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The telescopic construction: a microsurvey
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1. Introduction

It is well known that there are cocompact isometric properly discontinuous actions on
the hyperbolic n-space. On the other hand almost any question about possible quotient
spaces of such actions Γ y Hn remains open for large n, see Section 3.

The question we are trying to answer is whether any given finitely presented group is
the fundamental group of Hn/Γ for an action Γ y Hn as above. We started to think
about this at the 16-th Gökova Conference and later we were able to give a positive answer
for some dimensions. To our satisfaction, the construction turned out to be useful in a
couple of unexpected places.

Our original proof is given by an explicit but slightly convoluted construction which
might be hard to follow. In this note we will only try to convince the reader that the
construction has enough freedom to attain the goal. (The same problem happens if one
considers the following question: is it possible to build a doll house from the Lego blocks?
— obviously yes, but the easiest way to prove this is to build a house from Lego blocks
by your hands. This type of proof is given in [14], and here we try to give some evidence
for the “obviously yes” answer.)

We also overview the results in [6], [10], [14].

Acknowledgments. We want to thank Joel Fine, Misha Kapovich and José Maŕıa
Montesinos-Amilibia for their help.

2. What can be proved

Let us denote by 〈Tor∆〉 the subgroup of group ∆ generated by the elements of finite
order.

The proof of the following theorem is discussed in Section 4.

Theorem 2.1. There is a finitely presented group Γ such that for any finitely presented
group G there is a finite index subgroup Γ′ in Γ such that G is isomorphic to the quotient
Γ′/〈TorΓ′〉.

Moreover,
(i) The group Γ can be chosen to be hyperbolic.
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(ii) The Coxeter group Γ12 y H3 of the regular right angled hyperbolic dodecahedron
satisfies this property. Moreover

(a) The same holds for a subgroup of finite index in Γ12 which does not contain
reflections in planes.

(b) The same holds for a subgroup infinite index in Γ12 which acts cocompactly
on a convex subset of H3 and such that any torsion element corresponds to a
central symmetry of H3.

(iii) The orientation preserving subgroup of the Coxeter group Γ+
120 y H4 of the regular

right angled 120-cell satisfies this property.

Theorem 2.1(iib) and the following corollary was obtained by Kapovich in [10].

Corollary 2.2. Any finitely presented group G is isomorphic to the fundamental group
of M/J , where M is either

(a) complete noncompact 3-dimensional oriented hyperbolic manifold, or

(b) compact 3-dimensional oriented hyperbolic manifold with convex boundary.

In both cases J : M → M is an isometric involution which has only finite number of fixed
points.

Kapovich used this statement in the proof of the following result, which is discussed
in Section 6.

Theorem 2.3. (Kapovich’s theorem) Let G be a finitely-presented group. Then there
exists a 2-dimensional irreducible complex-projective variety W with the fundamental
group G, so that the only singularities of W are normal crossings and Whitney umbrellas.

Comments. It is well-known that fundamental groups of complex projective (or compact
Kähler) manifolds satisfy many restrictions, see e.g., [1]. On the other hand varieties
that are unions of collections of coordinate planes in complex projective spaces can have
arbitrary fundamental groups. Such varieties are of course reducible and have very bad
singularities.

The theorem above strengthens the result of Simpson in [16] which states that every
finitely-presented group G appears as the fundamental group of a singular irreducible
complex-projective variety.

Further, from Theorem 2.1(iia), we get the following result; it was announced by
Aitchison, but he did not write the proof.

Theorem 2.4. (Aitchison’s theorem) Any finitely presented group G is isomorphic to
the fundamental group of M/J , where M is a closed oriented 3-dimensional manifold and
J : M → M is a smooth involution which has only isolated fixed points.

The last result might look surprising since there are many restrictions on the funda-
mental groups of 3-manifolds, see for example [20].
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Theorem 2.1(iii) has two applications described in Section 5. The first one is a new
proof of a result of Taubes in [17] concerning complex 3-manifolds and the second is on
symplectic Calabi–Yau manifolds obtained by the first author and Fine in [6].

