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Plenty of Morse functions by perturbing with sums of

squares

Antonio Lerario

Abstract. We prove that given a smooth function f : Rn → R and a submanifold
M ⊂ R

n, then the set of a = (a1, . . . , an) ∈ R
n such that (f + qa)|M is Morse,

where qa(x) = a1x
2

1
+ · · · + anx

2
n, is residual in R

n. The classical literature covers
perturbations by linear functions and quadratic ones but doesn’t give an answer to
the case of sums of squares: in fact standard transversality arguments do not work
and we need a more refined approach.

1. Introduction

The aim of this short note is to answer the following natural question in classical Morse
theory; the author was led to consider this problem by K. Kurdyka and A. A. Agrachev,
to whom we express our gratitude for stimulating discussions.

“Given a smooth function f : R
n → R and a submanifold M ⊂ R

n, is a generic
perturbation of f by sums of squares Morse on M?”

It turns out that despite its simpleness, this question is in fact more subtle than it
seems. Even the classical literaure [1, 2, 3, 4] does not give an answer to it or moves
around the obstacle by requiring that M does not intersect the coordinate axes - which is
in fact what prevents from using the standard transversality techniques; see for example
the statement of Corollary 1.25 of [4].

A basic fact of Morse theory is that that given a submanifold M ⊂ R
n and a function

f : Rn → R, then the generic perturbation of f with a linear form is Morse on M , i.e.,
the set of vectors a ∈ R

n for which x 7→ f(x) + 〈a, x〉 is Morse on M is dense in R
n (see

Proposition 17.18 of [1] or Corollary 1.25 of [4]).
It is a well known result that also allowing perturbations of f by quadratic forms

generically gives a Morse function. In fact typically one can consider the smooth map
F ev : Sym(n,R)× R

n → R
n given by:

F ev : (Q, x) 7→
1

2
Qx+∇f(x),
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(for simplicity we have taken M = R
n). Since F ev is transversal to the zero in R

n, then
the parametric transversality theorem (Theorem 2.7 in [2] or Theorem 1.21 in [4]) ensures
the set of Q for which x 7→ 〈x,Qx〉 + f(x) is Morse is dense in Sym(n,R) (the gradient
of the latter function being equal to F ev(Q, x)). In fact one can even reduce to consider
perturbation by positive definite forms and the same result holds.

The situation dramatically changes if we allow only perturbations by sums of squares.
Specifically, given a = (a1, . . . , an) ∈ R

n we define the function qa : Rn → R by:

qa(x) = a1x
2
1 + · · ·+ anx

2
n.

If the manifold M does not pass through any of the coordinate axes, i.e., it is contained
in an open quadrant, we see that the functions x2

1, . . . , x
2
n can be taken as coordinates

on this quadrant and the generic perturbation of f by qa results into a Morse function,
arguing again as above (this is the classical assumption if one wants to perturb by sums
of squares).

On the other hand one often deals with situations where the problem is not invariant by
translations and the zero (or the axes) plays some special role: that is why the condition
that none of the coordinates can vanish on M seems to restrictive.

It turns out that in fact the condition on the relative position of M with respect to
the axes is not needed, as we will show in the following theorem.

Theorem 1.1. Let f be a smooth function on R
n and M ⊂ R

n be a submanifold. Then
the set A(f,M) = {a ∈ R

n | (f + qa)|M is Morse} is residual in R
n.

In particular the answer to the above question is affirmative. Notice that if f is defined
only onM andM is assumed compact, then we can extend it to the all Rn and the theorem
still applies; moreover, as it will follow from the proof, in the compact case A(f,M) is in
fact an open dense set.

It is interesting to understand what makes the parametric transversality argument fail.
Following the above ideas we are led to consider the map F ev : Rn × R

n → R
n given by:

F ev : (a, x) 7→
1

2
〈a, x〉 +∇f(x)

(again for simplicity we take M = R
n). To check the transversality of F ev to the zero in

R
n we compute its differential:

dF ev
(a,x)(ȧ, ẋ) =

1

2
〈ȧ, x〉+

1

2
〈a, ẋ〉+ 〈Hex(f)ẋ, ẋ〉.

