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An example of a reducible Severi variety

Ilya Tyomkin

Abstract. We construct a positive-dimensional, reducible Severi variety on a toric
surface.

1. Introduction

In this note we discuss the irreducibility problem for Severi varieties, which parameter-
ize irreducible reduced curves of geometric genus g in a given linear system |L| on a given
projective surface X . Throughout the paper we work over the field of complex numbers.

Severi varieties were introduced by Severi [6] in 1920s in an attempt to prove the
irreducibility of moduli spaces of algebraic curves of a given genus. He considered the
case of plane curves and proved the irreducibility, but the proof contained a gap, and the
first complete proof of the irreducibility was obtained by Harris [4] only in 1986. The
result of Harris was generalized to other rational surfaces. In particular, the irreducibility
is known for Hirzebruch surfaces [8], and in the case of rational curves it is also known
for all toric surfaces [8] and all del Pezzo surfaces [7] with one trivial zero-dimensional
exception: the variety of rational plane cubics through eight points in general position.
The goal of this note is to describe an example of a toric surface admitting reducible
positive-dimensional Severi varieties.

The idea of Harris’s proof of irreducibility of Severi varieties is as follows: A standard
deformation-theoretic argument shows that in a neighborhood of an irreducible rational
nodal curve the Severi variety consists of several smooth branches parameterized by sub-
sets of pa(L) − g nodes (one branch for each choice of pa(L) − g nodes). So, first, one
proves that the monodromy acts as a full symmetric group on the set of nodes, and con-
cludes that there exists a unique component of the Severi variety whose closure in the
linear system contains an irreducible rational nodal curve. Second, one proves that the
closure of any component of the Severi variety contains a nodal curve of smaller genus,
and deduces from this that it contains a rational nodal curve, which completes the proof.

The first step is easy in the plane case and in the case of Hirzebruch surfaces, and the
main difficulty of the proof is in the second step, which requires several brilliant ideas and
involved arguments from the deformation theory and the theory of curves. As we will see
below, in our example the first step is the one that fails, while the second step generalizes
smoothly.
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2. The example

We refer the reader to [2, 3] for an introduction to toric geometry. Let N be a lattice of
rank two, given by N = Z2 = Ze1⊕Ze2, and M the corresponding dual lattice. Consider
the complete fan Σ in R2 with rays generated by ±2e1±e2, and let X be the toric surface
corresponding to Σ.

Σ

Let ∆ be the lattice polygon inMR := M⊗ZR with vertices±e1,±2e2, where {ei} ⊂ M
denotes the dual basis to the basis {ei} ⊂ N . It defines an ample line bundle on the surface
X , denoted by L. Since the arithmetic genus of a line bundle is equal to the number of
inner lattice points in the corresponding polygon we have: pa(L) = 3.

∆

For the convenience of a reader not familiar with toric geometry, we provide an explicit
description of the immersion of the surface X into the projective space P6 given by the
linear system |L| at the very end of § 4.5.

The Severi variety we are going to consider is the variety parameterizing irreducible
reduced curves of genus one in the linear system |L| on the surface X that do not pass
through the zero-dimensional orbits. We denote this variety by V := V irr(X,L, 1).

Theorem 2.1. Severi variety V is reducible. It is equidimensional of dimension 4, has
exactly two irreducible components, and general points of each component correspond to

irreducible reduced nodal curves of genus one. Furthermore, the closure of each component

in |L| contains points corresponding to irreducible rational nodal curves.
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3. Proof of Theorem 2.1

3.1. Curves in |L|

Let C ∈ |L| be an irreducible curve that does not contain the zero-dimensional orbits
of X , and E → C the normalization of C. Denote by f the composition morphism
E → C →֒ X . Let n1 := 2e1+e2, n2 := −2e1+e2, n3 := −2e1−e2, and n4 := 2e1−e2 be
the N -generators of the rays of Σ, and D1, . . . , D4 ⊂ X the corresponding divisors. Since
C.Di = 1 for all i, there exist points p1, . . . , p4 ∈ E such that f∗Di = pi. Furthermore,
we obtain a homomorphism f∗ : M → OE(E \∪ipi) ⊂ C(E) given by m 7→ f∗(xm), which
satisfies the following:

div(f∗(xm)) =

4∑

i=1

(m,ni)pi (1)

for anym ∈ M . Vice versa, given four distinct points p1, . . . , p4 ∈ E and a homomorphism
φ : M → OE(E \ ∪ipi) ⊂ C(E) satisfying (1) for any m ∈ M , we obtain a morphism
f : E \ ∪ipi → TN ⊂ X that extends to E such that f(pi) ∈ Di for all i, and φ = f∗.
Note that to give a homomorphism φ : M → OE(E \ ∪ipi) ⊂ C(E) satisfying (1) for any
m ∈ M it is sufficient to specify the values of φ on any set of generators of M and to
verify (1) on these generators. Plainly, the data (E; p1, . . . , p4;φ) and (E′; p′1, . . . , p

′
4;φ

′)
correspond to the same curve C if and only if there exists an isomorphism α : E → E′

such that α(pi) = p′i for all i, and φ = α∗ ◦ φ′.

3.2. The two components of V

Let (E; p1, . . . , p4;φ) be a datum as above such that the genus of E is one. Then (E, p1)
is an elliptic curve, and (1) for the generators {e1 + 2e2, e2} of M is equivalent to the
following identities in the group E: 4[p3] = 0 and [p2] = [p3] + [p4]. We conclude that
the Severi variety V is dominated by the variety W parameterizing the following data:
(E,O; p, q;x1, x2), where (E,O) is an elliptic curve, p ∈ E is a point of order 2 or 4, q ∈ E
is any point such that [q] 6= 0,±[p], and x1, x2 are rational functions with divisors 4O−4p
and p+ q − r − O respectively, where [r] = [p] + [q]. It also follows from the description
above that the projection W → V is at most two-to-one.

We see that W consists of two components W2 and W4 distinguished by the order of
the point p, and hence the projections of W2 and W4 to V are disjoint. By forgetting the
rational functions x1, x2 one represents Wk as a C∗ ×C∗-torsor over a dense open subset
of the universal curve Ek over the moduli space X1[k] of elliptic curves with the (partial)
level-k structure. Recall that X1[k] ≃ Γ1[k]\H, where H is the upper half plane and Γ1[k]
the congruence subgroup

Γ1[k] =

{
A ∈ SL(2,Z) |A ≡

(
1 ∗
0 1

)
mod k

}
.

Thus, Wk are irreducible since so are the moduli spaces X1[k] and the universal curves
Ek. Furthermore, dim(Wk) = dim(C∗ × C∗) + dim(Ek) = 4. Thus, V has exactly two
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irreducible components, each of dimension 4. The claim about the nodality of the general
curve parameterized by each irreducible component follows from [8, Theorem 2.8] applied
to a toric desingularization of X .

3.3. Irreducible rational nodal curves corresponding to points in the

closure of the components

For k = 1, 2, consider the maps fk : P
1 → X given by f∗

k (x
m) = t(m,nk), where t is

the coordinate on A1 ⊂ P1. Set Ck := fk(P
1), C := C1 ∪ C2, and pi := f−1(Di) for

i = 1, . . . , 4. Then C is a 4-nodal curve in the linear system |L|. Let q ∈ C be one of
its nodes. We claim that C, and any small deformation Cǫ of C that smooths out q and
preserves the other three nodes, belong to the closures W i, for i = 2, 4.

First, a standard deformation-theoretic argument shows that the nodes of C can be
smoothed out independently. Indeed, the tangent space to the space of deformations
preserving a given collection of nodes {rj} is given by H0(C,J ⊗L|C), where J denotes
the ideal of the subscheme {rj} ⊂ C. It follows from the Riemann-Roch theorem that
h0(C,J ⊗ L|C) = h0(C,L|C) − |{rj}|, and hence the nodes impose independent condi-
tions on the deformations (see the statements and the proofs of [8, Proposition 2.11 and
Claim 2.12] for details). Thus, C and Cǫ belong to the closure of V . To prove that
they belong to the closure of Wi it remains to show that we can choose a node r ∈ C
different from q such that the order of f∗(OX(D3−D1)) in the Jacobian J(E) is i, where
f : E → X denotes the partial normalization of C preserving the nodes q and r.