Theorem 2.5. (Taubes’ theorem) For every finitely presented group G there exists a
smooth compact complex 3-manifold W such that π1W = G.

Again, an analogous theorem does not hold for Kähler manifolds (see [1]). In fact all
the manifolds obtained by our construction are non-Kähler.

Theorem 2.6. (Symplectic Calabi–Yau manifolds) For every finitely presented
group G there exists a smooth compact symplectic 6-manifold M6 with vanishing first
Chern class and the fundamental group isomorphic to G.

Such a diversity of symplectic 6-folds with c1 = 0 is quite surprising since only two
types of symplectic 4-manifolds with c1 = 0 are known, namely K3-surfaces and T 2

bundles over T 2 (see for example [13]).

3. Open problems

The following question is the main motivation for our construction, it is stated on
page 12 in [7].

Question 3.1. (Gromov) Is it true that every compact smooth manifold M is
PL-homeomorphic to the underlying space of a hyperbolic orbifold?

In other words, is there a discrete co-compact isometric action on the hyperbolic space
with the quotient space PL-homeomorphic to M?

The question is open if n > 4. In dimensions 2 and 3 the answer is yes. Moreover, in
these dimensions one can fix a compact hyperbolic orbifold O and get all the manifolds
by passing to finite orbicovers of O. In the 2-dimensional case one can take the orbifold
formed by the hyperbolic triangle with angles π

2
, π

3
and π

5·6·7
; this is easy to prove. In the

3-dimensional case one can take the right angled hyperbolic dodecahedron; the latter is
the baby case of theorems proved by Thurston, Hilden, Lozano, Montesinos and Whitten;
see [9] and the references therein.

Let us state more specific open questions.

Question 3.2. Is it true that the underlying space of any compact 1000-dimensional
hyperbolic orbifold has nontrivial fundamental group?

Clearly the answer “yes” would imply “no” for the Gromov’s question. The following
is a yet more specific conjecture, if true, it also gives a negative answer to Gromov’s
question.

Conjecture 3.3. The underlying space of a 1000-dimensional hyperbolic orbifold can
not be homeomorphic to the 1000-dimensional disc nor to the 1000-dimensional sphere.
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The only approach to this conjecture that we see is to generalize Vinberg’s proof of
non-existence of hyperbolic cocompact isometric actions on the hyperbolic space of large
enough dimension generated by the reflections in the hyperplanes, see [18] and [19].

Let us explain why these two problems are relevant. The quotient space H
m/Γ is

PL-homeomorphic to a manifold if and only if the isotropy groups of Γ are generated by
rotations around subspaces of codimension 2; the latter is proved by Mikhailova in [15].1

For manifolds with boundary one needs to add reflections in hyperplanes.

An affirmative answer to the following statement was announced by Aitchison, but
later he took it back. It is closely related to Aitchison’s theorem (Theorem 2.4) and
Corollary 2.2. A modification of our construction might lead to a “yes” answer; we do
not see any approach for a “no” answer.

Question 3.4. Is it true that any finitely presented group appears as the fundamental
group of a quotient M/J , where M is a compact 3-dimensional hyperbolic manifold and
J : M → M is an isometric involution?

If the answer is “yes” can we assume in addition that J has only isolated fixed points?

4. Telescopic actions

Definition 4.1. A co-compact properly discontinuous isometric group action Γ y X on
a length-metric space X is called telescopic if given a finitely presented group G, there
exists a subgroup Γ′ < Γ of finite index such that G is isomorphic to the fundamental
group of the quotient space X/Γ′.

We will construct telescopic actions on particularly nice spaces X . In the base example
X will be a 2-dimensional polyhedral CAT[−1] space; it will be used to construct telescopic
actions on hyperbolic spaces of dimension 3 and 4.

A good compact orbihedron is an alternative way to think about a cocompact group
action. These two languages can be easily translated from one to the other; for example,
passing to a subgroup of finite index is the same as a finite orbicover of the orbihedron.
It turns out that the orbi-language suites our purposes better. The definition above can
be reformulated in the following way.

