⊕

m≥0

Gm

is a graded, associative algebra with unity. It is rather long but explanatory to name
Gr(g) as the associated graded algebra of the universal enveloping Lie algebra of g.
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Figure 6. Embeddings via root systems

Let Symi(V ) denote the vector space of symmetric i-tensors on a vector space V . Recall
that the symmetric algebra Sym(V ) =

⊕

i≥0 Sym
i(V ) of V is naturally isomorphic to the

F-valued polynomial functions on V .

Theorem 2.4 (PBW). The associated graded ring of the universal enveloping algebra of
g is (graded-)isomorphic to Sym(g). In other words, Gr(g) is (graded-)isomorphic to the
ring of polynomial functions on g.

As a corollary of PBW we see that g embeds into U(g) as a Lie subalgebra. This
observation is tremendously strengthened by the following following result.

Theorem 2.5. Let X = {x1, x2, . . . } be any ordered basis for g. Given a partition
λ = (λ1, λ2, . . . , λk) of m ∈ N (a non-increasing sequence of positive integers that sum to
m), let xλ denote the monomial xλ = xλk

⊗ xλk−1
⊗ · · · ⊗ xλ1

∈ T(g). Then as λ runs
over all partitions of all positive integers, the set of images of xλ’s in U(g) constitutes a
basis.
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Proof. Consider the subspace W of Tm generated by all monomials of the form xλ, where
λ is a partition of m. Then W is mapped onto Symm. It follows from PBW that the
images of these monomials span Gm and are linearly independent. �

The role of universal enveloping algebras in the representation theory of g begins with
a consequence of its universal property.

Proposition 2.6. For each Lie algebra homomorphism from g into gl(V ) there is a
unique algebra homomorphism ρU from U(g) into U(gl(V )) extending the Lie algebra
homomorphism.

It is easy to check that the converse of Proposition 2.6 is also true: Any algebra
homomorphism out of U(g) restricts to a Lie algebra homomorphism out of g.

2.7. Constructing the irreducible modules of g

Let gα denote a root subspace as in (1) and let M be a g-module. Choosing a system
of positive roots Φ+ in Φ(g, h), we call an element v+ ∈ M a highest weight vector, if
gα · v+ = 0 for all simple roots α ∈ ∆ associated with Φ+. Treating M as a U(g)-module,
we define a sub-representation V in M by setting V = U(g) · v+. We call such a module
highest weight module for g.

Theorem 2.7. Let V = U(g) · v+ be a highest weight module for g, hence in particular,
a system of positive roots Φ+ is chosen. Suppose that the elements of Φ+ are ordered as
in β1, . . . , βm, and ∆ = {α1, . . . , αℓ} is the set of simple roots in Φ+. Suppose also that
the maximal vector v+ of V belongs to some weight space V (λ) ⊂ V . Then

1. As a vector space over F, V is equal to

V = Span F{yi1β1
yi2β2

· · · yimβm
: (i1, . . . , im) ∈ N

m}.
2. The weights of V are of the form

µ = λ−
ℓ

∑

i=1

kiαi, for some ki ∈ N, i = 1, . . . , ℓ.

3. For each µ ∈ h∗, the weight subspace V (µ) is finite dimensional, and furthermore
the “highest” weight space V (λ) is one dimensional.

4. V is an indecomposable (irreducible) g-module with a unique maximal proper sub-
module and a corresponding unique irreducible quotient.

5. Every homomorphic image of V is also a highest weight module.

It follows from the above theorem that a highest weight vector of a highest weight
module V is unique up to a scalar multiple. What is slightly more complicated to prove
is that two highest weight modules of the same highest weight λ have to be isomorphic.
Next, we construct all highest weight modules explicitly.

A Borel subalgebra of g is a subalgebra of the form b = h⊕α∈Φ+gα. We denote by n− the
subalgebra n− = ⊕α∈−Φ+gα, so that g = n− ⊕ b. Consequently, U(g) = U(n−)⊗C U(b).
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For λ ∈ h∗, let Cλ denote a copy of C which is regarded as a b-module via

• t · v = λ(t)v for all t ∈ h,
• gα · v = v for all α ∈ Φ+.

Now, we can define

Mλ := U(g)⊗U(b) Cλ.

We call Mλ, the Verma module of highest weight λ. It is clear that Mλ is a highest weight
module with highest weight vector 1⊗ v+ of highest weight λ. In fact, Mλ is isomorphic
to U(g)/I(λ), where I(λ) is the annihilator of the maximal vector v+ in U(g). Note that

Mλ = U(g)⊗U(b) Cλ = (U(n−)⊗C U(b))⊗U(b) Cλ
∼= U(n−)⊗C Cλ

as a vector space. We know from Theorem 2.7 that Mλ has an irreducible quotient,
which we denote by Vλ. Indeed, Vλ is the quotient of Mλ by the sum of all proper
submodules of Mλ. Conversely, any irreducible representation of g with highest weight λ
is such a quotient. Therefore the remaining question to answer is “when is an irreducible
representation of g finite dimensional ?”

Theorem 2.8. An irreducible g-module V of highest weight λ is finite dimensional if and

only if for each simple root α ∈ ∆ the ratio 〈λ, α〉 := 2
(λ, α)

(α, α)
is a nonnegative integer.

Here, the pairing (, ) is the dual of the restriction of the Killing form on t× t.

A weight λ as in Theorem 2.8 is called dominant . The weight lattice P of g is the
free Z-module consisting of λ ∈ h∗ such that 〈λ, α〉 ∈ Z for all α ∈ ∆. If ∆ is indexed
such that ∆ = {α1, . . . , αℓ}, then we define the set of “fundamental dominant weights”
{ω1, ω2, . . . , ωℓ} ∈ P ⊂ t∗ as the dual basis of the “co-root basis” {Hα1

, . . . , Hαℓ
} for t.

Therefore, ωj(Hαi
) = δi,j for all i, j = 1, . . . , ℓ, or equivalently

〈ωi, αj〉 = δij , for all αj ∈ ∆. (2)

Example 2.5. We compute the fundamental weights for the root system G2 which is
depicted in Figure 1. A set of simple roots is given by ∆ = {α1, α2}. Reflecting α6 with
respect to the line whose normal is α1 gives α6 back. Thus, we have

α6 = sα1
(α6) = α6 − α6(Hα1

)α1

implying that α6(Hα1
) = 0. Similarly, reflecting α6 with respect to the line whose normal

is α2 gives α5. Equivalently,

α5 = sα2
(α6) = α6 − α6(Hα2

)α2.

In order for this equality to be true, we must have α6(Hα2
) = 1. Therefore, ω1 = α6. By

the same procedure, we find that ω2 = α4.

The computation in Example 2.5 extends to the general situation as follows: Define

mi,j := 〈αi, αj〉 for i, j = 1, . . . , ℓ. Then writing αi =
∑ℓ

j=1 ai,jωj , we see that ai,j = mi,j .
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Of course, this implies ωi =
∑ℓ

j=1 m
′
i,jαj , where (m′

i,j)i,j=ℓ is the inverse of the matrix

(mi,j)i,j=ℓ. In the literature, the latter matrix is known as the Cartan matrix.