Recall that there exists a natural exact sequence (cf. [1, p.89])

1 → C
× → J(E) → J(C1)× J(C2) → 0,

and since J(Ci) = J(P1) = 0, we have J(E) ≃ C×. Furthermore, the class of a bi-degree
(0, 0) divisor OE(D) ∈ J(E) ≃ C× disjoint from the nodes of E can be computed as
s1(a)s2(b)/s1(b)s2(a), where sk ∈ C(Ck) are rational functions for which div(sk) = D∩Ck,
and a, b ∈ E are the nodes. Thus, the class of the divisor f∗(OX(D3 −D1)) is the ratio
t1(a)/t1(b), where t1 is the coordinate on C1 vanishing at p1 and having a pole at p3. So,
let us compute the t1-coordinates of the nodes of C. By the definition of C and of fi,

they satisfy the equation t
(m,n1)
1 = t

(m,n2)
2 for all M . The latter is equivalent to t1 = t2

and t41 = 1, i.e., t1-coordinates of the nodes are precisely the roots of unity of order four.
Plainly, the order of the ratio t1(a)/t1(b) is equal to the order of t1(r)/t1(q), and hence
the order of f∗(OX(D3 −D1)) ∈ J(E) can be two or four depending on the choice of r.

4. Final remarks

4.1. Monodromy action on the nodes of rational curves

Any irreducible rational curve D is a deformation Cǫ of the curve C from the last part
of the proof of the Theorem. It is not difficult to see that the monodromy group does
not act transitively on the nodes of Cǫ. In fact it acts as a transposition on a pair of
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nodes and preserves the third node. This is precisely the point where the generalization
of Harris’s proof fails.

4.2. Toric description of the components

One can distinguish between the irreducible components geometrically as follows: Let
N ′ ⊂ N be the sublattice generated by 2e1 and e2, and M ⊂ M ′ the corresponding dual
lattice. Let X ′ be the toric surface corresponding to Σ with respect to the lattice N ′.
Then there exists a natural projection π : X ′ → X that corresponds to the embedding of
the lattices N ′ →֒ N , and X is the quotient of X ′ by the action of the group G given
by Ker(TN → TN ′) ≃ µ2. Furthermore, the action of G on X ′ is free away from the
zero-dimensional orbits.

Σ

In the picture above the lattice N is blue, and N ′ is red. The polygon ∆ is integral with
respect to M ′, and hence defines an ample line bundle L′ on X ′ which satisfies: π∗L = L′.
Let ∆0 ⊂ M ′

R
be the lattice polygon with vertices ± 1

2e
1,±e2, and L0 the corresponding

line bundle on X ′. Then L′ = L⊗2
0 . Furthermore, pa(L

′) = 5 and pa(L0) = 1.

∆0

∆

In the picture above the lattice M is blue, and M ′ is red.
Let C ∈ V be any curve, and E → C its normalization. Then E ×X X ′ → E is an

unramified covering of degree two, and hence E ×X X ′ is either a curve of genus one or a
disjoint union of two such curves by the Riemann-Hurwitz formula. Hence the preimage
π−1(C) ∈ |L′| is either a µ2-equivariant element of the Severi variety V irr(X ′,L′, 1)
or a union of two irreducible curves C1 ∪ C2, where C1 ∈ V irr(X ′,L0, 1) is arbitrary,
C2 = σ(C1), and σ ∈ µ2 is the non-identity element. The locus of curves C of first type is
precisely W4, and of second type is W2. Notice, that this description provides an explicit
double covering of W2 by an open subset of the projective 4-space |L0|.
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4.3. The degrees of the components W2 and W4

One can use Mikhalkin’s correspondence theorem [5] (see also [9]), to compute the
degree of V . It turns out that deg(V ) = 34. The description of W2 from the previ-
ous paragraph allows one to compute the degree of W2 easily. Indeed, pick four points
q1, . . . , q4 ∈ TN in general position. Then the degree of W2 is equal to the number of
curves in W2 passing through q1, . . . , q4. To find this number, we observe that for each
lifting of q1, . . . , q4 there exists a unique curve in |L0| passing through the liftings. Thus,
the number of curves in π∗|L0| through q1, . . . , q4 is 1