We see now that a priori this differential can have rank smaller than n on the preimage
of zero; take for example f ≡ 0 and the point (a, x) = (0, a2, . . . , an, 0, . . . 0): then
F ev(a, x) = 0 but rk(dF ev

(a,x)) < n.

The paper is structured as follows: we first prove some auxiliary results in Section 2 and
Section 3 is devoted to the proof of the main theorem. The techniques we use combine
ideas from real algebraic geometry and differential topology. In particular the proof
of Theorem 1.1 and its preceding lemmas suggest possible generalizations to o-minimal
geometry.
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2. Preliminary reductions

We start by recalling the following (Lemma 17.17 from [1]).

Lemma 2.1. Let f be a smooth function on R
n and for a ∈ R

n define the function fa
by x 7→ f(x) + a1x1 + . . .+ anxn. The set:

{a ∈ R
n | fa is Morse}

has full measure in R
n.

Proof. Define the function g(x) = (∂f/∂x1, . . . , ∂f/∂xn) and notice that the Hessian of f
is precisely the Jacobian of g and that x is a nondegenerate critical point for f if and only
if g(x) = 0 and the Jacobian Jx(g) of g at x is nonsingular. Then ga(x) = g(x) + a and
J(ga) = J(g). We have that x is a critical point for fa if and only if g(x) = −a; moreover
it is a nondegenerate critical point if and only if we also have Jx(g) is nonsingular, i.e., a
is a regular value of g. The conclusion follows from Sard’s lemma. �

We immediately get the following corollary (this is the statement of Theorem 1.1 in
the case M is an open subset of Rn not intersecting the axes).

Corollary 2.2. If f is a smooth function on an open subset U of Rn such that for every
u = (u1, . . . , un) ∈ U we have ui 6= 0 for all i = 0, . . . , n, then

A(f, U) = {a ∈ R
n | f + qa is Morse on U}

has full measure in R
n.

Proof. The functions u2
1, . . . , u

2
n are coordinates on U by hypothesis; we let f̃ be the

function f in these coordinates (it is defined on a certain open subset W of Rn). Then

for every a ∈ R
n we have that (using the above notation) f̃a is Morse on W if and only

if f + qa is Morse on U and the conclusion follows applying the previous lemma. �

To prove the general statement we need the following intermediate step, which removes
the condition on the relative position of U ⊂ R

n with respect to the axes.

Lemma 2.3. Let f be a smooth function on an (arbitrary) open subset U of Rn. Then
the set A(f, U) is dense in R

n.

Proof. For every I = {i1, . . . , ij} ⊂ {1, . . . , n} define:

HI = U ∩ {ui = 0, i ∈ I} ∩ {uk 6= 0, k /∈ I}.

To simplify notations let I = {1, . . . , j}. If a = (a1, . . . , an) and a′′ = (aj+1, . . . , an) then
(qa)|HI

= (qa′′)|HI
where qa′′ : Rn−j → R is defined as above. By Corollary 2.2 the set

A′′(f,HI) = {a′′ ∈ R
n−j | f |HI

+ qa′′ is Morse on HI}

is dense in R
n−j . Let a = (a′, a′′) ∈ R

n such that a′′ ∈ A′′(f,HI) and suppose x ∈ HI

is a critical point of f + qa; then x is also a critical point of (f + qa)|HI
= f |HI

+ qa′′ .
Since a′′ ∈ A′′(f,HI) then x belongs to a countable set, namely the set Ca′′ of critical
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points of f |HI
+ qa′′ (each of these critical point must be nondegenerate by the choice

of a′′); moreover we have that

Hex(f |HI
+ qa′′) = Hex(f |HI

) + diag(aj+1, . . . , an)

is nondegenerate. Notice that the Hessian of f + qa at x is a block matrix of the form

Hex(f + qa) =

(

diag(a1, . . . , aj) +B(x) C(x)

C(x)T Hex(f |HI
+ qa′′)

)

.

Thus for every a′′ = (aj+1, . . . , an) ∈ A′′(f,HI) and for every x ∈ Ca′′ consider the
polynomial pa′′,x ∈ R[t1, . . . , tj ] defined by:

pa′′,x(t1, . . . , tj) = det(Hex(f) + diag(t1, . . . , tj , aj+1, . . . , an)).