It is evident that λ ∈ P is dominant if and only if all coefficients in the expansion
λ =

∑

kiωi are nonnegative. The fundamental representations of g are those irreducible
representations with the highest weights ω1, ω2, · · ·ω3. It is an important fact to remember
that each weight is conjugate to a unique dominant weight via the action of Weyl group.
Moreover, if λ is dominant, then σλ � λ for all σ ∈ W . In fact, for a simple root αi, by
equation (2) we see that sαi

(ωj) = ωj − δijαi. Using this observation, the weights of an
irreducible representation are computable by our next theorem:

Theorem 2.9. Let λ ∈ P be a dominant weight with the corresponding irreducible repre-
sentation V = Vλ. Suppose µ is a weight of V , α is a root, and i is an integer between 0
and 〈µ, α〉. Then λ− iα is also a weight of V . Moreoever, an arbitrary ν ∈ P is a weight
of V if and only if ν and all of its W -conjugates are � λ.

The multiplicity of a weight space V (µ) in a representation V is the number of different
copies of V (µ) appearing in the weight space decomposition of V . By Theorem 2.9, to
understand the nature of V , it suffices to find the multiplicities of each weight µ ∈ P such
that µ ≺ λ. In fact, if V = Vλ is irreducible, then the multiplicity of V (µ) in V is equal
to

∑

w∈W

sign(w)P(w(λ + ρ)− (µ+ ρ)),

where P is Kostant’s partition function that we are going to introduce in Part II, and
ρ is the half the sum of all positive roots and sign(w) equals the determinant of w as a
linear map from h∗ to itself. This formula, known as Kostant’s multiplicity formula is
very similar in nature to Kostant’s other famous formula, called “Kostant’s branching
formula” that we are going to utilize for studying branchings of representations in the
next chapter.

3. Part II

3.1. Branching from SLn+1 to SLn

The special linear group SLn+1 is simply connected, hence its representation theory
is fully reflected by its Lie algebra sln+1. Its subset t ⊂ sln+1 consisting of all diagonal
matrices forms a Cartan subalgebra. Let ǫi ∈ t∗, i = 1, . . . , n+1 denote the i-th coordinate
function defined by ǫi(diag(a1, . . . , an+1)) = ai. Then the set of roots associated with
(sln+1, t) is Φ = {±(ǫi − ǫj) : 1 ≤ i < j ≤ n + 1}. For i = 1, . . . , n, let αi denote the
root αi = ǫi − ǫi+1, and set ∆ = {α1, . . . , αn}. Then ∆ is a basis for the n-dimensional
Euclidean space E = SpanRΦ. It is easy to verify that any root α ∈ Φ can be written
in the form α =

∑

αi∈∆ nαi
αi, where all coefficients nαi

are all non-positive, or all non-
negative. Hence, ∆ is a set of simple roots. The associated fundamental weights are easily
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seen to be equal to

ωi = ǫ1 + · · ·+ ǫi −
i

n+ 1
(ǫ1 + · · ·+ ǫn+1) (3)

for i = 1, . . . , n.

Theorem 3.1 (Cartan). For k = 1, . . . , n, the k-th exterior power
∧k

Cn+1 of the defining
representation C

n+1 is an irreducible representation of SLn+1 with the highest weight ωk.

Let G andH be two simply connected groups such that H ⊂ G. If V is a representation
of G, then it is an H-module, as well. The determination of irreducible constituents of V
as an H-module is called the branching problem of V . When viewed as an H-module, we
denote V by ResGH(V ). If µ is a dominant weight for H , we use the notation m(V, µ) ∈ Z

for the number of occurrences in V of the irreducible representation Vµ of H with the
highest weight µ. Suppose G is SLn+1, and let H denote the stabilizer subgroup in G of
the standard basis element en+1 of Cn+1. Then H is isomorphic to SLn.

Theorem 3.2 (Weyl). Let Vλ be an irreducible representation of G of highest weight λ.
Then m(Vλ, µ) ≤ 1 for all dominant weights µ of H. Furthermore, m(Vλ, µ) = 1 if and

only if the coefficients of the expansions λ =
∑n+1

i=1 λiǫi and µ =
∑n

i=1 µiǫi satisfy the
interlacing condition:

λ1 ≥ µ1 ≥ λ2 ≥ · · · ≥ µn ≥ λn+1. (4)

Although the above theorem is very useful for computing branching multiplicities for
arbitrarily large n, for smaller values of n we have alternative methods. Let us do this for
n = 3 and for all fundamental weights of sl4. The fundamental weights ω1(sl4), ω2(sl4)
and ω3(sl4) correspond to the irreducible representations C4, ∧2C4 and ∧3C4 in the given
order. For SL3, the correspondence is ω1(sl3)! C3, and ω2(sl3)! ∧2C3. Therefore,

(1) C4 = C3 ⊕ C,

(2) ∧2C4 = ∧2(C3 ⊕ C) = (∧2C3 ⊗ ∧0C)⊕ (∧1C3 ⊗ ∧1C)⊕ (∧0C3 ⊗ ∧2C)
= ∧2C3 ⊕ C3,

(3) ∧3
C

4 = ∧3(C3 ⊕ C)
= (∧3C3 ⊗ ∧0C)⊕ (∧2C3 ⊗ ∧1C)⊕ (∧1C3 ⊗ ∧2C)⊕ (∧0C3 ⊗ ∧3C)
= C⊕ ∧2C3.

3.2. Spin group and its fundamental representations

Let V be a finite dimensional vector space over C, and let T(V ) be the tensor algebra
of V . Suppose we have a symmetric, non-degenerate, bilinear form D : V × V → C. We
denote by D(V ) the two sided ideal in T(V ) that is generated by all elements of the form

x⊗ y + y ⊗ x−D(x, y) · 1T(V ) for all x, y ∈ V.

The quotient Cliff(V,D) := T(V )/D(V ) is called the Clifford algebra of the pair (V,D),
and furthermore, there is a natural Z/2-grading on it. Therefore,

Cliff(V,D) = Cliff+(V,D)⊕ Cliff−(V,D),
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where Cliff+(V,D) is the subalgebra generated by the products of even degree elements.
Since it is an associative algebra, Cliff(V,D) has a natural Lie algebra structure defined
by [a, b] = a · b − b · a. In fact, the identification of so(V,D), which is the Lie algebra
of endomorphisms of V that preserve D, with ∧2V gives a natural embedding
so(V,D) →֒ Cliff+(V,D) of Lie algebras.

Let γ : V →֒ V × V → Cliff(V,D) be the natural diagonal quotient map. The pin
group on V is the subgroup of invertible elements of the Clifford algebra generated by
the elements −1Cliff(V,D) and γ(v), v ∈ V with D(v, v) = −2. Finally, the spin group
Spin(V,D) is defined as the identity component of Pin(V,D). As it is mentioned in
the introduction, the spin group is simply-connected and there is a natural 2:1 covering
homomorphism π : Spin(V,D) → SO(V,D), where SO(V,D) is the group of invertible
linear automorphisms of V which preserve D. Thus, the Lie algebra of Spin(V,D) is the
special orthogonal Lie algebra, consisting of endomorphisms of V that are skew-symmetric
with respect to the bilinear form D.

There are important differences between spin groups of odd-dimensional vector spaces
and the spin groups of even-dimensional spaces and this will be clear in a moment. When
dimV = 2n+ 1, let B = {e1, . . . , en, e0, e−n, . . . , e−1} be an ordered basis of V such that

D(e0, e0) = 1 and D(ei, ej) = δi,−j for all i, j ∈ {−n, . . . ,−1, 1, . . . , n}.
Therefore, the matrix SB of D in the basis B is equal to ωo that is used to define so2n+1.
In this case, if π : Spin(V,D) → SO(V,D) is the double cover of SO(V,D), then we
let H = {g ∈ Spin(V,D) : π(g)e0 = e0}. It is easily seen that H is isomorphic to
the spin group of (V ′, D|V ′), where V ′ ⊂ V is the vector subspace that is spanned by
B′ = {e1, . . . , en, e−n, . . . , e−1}.