22
4 = 8 since each such curve is the

image of exactly two curves in |L0|. Thus, deg(W2) = 8, and hence deg(W4) = 26.
It is not difficult to check that the non-archimedean amoeba of a curve C ∈ |L0| co-

incides with the amoeba of π(C). In particular, the amoebas of curves parameterized
by W2 are dual to M ′-subdivisions of the polygon ∆0. However, by Mikhalkin’s realiza-
tion theorem, there exist curves of genus one in |L| whose amoebas are not dual to any
M ′-subdivision of ∆0, e.g., the amoeba dual to the subdivision of ∆ into four trian-
gles with vertices ±e1,±2e2, e2. One can use this observation or the computation of the
degrees of V and W2 to prove tropically that V has at least two irreducible components!

4.4. Computational aspects

The Severi variety V has codimension two in the linear system |L|. It is the complement
of the loci Uc, U1, . . . , U4 in the singular locus of the discriminant of |L|, where Uc denotes
the locus of cuspidal curves and U1, . . . , U4 are the loci of curves passing through the
singular points of X . Bernd Sturmfels and Diane Maclagan used Macaulay2 to compute
explicitly the ideals of the components W2 and W4, their degrees, etc.

4.5. Generalizations

The example presented in this paper can be generalized to a certain class of toric
surfaces, and to arbitrary characteristic. Further developments in this direction will
appear in [10, 11].

The following geometric description of the two components of V , and a generalization
of our example to a certain class of (not necessarily toric) complete intersection of a scroll
with a hypersurface in the projective space is due to Kristian Ranestad:

Let K ⊂ Pn, n ≥ 6, be a threefold cone over a smooth non-degenerate projective curve
C ⊂ Pn−2, and W ⊂ Pn a general hypersurface of degree at least two. Then S := W ∩K
is a surface with singularities on the vertex line l of K. Let L be the linear system of
hyperplane sections on S. Then S has a plane curve through every point, and the tangent
planes to S all intersect l. The Severi variety of two-nodal irreducible curves in L has
two components: One component corresponds to hyperplane sections of S containing two
tangent planes that intersect l in distinct points. The other component corresponds to
hyperplane sections of S containing two tangent planes that intersect l in the same point.
The image of the nodal curves of the first component all contain l in their span, while the
general nodal curves of the second component do not.
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To see that the pair (X, |L|) is of the form (S,L), consider the linear system of curves

in P2 given by the forms xz4, xyz3, y2z3, xy2z2, x2y2z, xy3z, xy4, and let X̃ be the blowup

of P2 along the base locus of the system. Consider the map f : X̃ → P6 given by the strict
transforms of these forms. Then X is isomorphic to the image of f , and L is isomorphic

to the restriction of OP6(1) to f(X̃). If we denote the homogeneous coordinates on P6 by
w0 = xz4, w1 = xyz3, w2 = y2z3, w3 = xy2z2, w4 = x2y2z, w5 = xy3z, w6 = xy4 then the

surface f(X̃) is the complete intersection of the quadric hypersurface given by w2w4 = w2
3

with the three-dimensional cone given by rank

(
w0 w1 w3 w5

w1 w3 w5 w6

)
≤ 1, i.e., the cone

over the rational normal quartic curve. It is not difficult to check that f(X̃) is a surface
of degree eight with four isolated singularities at

[1 : 0 : 0 : 0 : 0 : 0 : 0],

[0 : 0 : 1 : 0 : 0 : 0 : 0],

[0 : 0 : 0 : 0 : 1 : 0 : 0],

[0 : 0 : 0 : 0 : 0 : 0 : 1].

Notice that the quadric hypersurface in this case is not general (in particular not all the
singularities of the surface belong to the vertex line), nevertheless Ranestad’s description
of the two components of the Severi variety of two-nodal irreducible curves in L is valid
in this case.
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