Definition 4.2. A good compact orbihedron O is called telescopic if given a finitely pre-
sented group G, there exists a finite orbicover O′ → O such that G is isomorphic to the
fundamental group of the underlying space |O′| of O′.

Now we turn to the construction of the 2-dimensional telescopic orbihedron Y . First
we construct the underlying space of Y and then we equip it with a metric and an orbi-
structure.

Underlying space. Consider the figure eight F8 with the loops r and g (r is for “red”
and g is for “green”). Let us attach to F8 four discs B, W , G, R (named for “black”,

1If one replaces PL-homeomorphism by homeomorphism then the answer is more complicated, in this
case the classification of isotropy groups was given recently by Lange in [12].

113



PANOV and PETRUNIN

“white”, “green”, and “red”) along g∗r−1, g∗r, g and r respectively. Denote by |Y | the
obtained topological space.

In other words, |Y | is homeomorphic to RP2 with two discs attached along two lines.
The lines cut two discs from RP2 which are colored in black and white and the attached
discs are red and green.

Orbi-structure. Fix some integer k > 2.
In the interior of each 2-cell of Y , choose k “singular” points; so in total we have 4·k

singular points. Let us assume that each singular point is modeled on the singularity
R2/Z2, and the rest of the points are regular; i.e., they have trivial isotropy groups. This
defines an orbi-structure on Y .

Let us equip Y with a metric. To do this, prepare a pair of right angled (k + 2)-gons
for each 2-cell of Y . (The (k + 2)-gon has to be hyperbolic if k > 3 and has to be a
Euclidean rectangle if k = 2.) Gluing the pair of (k + 2)-gons along the corresponding
k + 1 sides we get a disc. The pair of unglued sides form the boundary of the disc and
the k vertices which appear in its interior correspond to the singular points. For a right
choice of size of these (k+2)-gons the boundaries of the four disks can be glued together
by length-preserving maps. red

green

red

ΣThe orbihedron Y admits the universal orbi-cover X
which is double branching at each singular point. The in-
duced metric on X is CAT[0]. Moreover, in the case k > 3
we can make it to be CAT[−1]. Denote by Γ y X the
group of its deck transformations; this will be the action
corresponding to Y ; in particular Y is a good orbifold;
see [8] for more details.

Orbicovers of Y . Consider a two-dimensional CW-complex W which satisfies the fol-
lowing three conditions.

(1) The two cells of W can be colored in 4 colors black, white, green and red, in such a
way that black-and-white cells form a connected surface Σ (which is not orientable
in general). The red and green cells are attached to Σ along a collection of curves
which will be called red and green correspondingly.

(2) Each curve (green or red) intersects with at least one other curve and the intersec-
tions are transversal in Σ. Two curves of the same color can not intersect.

(3) The red and green curves cut Σ into black and white discs in the checkerboard
order. Moreover there is an orientation on each curve such that if one moves around
the boundary of white (black) disc then red and green segments have the same
(correspondingly the opposite) orientation.

In this case, W is homeomorphic to a finite orbicover of Y . Indeed, it is easy to see
that the 1-skeleton of W is a cover of F8 which respects the color and the orientation.
This covering can be extended to a ramified covering W → Y which is branching only at
two given interior points in each cell with order at most 2. The latter follows since any
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cover S1 → S1 can be extended to a ramified covering D2 → D2 which is branching only at
the given two interior points in each cell with the order at most 2; cf. [4, Proposition 1].

Telescopicness. It is well known that any finitely presented group G can appear as the
fundamental group of a finite two-dimensional CW-complex, say W . This construction
enjoys a lot of freedom which can be used to show that W can be chosen so that it satisfies
the three conditions above; see [14] for more details.

Since these conditions imply that W appears as the underlying space of an orbicover
of Y , we get that Y is telescopic.

Note that we proved 2.1(i). Indeed, we can assume that X is a CAT[−1] space.
Therefore given γ ∈ Γ′, we have γ ∈ TorΓ′ if and only if γ has a fixed point if X . It follows
that the fundamental group of X/Γ′ is isomorphic to the quotient group Γ′/〈TorΓ′〉,
see [2].