We use the basis B to identify the elements of so(V,D) with matrices. The resulting
Lie algebra is nothing but so2n+1, and the Lie subalgebra corresponding to H in so2n+1

is given by Lie(H) ∼= so2n = {A ∈ so2n+1 : Ae0 = 0}. We call V = C2n+1 the
defining representation of so2n+1. Similarly, the vector subspace that is spanned by
B′ = {e1, . . . , en, e−n, . . . , e−1} is called the defining representation for so2n.

The vector space V = C2n+1 has a decomposition V ∼= W ⊕Ce0 ⊕W ∗, where W ⊂ V
is the span of first n basis vectors from B and W ∗ is the subspace spanned by the last
n basis vectors. Let

∧•
W (respectively

∧•
W ∗) denote the exterior algebra on W (resp.

on W ∗). It turns out that the Clifford algebra Cliff(V,D) is isomorphic to the direct sum
of matrix algebras:

Cliff(V,D) ∼= End(∧•W )⊕ End(∧•W ∗).

Furthermore, the even part Cliff+(V,D) is isomorphic to End(∧•W ). In particular, this
isomorphism gives a representation of so2n+1 on S := ∧•W , called the spin-representation.

In the case of an even-dimensional vector space V = C2n ∼= W ⊕W ∗ (W and W ∗ are
as before) the Clifford algebra is isomorphic to a single copy of the matrix algebra:

Cliff(V,D) ∼= End(∧•W ),
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and its even Lie subalgebra Cliff+(V,D) is isomorphic to the direct sum of two Lie algebras

Cliff+(V,D) ∼= End(⊕i ∧2i W )⊕ End(⊕i ∧2i+1 W ).

Thus so(V,D) acquired two representations; one on ⊕i ∧2i W , and one on ⊕i ∧2i+1 W .
We call these representations the half-spin representations, and denote them by S+ and
S−, respectively.

Diagonal matrices of the form diag(a1, . . . , an, 0,−an, . . . ,−a1), ai ∈ C forms a Cartan
subalgebra h in so2n+1. In fact, h is the Lie algebra of the maximal torus

H = {diag(x1, . . . , xn, 1, x
−1
n , . . . , x−1

1 ) : xi ∈ C
∗} ⊂ SO2n+1.

Let ǫi ∈ h∗, i = 1, . . . , n denote the i-th coordinate function on diagonal matrices:
ǫi(diag(a1, . . . , an, 0,−an, . . . ,−a1)) = ai. It is clear that {ǫ1, . . . , ǫn} is a basis for h∗.
The associated roots of (so2n+1, h) are

±(ǫi − ǫj),±(ǫi + ǫj) for 1 ≤ i < j ≤ n together with ± ei 1 ≤ i ≤ n.

Set αi = ǫi − ǫi+1 for i = 1, . . . , n − 1 and αn = ǫn. Then ∆ = {α1, . . . , αn} is a set of
simple roots. The set of positive roots is then

Φ+ = {ǫi − ǫj , ǫi + ǫj : 1 ≤ i < j ≤ n} ∪ {ei : 1 ≤ i ≤ n}.
Finally, the fundamental dominant weights are ωi = ǫ1 + · · ·+ ǫi for i = 1, . . . , n− 1 and
ωn = 1

2 (ǫ1 + · · ·+ ǫn).

For so2n, the root datum is given as follows. We use the Cartan subalgebra

h = {diag(a1, . . . , an,−an, . . . ,−a1) : ai ∈ C}.
As before, let ǫk denote the k-th coordinate function on h. Then

Φ(so2n, h) = {±(ǫi − ǫj),±(ǫi + ǫj) : 1 ≤ i < j ≤ n}.
Set, as before, αi = ǫi − ǫi+1 for i = 1, . . . , n − 1. Different from the odd case, let
αn = ǫn−1 + ǫn. The set of simple roots we use is ∆ := {αi : i = 1, . . . , n}. Then the
fundamental dominant weights are computed to be ωi = ǫ1 + · · ·+ ǫi for i = 1, . . . , n− 2,
and

ωn−1 =
1

2
(ǫ1 + · · ·+ ǫn−1 − ǫn) and ωn =

1

2
(ǫ1 + · · ·+ ǫn−1 + ǫn).

Theorem 3.3 (Cartan). For k = 1, . . . , n − 1, the k-th exterior power
∧k

C2n+1 of the
defining representation is an irreducible representation of Spin2n+1 with highest weight
ωk. The irreducible representation corresponding to the fundamental weight ωn is given
by the spin-representation S ∼= ∧•Cn.

For the even spin group Spin2n, the exterior powers
∧k

C2n, k = 1, . . . , n − 2 are
irreducible with the corresponding highest weights ωk. The remaining two fundamental
representations are the half-spin representations S− and S+ with the highest weights ωn−1

and ωn, respectively.
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3.3. Branching from Spin7 to SL3 via the right path

When expanded in the orthonormal basis ǫ1, . . . , ǫn of h∗, the dominant weights of
so2n+1 split into two classes, namely, 1) integral weights, which are of the form
λ = (λ1, . . . , λn) with λi ∈ Z+ for all i = 1, . . . , n, and 2) half-integral weights, which
are of the form λ + ~n, where λ is an integral weight, and ~n = (12 , . . . ,

1
2 ). Note that

the half-integral weights are those weights of Spin2n+1 that are not representations of
SO2n+1.

Theorem 3.4 (Murnaghan). Let Vλ be an irreducible representation of Spin2l+1. The
branching from Spin2l+1 to H ∼= Spin2l is multiplicity free. Furthermore, m(λ, µ) = 1 if
and only if the following two conditions are satisfied:

(1) either both µ and λ are integral weights, or they both are half-integral weights.
(2) they interlace: λ1 ≥ µ1 ≥ λ2 ≥ · · · ≥ µn−1 ≥ λn ≥ |µn|.

Once again, initially, we are going to avoid using the above high-tech theorem for
branching computations. We look at the case of g = so7, which has three fundamental
representations:

(1) ω1(so7) corresponding to its defining representation C7.
(2) The adjoint representation ∧2C7 with the highest weight ω2(so7).
(3) The spin-representation S ∼= ∧•C3 with the highest weight ω3(so7).

We begin with the defining representation C
7. Obviously,

C
7 = C

6 ⊕ C,

which is equal to the sum of defining representation for so6 with the one dimensional
trivial representation.

In the case of so7 the adjoint representation is the second exterior power of the defining
representation, which is one of the fundamental representations. However, this is not the
case for so6. Indeed, the highest weight of the second exterior power ∧2

C
6 is given by

ǫ1 + ǫ2 = ω2(so6) + ω3(so6).
The adjoint representation of so7 decomposes into irreducibles of so6 as follows:

∧2
C

7 = ∧2(C6 ⊕ C) = (∧0
C

6 ⊗ ∧2
C)⊕ (∧1

C
6 ⊗ ∧1

C)⊕ (∧2
C

6 ⊗ ∧0
C)

= C
6 ⊕ ∧2

C
6

the sum of defining representation and the adjoint representation. Finally, the spin rep-
resentation S = ∧∗C3 splits into

S = C⊕ C
3 ⊕ ∧2

C
3 ⊕ ∧3

C
3 = (C3 ⊕ ∧3

C
3)⊕ (C⊕ ∧2

C
3) = S− ⊕ S+.

Obviously, this is true in general: the spin representation of so2n+1 splits into a sum of
half-spin representations of so2n.