Then the term of maximum degree of pa′′,x is

t1 · · · tj det(Hex(f |HI
+ qa′))

which is nonzero since det(Hex(f |HI
+ qa′′)) 6= 0 (x is a nondegenerate critical point of

f |HI
+ qa′′). It follows that pa′′,x is not identically zero; hence its zero locus is a proper

algebraic set in R
j .

Thus for each a′′ ∈ A′′(f,HI) and each x ∈ Ca′′ the set A′(a′′, x, I) defined by

{a′ ∈ R
j | if x is a critical point of f + q(a′,a′′) on HI then it is nondegenerate}

is dense in R
j (it is the complement of a proper algebraic set). In particular

A′(a′′, I) = {a′ ∈ R
j | each critical point of f + q(a′,a′′) on HI is nondegenerate}

also is dense in R
j , since it is a countable intersection of dense sets, i.e.,

A′(a′′, I) =
⋂

x∈C
a′′

A′(a′′, x, I).

Thus the set

A(f, I) = {(a′, a′′) | a′′ ∈ A′′(f,HI), a
′ ∈ A′(a′′, I)}

(which coincides with the set of a = (a′, a′′) ∈ R
n such that each critical point of f + qa

on HI is nondegenerate) is dense: for every a′′ in the dense set A′′(f, I) the set of a′ such
that (a′, a′′) ∈ A(f, I) is dense. Finally

A(f, U) =
⋂

I⊂{1,...,n}

A(f, I)

is a finite intersection of dense sets, hence dense. �

150



Plenty of Morse functions by perturbing with sums of squares

3. Proof of Theorem 1.1

Proof. Let u1, . . . , un : Rn → R be the coordinates on R
n. Suppose M is of dimension m.

For every point x ∈ M there exists a neighborhood W of x in M such that ui1 , . . . , uim

are coordinates for M on
W ≃ R

m,

for some {i1, . . . , im} ⊆ {1, . . . , n}; since M is second countable, then it can be covered
by a countable (finite if M is compact) number of such open sets. For convenience of
notations suppose {i1, . . . , im} = {1, . . . ,m}.
Thus u1, . . . , um are coordinates on W ≃ R

m and f |W , um+1|W , . . . , un|W are functions
of u1|W , . . . , um|W . Fix a′′ = (am+1, . . . , an) ∈ R

n−m and define ga′′ : W → R by

ga′′ = f |W + am+1u
2
m+1|W + · · ·+ anu

2
m|W = (f + am+1u

2
m+1 + · · ·+ anu

2
n)|W

Notice that ga′′ is not (f + qa)|W since we are taking only the last n−m of the a′is; we
still have the freedom of choice (a1, . . . , am).
By lemma 2.3, since u1|W , . . . , um|W are coordinates on W , for every a′′ ∈ R

n−m the set

{a′ = (a1, . . . , am) ∈ R
m s.t. ga′′ + a1u

2
1|W + · · ·+ amu2

m|W is Morse on W}

is dense in R
m. Notice that ga′′ + a1u

2
1|W + · · ·+ amu2

m|W = (f + q(a′,a′′))|W ; hence for
every a′′ the set of a′ such that (f + q(a′,a′′))|W is Morse on W is dense. Thus the set of
a ∈ R

n such that (f + qa)|W is Morse on W is dense (it is dense in a′ for each fixed a′′

hence it is globally dense). It follows that A(f,M) is a countable intersection of dense
sets, hence dense.

Let us now coverM with a countable union of compact sets: M =
⋃

Bn; since the map
a 7→ (f + qa)|Bn

is continuous in the Whitney topology and the set of Morse functions is
open, then the set of a such that (f + qa)|Bn

is Morse is open (and dense by the previous
part).

In particular the set A(f,M) =
⋂

n A(f,Bn) is a countable intersection of open dense
sets, hence residual. �
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Institut Camille Jordan, Université Claude Bernard Lyon 1, Lyon, France

E-mail address: lerario@math.univ-lyon1.fr

151