Hyperbolic 3-orbifold. Consider a right angled hyperbolic dodecahedron Q. Assume
we glue face-to-face a few copies of Q. The obtained space has a natural orbifold structure
if around each vertex of each copy of Q we see the quotient space of H3 by a subgroup of
Z2 ⊕ Z2 ⊕ Z2 generated by reflections in 3 orthogonal hyperplanes. The picture is either
H3, H3/Z2, H

3/(Z2 ⊕Z2) or H
3/(Z2 ⊕Z2⊕Z2); in the second and third cases there exist

geometrically different actions.
It turns out that these local rules leave enough freedom to construct an orbifold O

whose underlying space has almost arbitrarily big scale structure. In particular, we can
glue an orbifold which looks very much like Y . Moreover, this way we can produce a
hyperbolic orbifold O with an embedding ι : |Y | → |O| such that the following property
holds. For any orbi-cover Y ′ → Y there is an orbi-cover O′ → O and an embedding
ι′ : |Y ′| →֒ |O′| such that the following diagram is commutative
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and ι′ induces an isomorphism π1|Y
′| → π1|O

′|.
This property is sufficient to conclude that the orbifold O is telescopic.

Variations of the construction. In the above construction the isotropy groups of O
can be equal to any subgroup of the action generated by the reflections in the coordinate
hyperplanes. In fact, the freedom in the construction makes it possible to get more control
on the isotropy groups.

One can leave only the orientation preserving actions and the action of Z2 by the central
symmetry. This proves Theorem 2.1(iia). Note that the quotient spaces for the orientation
persevering subgroups are topologically manifolds. The underlying space of the obtained
orbifold is a manifold with singular points which admit neighborhoods homeomorphic to
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the cone over RP2; passing to the orienting double cover, we get Aitchison’s theorem
(Theorem 2.4).

In the same way one can build an orbifold which has singularities formed by the
action of Z2 by central symmetries while the rest of the singularities form the topological
boundary of underlying space of the orbifold. In this case the underlying space is the
quotient of a convex set L in H3 formed by the union of copies of Q by a cocompact
action of a group in which the only torsion elements are central symmetries. This proves
Theorem 2.1(iii) and implies Corollary 2.2.

In the 4-dimensional case one can use a hyperbolic right-angled 120-cell the same way
as we used Q.

A similar construction might work in the n-dimensional case once there is a compact
n-dimensional hyperbolic orbifold. No such examples are known for big enough n.

5. Complex and symplectic manifolds

In this section we explain how Theorem 2.1(iii) leads to a simple proof of Taubes’
theorem and to a construction of six-dimensional symplectic Calabi–Yau manifolds with
arbitrary fundamental group.

Both proofs rely on the twistor construction which we are about to explain.

Twistor space. Let X be an oriented 4-dimensional Riemannian manifold. Then the
twistor space of X is defined as the S2-bundle over X whose fiber over a point p ∈ X
consists of all orthogonal operators J acting on the tangent space TpX such that J2 = −1
and J induces on X the correct orientation.

We will denote the twistor space of H4 by Z. All twistor spaces carry a natural almost
complex structure, and in the case of the twistor space of H4 this structure is integrable,
see [3]. To get an idea of this complex structure one can conformally identify H4 with
one half of the round S4. In this case Z can be seen as one “half” of the twistor space of
S4 which is CP3.

In order to get a symplectic structure w on Z one can identify Z with a particular six-
dimensional co-adjoint orbit of SO(1, 4), [5, Section 2.3.3]. This orbit consist of matrices
A from so(1, 4) whose kernel is generated by a positive vector v ∈ R1,4 and such that
A2|v⊥ = − id.

Note that these complex and symplectic structures do not give rise to a Kähler form
on Z since w is not positive on all complex directions.

The group of orientation preserving isometries Iso+(H
4) of H4 lifts to the action on its

twistor space Z and the action preserves both complex and symplectic structures.