Remark 3.1. There are important coincidences among the small rank simple Lie algebras
and one of these coincidences is between so6 and sl4. Indeed, these two simple Lie algebras
are the same. This can be seen from their root systems both of which are of type A3.

60



Branching through G2

However, as far as the notation for weights are concerned we must be careful. Recall that
the fundamental weights for SL4 correspond to the irreducible representations C4, ∧2C4

and ∧3C4 in the given order. From this we see that ω2(so6) is ω1(sl4), ω3(so6) is ω3(sl4),
and ω1(so6) is ω2(sl4).

Next, we compute the branching of an irreducible representation V of so7 of highest
weight λ = aω1(so7) + bω2(so7) + cω3(so7) to sl3. In terms of ǫ-coordinates,

λ = a(1, 0, 0) + b(1, 1, 0) + c(1/2, 1/2, 1/2) = (a+ b+ c/2, b+ c/2, c/2).

If c 6= 0, then according to the Branching Theorem an irreducible representation of so6
with the highest weight µ = (µ1, µ2, µ3) is a constituent of the restriction if and only if µ
is a half-integer weight satisfying

a+ b+ c/2 ≥ µ1 ≥ b+ c/2 ≥ µ2 ≥ c/2 ≥ |µ3|

Equivalently,

2a+ 2b+ c ≥ 2µ1 ≥ 2b+ c,

a+ b ≥ µ1 − µ2 ≥ 0,

b+ c ≥ µ2 − µ3 ≥ 0.

Note that ω1(so6) = ǫ1, ω2(so6) = 1/2(ǫ1 + ǫ2 − ǫ3) and ω3(so6) = 1/2(ǫ1 + ǫ2 + ǫ3).
Therefore,

ǫ1 = ω1(so6),

ǫ2 = ω2(so6) + ω3(so6)− ω1(so6),

ǫ3 = ω3(so6)− ω2(so6),

implying

µ = µ1ǫ1 + µ2ǫ2 + µ3ǫ3 = (µ1 − µ2)ω1(so6) + (µ2 − µ3)ω2(so6) + (µ2 + µ3)ω3(so6).

On the other hand, by Remark 3.1, in terms of the fundamental weights of sl4 this is
equal to

µ = (µ2 − µ3)ω1(sl4) + (µ1 − µ2)ω2(sl4) + (µ2 + µ3)ω3(sl4). (5)

In view of (3), the expression (5) for µ in terms of the coordinate functions ǫ1, ǫ2, ǫ3, ǫ4 of
the Cartan subalgebra of sl4 is equal to

(µ1 + µ2 + µ3)

2
ǫ1 +

(µ1 − µ2 + µ3)

2
ǫ2 +

(−µ1 + µ2 + µ3)

2
ǫ3 −

(µ1 + µ2 + µ3)

2
ǫ4.

Now, by using Theorem 3.2 we see that an irreducible representation U = Uτ of sl3
appears in the decomposition of the irreducible representation corresponding to µ if and
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only if its highest weight τ = τ1ǫ1 + τ2ǫ2 + τ3ǫ3 satisfies

(µ1 + µ2 + µ3)

2
≥ τ1 ≥ (µ1 − µ2 + µ3)

2
≥

τ2 ≥ (−µ1 + µ2 + µ3)

2
≥ τ3 ≥ − (µ1 + µ2 + µ3)

2
.

Summarizing, we obtain the following result.

Theorem 3.5 (Branching from Spin7 to SL3). An irreducible representation U of sl3
with highest weight τ = dω1(sl3) + eω2(sl3) appears in a decomposition of the irreducible
representation V of so7 of highest weight λ = aω1(so7) + bω2(so7) + cω3(so7) if and only
if exactly one of the following holds:

(1) λ is a half-integral weight (that is to say c 6= 0), and there exists a half-integral
weight µ = (µ1, µ2, µ3) ∈ (1/2, 1/2, 1/2)+Z3

≥0 of so6 such that a+b+c/2 ≥ µ1 ≥
b+ c/2 ≥ µ2 ≥ c/2 ≥ |µ3|, and

(µ1 + µ2 + µ3)

2
≥2d+ e

3
≥ (µ1 − µ2 + µ3)

2
≥ −d+ e

3
≥

(−µ1 + µ2 + µ3)

2
≥ −(d+ 2e)

3
≥ − (µ1 + µ2 + µ3)

2
.

(2) λ is an integral weight (that is to say c = 0), and there exists an integral weight
µ = (µ1, µ2, 0) of so6 such that a+ b ≥ µ1 ≥ b ≥ µ2 ≥ 0, and

(µ1 + µ2)

2
≥ 2d+ e

3
≥(µ1 − µ2)

2
≥ −d+ e

3
≥

(−µ1 + µ2)

2
≥ −(d+ 2e)

3
≥ − (µ1 + µ2)

2
.

3.4. Kostant’s Partition Function

A rational character of a linear algebraic group is a group homomorphism χ : G → C∗

which is at the same time a morphism of algebraic sets. The set of rational charac-
ters X(G) forms an abeliean group with respect to point-wise multiplication. Note that
characters are class functions, namely, they take constant value on conjugacy classes.
Recall that in a semi-simple Lie algebra all Cartan subalgebras are conjugate. Using the
“exponential map” exp : g → G we see that all maximal tori in G are conjugate. On the
other hand, it is known that the union of all maximal tori in a connected, semi-simple
algebraic group is a dense subset. Therefore, a character χ of a connected, semi-simple
algebraic group G is completely determined by its values on a maximal torus. In other
words, X(G) = X(T ). If, in addition, G is simply-connected, then the character group
X(T ) is isomorphic to the weight-lattice of (g, t).

We fix a Borel subgroup B of G containing T and denote by Φ,Φ+ and ∆, respectively,
the root system, the subset of positive roots, and the set of simple roots, relative to
(G,B, T ).
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Let V be a finite dimensional g-module. If G is simply-connected, then there exists
a representation π : G → GL(V ) whose differential is the given representation of g. All
finite dimensional representations of G are obtained in this way. As a finite dimensional
g-module, the vector space V decomposes into a direct sum of t weight spaces V (µ) with
µ ∈ P. Assuming V is irreducible, let P (V ) ⊂ P denote the set of weights that appear
in the weight space decomposition of V . Then there exists a unique dominant weight
λ ∈ P (V ) such that µ ≺ λ for all µ ∈ P (V ).

The formal character ch(V ) of a representation π : G → GL(V ) is defined to be

ch(V ) =
∑

µ∈P (V )

dµe
µ ∈ Z[P], where dµ = dimV (µ).

Here, we use the notation eµ, µ ∈ P to pass to the multiplicative notation. Indeed, the
sum µ + ν of any weights µ, ν ∈ P is conveniently represented by the corresponding
multiplication eµ · eν = eµ+ν . If ωi is a fundamental weight and πi : G → GL(Vωi

) is the
associated irreducible representation of G, then eωi is the formal character corresponding
to

ch(Vωi
)(t) = Tr(πi(t)).

In other words, we view a formal character ch(V ) as a regular function on the maximal
torus T via ch(V )(t) = Tr(π(t)), t ∈ T .

After this reminder on the characters, we look at the behavior of the restriction of a
formal character of G to a maximal torus of a subgroup H ⊆ G. We are going to use
“Kostant’s Branching Multiplicity” formula for our analysis. To this end, let TG and
TH = H ∩TG denote the maximal tori for G and H , respectively, and let tg and th denote
the corresponding Lie algebras. We choose a set of positive roots Φ+

g for (g, tg). Following

Goodman and Wallach [GoWa] (page 370), we make the following regularity assumption2:

Regularity Assumption: Suppose there exists an element X0 ∈ th such that

〈α,X0〉 > 0 for all α ∈ Φ+
g .

This is equivalent to finding a regular element X0 ∈ th (not touching the “walls of the
Weyl chamber”), which is regular in tg, also. In particular, the vector X0 allows us to
define a total ordering on the roots of (h, th):

Φ+
h = {γ ∈ Φh : 〈γ,X0〉 > 0}.

For a weight λ of g, let λ denote the restriction of λ to the subalgebra h. Set

Φ+
g := {α : α ∈ Φ+

g }, and for β ∈ Φ+
g denote by Rβ the set of all α ∈ Φ+

g such

that α = β. Let Σ0 denote the set of positive roots β from Φ+
h with |Rβ | > 1, and let

2This assumption is not necessary, as D. Vogan removes it in [Vog]. However, it simplifies the proof
and it is helpful for choosing an appropriate positive root system. In effect, it boils down to the following
algebraic fact: the centralizer in G of the maximal torus TH is commutative, hence it is equal to TG.
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Σ1 := Φ+
g − Φ+

h . The union Σ0 ∪ Σ1 is denoted by Σ and the multiplicity of an element
β ∈ Σ is defined by

mβ =

{

|Rβ | if β /∈ Φ+
h ,

|Rβ | − 1 if β ∈ Φ+
h .

The Kostant partition function P = PΣ on the dual Cartan subalgebra t∗h is determined
by

∏

β∈Σ

(1− e−β)−mβ =
∑

η

P(η)e−η.

Observe that P(η) is equal to the number of ways of writing η as non-negative integral
combinations of the elements of Σ.

Theorem 3.6 (Kostant’s Branching Multiplicity Formula). Let λ and µ be dominant
integral weights for G and H, respectively, and let Vλ and Vµ denote the corresponding
irreducible representations. Then

m(λ, µ) =
∑

s∈Wg

sign(s)P(s · (λ+ ρg)− µ− ρg).

3.5. Branching from G2 to SL3

In a type G2 root system, the set of all long-roots forms an A2 root system
Φh = {α2, α5, α6,−α2,−α5,−α6}, see Figure 1. As in the introduction section we have
the following associated list of generating variables

B′ = {H2, H5, H6, X2, Y2, X5, Y5, X5, Y6}.
Since these variables are among the generating set of variables for g2, Serre’s relations 1
through 4 are automatically satisfied, and hence, we have a copy of sl3 naturally sitting
inside g2. Since H5 = H1 +H2 and H6 = H1 +2H2 (see Table 1), the Cartan subalgebra
t = SpanC{H2, H5} of sl3 is equal to that of g2. Therefore, the regularity assumption is
also automatically satisfied, and hence we can apply Kostant’s formula for computing the
branching multiplicities from G2 to SL3.

Let X0 = 3H2 +H5, and set Φ+
g2

= {αi : i = 1, . . . , 6} as usual. Then 〈α,X0〉 > 0 for

all α ∈ Φ+
g2
, and moreover, {α ∈ Φsl3 : 〈α,X0〉 > 0} = {α2, α5, α6} is a set of positive

roots for (sl3, t). Since [Hi, Xj ] = αj(Hi)Xj for all i and j, by using Table 1, the values
of the positive roots on Hi’s are easily computed as in Table 2.

In particular, we see that |Rβ | = 1 for all β ∈ Φ+
g2
, and therefore Σ = Σ1 = {α1, α3, α4}.

Thus, the Kostant partition function P of t∗ is obtained from the generating function
equality

1

1− e−α1

1

1− e−α3

1

1− e−α4
=

∑

η∈t∗

P(η)e−η. (6)
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α1(H2) = −1 α1(H5) = α1(H1) + α1(H2) = 2− 1 = 1

α2(H2) = 2 α2(H5) = α2(H1) + α2(H2) = −3 + 2 = −1

α3(H2) = 1 α3(H5) = α3(H1) + α3(H2) = −1 + 1 = 0

α4(H2) = 0 α3(H5) = α4(H1) + α4(H2) = 1 + 0 = 1

α5(H2) = −1 α5(H5) = α5(H1) + α5(H2) = 3− 1 = 2

α6(H2) = 1 α6(H5) = α6(H1) + α6(H2) = 0 + 1 = 1

Table 2. Values of the positive roots

Lemma 3.7. Suppose µ = aα1 + bα2 ∈ t∗ for some non-negative integers a and b. Then

P(aα1 + bα2) =

{

min{a− b, b}+ 1 if a ≥ b ≥ 0,

0 otherwise.

Proof. First of all, observe that, since P(aα1+ bα2) is equal to number of ways of writing
µ as a non-negative integral combinations of α1, α3 = α1 + α2 and α4 = 2α1 + α2 we
must have that a ≥ b ≥ 0. Expanding the left hand side of the equation (6), we see that
P(η) is equal to number of (i, j, k) ∈ Z

3
≥0 such that a = i + j + 2k and b = j + k. It

follows that a− b = i+ k, and therefore, each choice of k uniquely determines both j and
i. Clearly, k is from {0, . . . ,min{b, a− b}}, hence the proof is complete. �

Let ∆ = {α1, α2}. The Weyl group Wg2
is generated by the reflections s1 = sα1

and
s2 = sα2

, and it has 12 elements. The action of these elements on ∆ are listed in Table 3.

s ∈ Wg2
α1 α2 (n+ 5)α1 + (m+ 3)α2

id α1 α2 (n+ 5)α1 + (m+ 3)α2

s1 −α1 3α1 + α2 (−n+ 3m+ 4)α1 + (m+ 3)α2

s2 α1 + α2 −α2 (n+ 5)α1 + (n−m+ 2)α2

s1s2 2α1 + α2 −3α1 − α2 (2n− 3m+ 1)α1 + (n−m+ 2)α2

s2s1 −α1 − α2 3α1 + 2α2 (−n+ 3m+ 4)α1 + (−n+ 2m+ 1)α2

s1s2s1 −2α1 − α2 3α1 + 2α2 (−2n+ 3m− 1)α1 + (−n+ 2m+ 1)α2

s2s1s2 2α1 + α2 −3α1 − 2α2 (2n− 3m+ 1)α1 + (n− 2m− 1)α2

s1s2s1s2 α1 + α2 −3α1 − 2α2 (n− 3m− 4)α1 + (n− 2m− 1)α2

s2s1s2s1 −2α1 − α2 3α1 + α2 (−2n+ 3m− 1)α1 + (−n+m− 2)α2

s1s2s1s2s1 −α1 − α2 α2 (−n− 5)α1 + (−n+m− 2)α2

s2s1s2s1s2 α1 −3α1 − α2 (n− 3m− 4)α1 + (−m− 3)α2

s1s2s1s2s1s2 −α1 −α2 (−n− 5)α1 + (−m− 3)α2

Table 3. The action of Wg2
on ∆
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By using Table 3 we compute the values P(s · (λ+ ρg) − µ − ρg). To this end, let
λ = n′ω1 + m′ω2, n

′,m′ ≥ 0 be a highest weight for an irreducible representation Vλ

of g2. Since ω1 = α6 = 3α1 + 2α2 and ω2 = α4 = 2α1 + α2 (by Example 2.5) we see
that λ = (3n′ + 2m′)α1 + (2n′ + m′)α2. Set n = 3n′ + 2m′ and set m = 2n′ + m′.
Then we have 2m ≥ n > m > 0 unless Vλ is the trivial representation, in which case
n = m = n′ = m′ = 0. Finally, note that ρg2

= 5α1 + 3α2.
The weight lattice of sl3 (⊂ g2) is spanned by the fundamental dominant weights dual

to Hα2
and Hα5

. Thus, ω1 = 1
3 (2α5 + α2) = 2α1 + α2 and ω2 = 1

3 (α5 + 2α2) = α1 + α2.
If µ = a′ω1 + b′ω2 is the highest weight of an irreducible epresentation of sl3, then we
express it in terms of α1 and α2’s as µ = (2a′+b′)α1+(a′+b′)α2. Letting a = 2a′+b′ and
b = a′ + b′ we see that a ≥ b ≥ 0 with a = 0 if and only if Vµ is the trivial representation
of sl3.