About the proofs. Applying Theorem 2.1(iii), we get a co-compact subgroup Γ′ of
Iso+(H

4) such that π1(H
4/Γ′) ∼= G. In this case the topological fundamental group of

the quotient of the twistor space Z/Γ′ equals G as well, since the fibers of the projection
Z/Γ′ → H4/Γ′ are two-dimensional spheres. The quotient space Z/Γ′ is both a complex
and symplectic orbifold, moreover with respect to the symplectic structure c1(Z/Γ

′) = 0.
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In order to prove Theorems 2.5 and 2.6 one has to resolve the singularities of Z/Γ′

with respect to complex and symplectic structures.
The complex case is straightforward, the resolution exists by the Hironaka theorem; it

also can be constructed explicitly. The fundamental group does not change after such a
resolution and we obtain a smooth complex 3-dimensional manifold with the fundamental
group G. This proves Taubes’ theorem.

The symplectic case is more involved since the techniques of resolutions of symplec-
tic singularities are developed poorly and moreover the resolution has to preserve the
condition c1 = 0.

The existence of such a symplectic resolution for Z/Γ′ is proved in [6]. The proof uses
the fact that all the singularities of the constructed orbifold are locally modeled on the
quotient of C3 with the standard symplectic form by a linear action of Z2 or Z2 ⊕Z2. As
a consequence Hamiltonian actions of the tori T1 and T3 can be defined at neighborhoods
of singularities that are compatible in a specific way. This permits one to apply methods
of toric geometry and use a version of symplectic cutting to resolve the singularities.

6. Projective surfaces with controlled singularities

In this section we give a rough outline the proof of Kapovich’s theorem (Theorem 2.3).

Step 1: Dirichlet tessellation. Starting with Γ provided by Corollary 2.2 one gets an
infinite tessellation Dx(Γ) of H3 by Dirichlet domains of the action of Γ on H3 with
respect to a generic point x. Since the action is convex co-compact all domains have a
finite number of faces.

Step 2: weak simplicity. For a generic x the tessellation Dx(Γ) is simple outside of its
vertices, see [10, Theorem 1.6]. In other words each edge of the tessellation belongs to
exactly three domains. This property is called weak simplicity.

This is a key moment in the proof. The proof relies on the fact that the only torsion
elements in the group provided by Corollary 2.2 are central symmetries.2

Step 3: complexification. Next, one finds a finite index normal subgroup Γ′ ⊳ Γ such
that the action Γ′

y H
3 is free. In this case Dx(Γ)/Γ

′ is glued from a finite number of
hyperbolic polytopes all equal to the Dirichlet domain of Γ.

Further the polyhedral complex Dx(Γ)/Γ
′ is complexified. This operation is quite

sophisticated and we explain just its first approximation.
Each polytope P of the complex Dx(Γ)/Γ

′ can be realized as embedded in CP3 via a
natural chain of embeddings

P →֒ H
3 →֒ RP3 →֒ CP3.

The two-faces of P span a collections of CP2’s in CP3. Now one can glue all CP3’s along
these CP2’s by extending linearly the isometric identification of polyhedrons faces.

2It is conjectured that for such actions, the tessellation Dx(Γ) is simple for a generic x; see
[10, Conjecture 1.5].

117



PANOV and PETRUNIN
In the actual complexification in [10] before gluing the copies of CP3 one has to blow

them up in a carefully chosen way.
The obtained variety P is reducible; it can be shown to be complex projective with

normal crossing singularities by methods developed in [11]. The proof relies on the fact
that the complex Dx(Γ)/Γ

′ is simple outside of its vertices.

Step 4: taking quotient. Next one considers the quotient of P by Γ/Γ′, and shows that its
fundamental group equals to G. This quotient is an irreducible projective variety but it
is not anymore a variety with normal crossing singularities. Additional singularities come
from fixed points of the action of Γ/Γ′.

Step 5: reducing dimension to two. Finally one takes a hyperplane section of the obtained
projective variety. It has all the desired properties, and Whitney umbrellas appear in it
because of the above additional singularities.
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