With the above notation (λ = nα1 + mα2 with n > m > 0 and µ = aα1 + bα2 with
a ≥ b ≥ 0) we list the values of the Kostant partition function in Table 4.

s ∈ Wg2
s · (λ + ρg)− µ− ρg sign(s)P(s · (λ+ ρg)− µ− ρg)

id (n− a)α1 + (m− b)α2 min{n− a−m+ b,m− b}+ 1

s1 (−n+ 3m− a− 1)α1 + (m− b)α2 −min{−n+ 2m− a− b− 1,m− b} − 1

s2 (n− a)α1 + (n−m− b− 1)α2 −min{m− a+ b+ 1, n−m− b− 1} − 1

s1s2 (2n− 3m− a− 4)α1 + (n−m− b− 1)α2 0

s2s1 (−n+ 3m− a− 1)α1 + (−n+ 2m− b− 2)α2 0

s1s2s1 (−2n+ 3m− a− 6)α1 + (−n+ 2m− b− 2)α2 0

s2s1s2 (2n− 3m− a− 4)α1 + (n− 2m− b− 4)α2 0

s1s2s1s2 (n− 3m− a− 9)α1 + (n− 2m− b− 4)α2 0

s2s1s2s1 (−2n+ 3m− a− 6)α1 + (−n+m− b− 5)α2 0

s1s2s1s2s1 (−n− a− 10)α1 + (−n+m− b− 5)α2 0

s2s1s2s1s2 (n− 3m− a− 9)α1 + (−m− b− 6)α2 0

s1s2s1s2s1s2 (−n− a− 10)α1 + (−m− b− 6)α2 0

Table 4. Computing multiplicities

Remark 3.2. In Table 4 we have 0’s in the last column for the reason that either the
coefficient of αi is zero, or the coefficient of α1 is less than that of α2.

We conclude from Table 4 that

m(λ, µ) = P((3n′ + 2m′ − 2a′ − b′)α1 + (2n′ +m′ − a′ − b′)α2)

− P(3n′ +m′ − 2a′ − b′ − 1)α1 + (2n′ +m′ − a′ − b′)α2)

− P((3n′ + 2m′ − 2a′ − b′)α1 + (n′ +m′ − a′ − b′ − 1)α2)
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For convenience let us abbreviate this summation in the form A−B−C, where A is the
first summand, B is the second, and C is the third summand. In particular, A,B and
C are all non-negative. Let us denote the coefficient of α1 in A by u1, the coefficient of
α2 by v1. Similarly, we define u2, v2, u3 and v3 to be the coefficients of αi’s in the second
and the third summands.

Lemma 3.8. If m(λ, µ) > 0, then

(1) u1 = 3n′ + 2m′ − 2a′ − b′ > 0,
(2) v1 = 2n′ +m′ − a′ − b′ ≥ 0,
(3) u1 − v1 = n′ +m′ − a′ ≥ 0.

Proof. ForA−B−C to be positive, A has to be positive. The rest follows from Lemma 3.7.
�

We analyze A−B −C by looking at A more closely. First, assume that u1 − v1 > v1,
or equivalently that b′ ≥ n′. Hence A = min{u1 − v1, v1} + 1 = v1 + 1. In this case,
since u3 = u1 and v3 = v1 − n′ − 1, we have C = min{u3 − v3, v3} + 1 = v1 − n′ ≥ 0.
Similarly, since v2 = v1 and u2 = u1−m′− 1, we have B = min{u1− v1−m′− 1, v1}+1.
However, if u2 − v2 ≥ v2, then B = v1 + 1 forcing A − B − C ≤ 0. Therefore, we must
have B = u1 − v1 −m′ − 1 and

m(λ, µ) = A−B − C = a′ + 2, whenever b′ ≥ n′.

Also, we have obtained the inequalities

n′ < a′ + b′ ≤ 2n′ +m′ and a′, b′ ≤ n′ +m′.

Next we assume that 0 ≤ u1 − v1 < v1, equivalently 0 ≤ b′ < n′. Thus A = u1 − v1 + 1,
and B = u1 − v1 −m′ ≥ 0. Since

C = min{u3 − v3, v3}+ 1 = min{2n′ +m′ − a′ − 1′, n′ +m′ − a′ − b′ − 1}+ 1

= n′ +m′ − a′ − b′ ≥ 0,

we have

m(λ, µ) = −n′ + a′ + b′ + 1 > 0 whenever b′ < n′.

In particular, as before, we have

2n′ +m′ ≥ a′ + b′ ≥ n′ and n′ +m′ ≥ a′ + b′ ≥ a′, b′.

Conversely, if (a′, b′) ∈ Z≥0 × Z≥0 satisfies 2n′ +m′ ≥ a′ + b′ ≥ n′ and a′, b′ ≤ n′ +m′,
then 3n′ + 2m′ − a′ − b′ ≥ 0. It follows that m(λ, µ) 6= 0 by analyzing the cases b′ ≥ n′

and b′ < n′ just as we did above. We summarize these observations as follows:

Theorem 3.9. Let λ = n′ω1(g2) +m′ω2(g2) and µ = a′ω1(sl3) + b′ω2(sl3) be the highest
weights of the irreducible representations of g2 and sl3, respectively. Then m(λ, µ) 6= 0 if
and only if

(1) n′ ≤ a′ + b′ ≤ 2n′ +m′, and
(2) a′, b′ ≤ n′ +m′.
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Furthermore, in this case,

m(λ, µ) =

{

−n′ + a′ + b′ + 1 whenever b′ < n′,

a′ + 2 whenever b′ ≥ n′.

x

y

0

x+ y = 2n′ +m′

x+ y = n′

y = n′ +m′

x = n′ +m′

(a′, b′)

Figure 7. Branching region for (n′,m′)

3.6. Branching from Spin7 to G2

We use the embedding of g2 into so7 resulting from the corresponding root system
embeddings. Let Hi denote the matrix Ei,i −E−i,−i for i = 1, . . . , 3. Then {H1, H2, H3}
forms a basis for a Cartan subalgebra tso7

of so7. Let ηi denote the functional deftermined
by ηi(Hj) = 2δi,j . Then

ΦB3
:= {±η1,±η2,±η3} ∪ {±(ηi + ηj),±(ηi − ηj) : 1 ≤ i < j ≤ 3}

forms the root system for the pair (so7, tso7). We use

∆B3
= {α1 = η1 − η2, α2 = η2 − η3, α3 = η3}

as a set of simple roots for ΦB3
, and hence, we get Φ+

B3
is

{α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3, α1 + 2α2 + α3, α1 + α2 + 2α3, 2α2 + α3},
which equals

{ηi ± ηj : 1 ≤ i < j ≤ 3} ∪ {η1, η2, η3},
and is the associated set of positive roots.

Let us verify that there is a regular element X0 in tso7
. Let h1 = 1

3H1 − 1
3H2 +

2
3H3

and h2 = H2 −H3, and set X0 = 5h1 + 3h2 = 5
3H1 +

4
3H2 +

1
3H3. Since αi(X0) > 0 for

i = 1, 2, 3, we see that for any positive root β ∈ Φ+
B3
, β(X0) > 0, hence X0 is the desired

element.
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Let t∗g2
⊆ t∗so7

be the subspace defined by the equation −η1 + η2 + η3 = 0. We depict
t∗g2

as in Figure 8. Thus, the long roots of G2 correspond to the solid dots, and they are
given by −η1 − η2,−η2 + η3, η1 + η3, η1 + η2, η2 − η3,−η1 − η3.

η2 + η3

−η1 + η3

−η1 + η2

η1 + η3

η1 + η2

η2 − η3

−η1 − η3

−η1 − η2

−η2 + η3

a

b

c

Figure 8. G2 in B3

The projections of the other six roots ±(η1 − η3),±(−η1 + η2),±(η2 + η3) ∈ B3 onto
t∗g2

-plane are: ± 1
3 (−η1−2η2+η3), ± 1

3 (−η1+η2−2η3), and ± 1
3 (2η1+η2+η3), respectively.

These 12 vectors form a root system of type G2. Since Φ+
G2

= {γ ∈ ΦG2
: 〈γ,X0〉 > 0},

the following is a set of positive roots for G2:

{η1 + η2, η1 + η3, η2 − η3,
1

3
(η1 + 2η2 − η3),

1

3
(η1 − η2 + 2η3),

1

3
(2η1 + η2 + η3)}.

Let γ1 denote 1
3 (η1 − η2 + 2η3) and let γ2 denote η2 − η3. Then the ratio of the lengths

|γ2|/|γ1| is
√
3, and the angle between γ1 and γ2 is 5π/6. Therefore ∆G2

:= {γ1, γ2} is
the set of simple roots with γ1 being the short root, and γ2 the long root.

69



CAN and HOWE

The restrictions of the positive roots of ΦB3
are

η3 = η1 − η2 =
1

3
(η1 − η2 + 2η3),

η2 = η1 − η3 =
1

3
(η1 + 2η2 − η3),

η1 = η2 + η3 =
1

3
(2η1 + η2 + η3),

η1 + η2 = η1 + η2,

η1 + η3 = η1 + η3,

η2 − η3 = η2 − η3.

It follows that Φ+
B3

= Φ+
G2

, and that Σ0 consists of short roots of G2 each of which has
multiplicity 1. Therefore, we see that Σ = Σ0 = {γ1, γ1 + γ2, 2γ1 + γ2}.

If µ ∈ t∗g2
, then, by definition, P(µ) is the number of ways of writing µ as in

µ = aγ1 + b(γ1 + γ2) + c(2γ1 + γ2) for some a, b, c ∈ N.

In particular, if P(µ) is non-zero, then µ has to be of the form a′γ1 + b′γ2 for some
a′, b′ ∈ N with a′ ≥ b′. Moreover, Lemma 3.7 is applicable, and hence,

P(a′γ1 + b′γ2) =

{

min{a′ − b′, b′}+ 1 if a′ ≥ b′ ≥ 0,

0 otherwise.
(7)

For any subset A ⊂ Z, we set the notation δA,i for

δA,i =

{

1 if i ∈ A,

0 if i /∈ A.

Let Wso7
denote the Weyl group of so7. The standard permutation representation of

Wso7
on t∗1 provides us with a useful description of its elements: Each σ′ ∈ Wso7

is of the
form σ′ = εAσ, where A is a subset of {1, 2, 3}, σ is a permutation of the indices of the
coordinates η1, η2, η3, and εA · ηi = (−1)δA,iηi.

Now, let λ = λ1η1+λ2η2+λ3η3 be a dominant weight for so7, hence λ1 ≥ λ2 ≥ λ3 ≥ 0
are either all non-negative integers, or all non-negative half-integers. For σ′ = εAσ in
Wso7

, let I(σ′;λ) denote σ′·(λ−ρ)−ρ = aη1+bη2+cη3, where ρ = ρso7
= 1

2 (5η1+3η2+η3).
For an arbitrary permutation σ of {1, 2, 3}, we express ρ in the form

ρ =
7− 2σ1

2
ησ1

+
7− 2σ2

2
ησ2

+
7− 2σ3

2
ησ3

.
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Hence, I(εAσ;λ) = aη1 + bη2 + cη3 can be concisely written as

I(εAσ;λ) =

3
∑

i=1

(

(−1)δA,σiλi −
(7− 2i)(−1)δA,σi + (7 − 2σi)

2

)

ησi

=

3
∑

i=1

(

(−1)δA,σiλi −
7(1 + (−1)δA,σi )− 2((−1)δA,σi i+ σi)

2

)

.ησi
(8)

On the other hand, a straightforward calculation shows that the projection of a vector
aη1 + bη2 + cη3 onto the −η1 + η2 + η3 = 0 plane is

2a+ b+ c

3
η1 +

a+ 2b− c

3
η2 +

a− b+ 2c

3
η3 = (2a+ b+ c)γ1 + (a+ b)γ2.

Suppose µ = sγ1 + rγ2 is a dominant weight for g2, hence s, r ∈ N with s− r > 0. (This
is because µ = s′ω1 + r′ω2 = s′(2γ1 + γ2) + r′(3γ1 +2γ2) = (2s′ +3r′)γ1 +(s′ +2r′)γ2 for
some s′, r′ ≥ 0 with s′ + r′ > 0.) Therefore,

P(I(εAσ;λ) − µ) = P((2a+ b+ c− s)γ1 + (a+ b− r)γ2),

which is equal to
{

min{a+ c− (s− r), a+ b− r} + 1 if 2a+ b+ c− s ≥ a+ b− r ≥ 0,

0 otherwise.

Observe that in order for 2a + b + c − s ≥ a + b − r ≥ 0 to hold, both inequalities
a + c ≥ (s − r) > 0 and a + b ≥ r > 0 have to hold. Consequently, we have some

restrictions on the subsets A ⊆ {1, 2, 3} in order for P(I(εAσ;λ)− µ) to have a non-zero
value. Indeed, if a, b, and c denotes the coordinates of (8), and if Ui, i = 1, 2, 3 denotes

Ui = −7(1 + (−1)δA,σi )− 2((−1)δA,σi i+ σi)

2
, (9)

then

a+ b = (−1)δA,σiλi + (−1)δA,σj λj + Ui + Uj, (10)

a+ c = (−1)δA,σiλi + (−1)δA,σkλk + Ui + Uk, (11)

where σi = 1, σj = 2 and σk = 3.
By using (9) – (10), we analyze the (im)possibilities:

Case of A = {1, 2, 3}:
If i = 1, j = 2, then Ui = 0, Uj = 0, hence a + b < 0. If i = 1, j = 3, then

Ui = 0, Uj = −1, hence a+ b < 0. Therefore, i = 1 implies that a+ b < 0.
If i = 2, j = 3, then Ui = −1, Uj = −1, hence a + b < 0. If i = 2, j = 1, then

Ui = −1, Uj = 1, hence a+ b < 0.
If i = 3, j = 1, then Ui = −2, Uj = 1, hence a + b < 0. If i = 3, j = 2, then

Ui = −2, Uj = 0, hence a+ b < 0.
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Since in all of the above cases a+b < 0, we conclude that when A = {1, 2, 3}, the value
of the Kostant partition function is zero.

Case of A = {1, 2}:
If i = 1, j = 2, then Ui = 0, Uj = 0, hence a + b < 0. If i = 1, j = 3, then

Ui = 0, Uj = −1, hence a+ b < 0.
If i = 2, j = 1, then Ui = 0, Uj = 1 then a+ b may not be < 0. However, in this case,

k = 3, and U3 = 0, hence a+ c < 0.
If i = 3, j = 1, then Ui = −2, U3 = 1 then a + b < 0. If i = 3, j = 2, then

Ui = −2, U3 = 0 then a+ b < 0.
Since in all of the above cases either a+b < 0, or a+c < 0, we see that when A = {1, 2}

the value of the Kostant partition function is zero.

Case of A = {1, 3}:
If i = 1, j = 2, then Ui = 0, Uj = −3, hence a + b < 0. If i = 1, j = 3, then

Ui = 0, Uj = −2, hence a+ b < 0.
If i = 2, j = 1, then Ui = −1, Uj = −4, hence a + b < 0. If i = 2, j = 3, then

Ui = −1, Uj = −2, hence a+ b < 0.
If i = 3, j = 1, then Ui = −1, Uj = −4 then a + b < 0. If i = 3, j = 2, then

Ui = −1, Uj = −3 then a+ b < 0.
Since in all of the above cases either a+ b < 0, we see that when A = {1, 3} the value

of the Kostant partition function is zero.

Case of A = {1}:
If i = 1, j = 2, then Ui = 0, Uj = −3, hence a + b < 0. If i = 1, j = 3, then

Ui = 0, Uj = −2, hence a+ b < 0.
If i = 2, j = 1, then Ui = −1, Uj = −4, hence a + b < 0. If i = 2, j = 3, then

Ui = −1, Uj = −2, hence a+ b < 0.
If i = 3, j = 1, then Ui = −1, Uj = −4 then a + b < 0. If i = 3, j = 2, then

Ui = −1, Uj = −3 then a+ b < 0.
Since in all of the above cases either a+ b < 0, we see that when A = {1} the value of

the Kostant partition function is zero.

Case of A = {2, 3}:
In this case, we look at i > 1 and i = 1 separately.
If i = 2, j = 1, then Ui = −4, Uj = 1, hence a+ b < 0. If i = 2, j = 3, then k = 1, and

Ui = −4, Uk = −1, hence a+ c < 0.
If i = 3, j = 1, then Ui = −3, Uj = 1 then a + b < 0. If i = 3, j = 2, then

Ui = −3, Uj = 0 then a+ b < 0.
We conclude that, if A = {2, 3} and i > 1, then either a+ b < 0, or a+ c < 0, hence

the value of the Kostant partition function is zero.
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On the other hand, if i = 1, then the cases are j = 2, k = 3 and j = 3, k = 2. In the
former case, a+b = λ1−λ2−5, a+c = λ1−λ3−5. In the latter case, a+b = λ1−λ2−4,
a + c = λ1 − λ3 − 6. The value of the partition function is easily computable for these
two cases. We are going to summarize the end result of these computations (and of the
other similar cases) in our final theorem below.

Case of A = {2}:
If i = 2, j = 1, then Ui = −4, Uj = 1, hence a + b = −λ2 + λ1 − 3. However, in this

case, k = 3, and a+ c = −λ2 + λ3 − 4, which is negative. Similarly, if i = 2, j = 3, then
k = 1, and Ui = −4, Uk = −1. Hence a+ c = −λ2 + λ3 − 3 < 0.

If i = 3, j = 1, then Ui = −3, Uj = 1, then a+ b = λ3 − λ1 − 2, which is negative. If
i = 3, j = 2, then Ui = −3, Uj = 0, then a+ b < 0.

Thus, we see from the above cases that if i > 1, then the corresponding value of the
partition function is zero. Therefore, we assume i = 1. Once again, there are two cases:
j = 2, k = 3, and j = 3, k = 2. In the former case, a+ b = λ1−λ2−5, a+ c = λ1+λ3−6,
and in the latter case a+ b = λ1 − λ3 − 6, a+ c = λ1 + λ2 − 4.

Case of A = {3}:
If i = 2, j = 1, then Ui = −4, Uj = −4, hence a+ b = −λ2 + λ1 − 8. However, in this

case, k = 3, and a + c = −λ2 + λ3, which is negative. Similarly, if i = 2, j = 3, then
k = 1, and Ui = −4, Uk = −1. Hence a+ c = −λ2 + λ3 − 3 < 0.

If i = 3, j = 1, then Ui = −3, Uj = 1, then a + b = λ3 − λ1, which is negative. If
i = 3, j = 2, then Ui = −3, Uj = 0, then a+ b < 0.

Thus, we see from the above cases that if i > 1, then the value of the Kostant partition
function is zero. Therefore, we assume i = 1. Once again, there are two cases: j = 2,
k = 3, and j = 3, k = 2. In the former case, a+ b = λ1 − λ2 − 5, a+ c = λ1 + λ3 − 6. In
the latter case, a+ b = λ1 − λ3 − 6, a+ c = λ1 + λ2 − 4.

Case of A = ∅:
In this case, in both sums a + b and a + c the coefficients of λi’s are positive, and

Ui = i+ σi for i = 1, 2, 3.

Given two integers u and v, let us denote by p(u, v) the function

p(u, v) =

{

min{u, v}+ 1 if both u and v are non-negative,

0 otherwise.
(12)

We conclude from the above analysis that

Theorem 3.10. Let η1, η2, η3 denote the dual of the standard coordinate functions on
tso7

, a Cartan subalgebra of so7, and let λ = λ1η1 + λ2η2 + λ3η3 ∈ t∗so7
be the highest

weight of an irreducible Spin7-representation Vλ. Then the multiplicity of an irreducible
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representation Vµ of g2 with the highest weight µ = s′ω1(g1) + r′ω2(g2) in Vλ is given by

m(λ, µ) = p(λ1 − λ2 − 5− s′ − r′, λ1 − λ3 − 5− s′ − 2r′)

− p(λ1 − λ2 − 4− s′ − r′, λ1 − λ3 − 6− s′ − 2r′)

− 2p(λ1 − λ2 − 5− s′ − r′, λ1 + λ3 − 6− r′ − 2s′)

+ 2p(λ1 − λ3 − 6− s′ − r′, λ1 + λ2 − 4− s′ − 2r′)

+ p(λ1 + λ2 + 6− s′ − r′, λ1 + λ3 + 8− s′ − 2r′)

− p(λ1 + λ3 + 7− s′ − r′, λ1 + λ2 + 7− s′ − 2r′)

− p(λ1 + λ2 + 6− s′ − r′, λ2 + λ3 + 9− s′ − 2r′)

+ p(λ2 + λ3 + 8− s′ − r′, λ1 + λ2 + 7− s′ − 2r′)

+ p(λ1 + λ3 + 7− s′ − r′, λ2 + λ3 + 9− s′ − 2r′)

− p(λ2 + λ3 + 8− s′ − r′, λ1 + λ3 + 8− s′ − 2r′),

where p(·, ·) is as in (12).

Admittedly, we lack a more conceptual description. The whole branching problem
from Spin7 to G2 deserves a better approach. In fact, a more algebraic study of this kind
naturally lands itself in the realm of invariant theory. Such an approach is developed by
late Yui Kwan Wong in his 1995 Yale thesis [Won]. A more geometric approach leading
to a cleaner formula using Borel-Weil-Bott theorem is taken by McGovern in [McG]. All
of these formulas are different than each other.
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