# Isotoping 2-spheres in 4-manifolds 

Selman Akbulut


#### Abstract

Here we discuss an example of a pair of topologically isotopic but smoothly non-isotopic 2 -spheres in a simply connected 4 -manifold, which become smoothly isotopic after stabilizing by connected summing with $S^{2} \times S^{2}$, and relate this to a cork twisting operation.


## 1. The example

In [AKMR], among other things, the authors give an example of topologically isotopic but smoothly non-isotopic spheres in a simply connected 4-manifold, which become smoothly isotopic after connected summing with $S^{2} \times S^{2}$. In this note we show that such an example already follows from [A2].

First we review [A2]: Let $f: \partial W \rightarrow \partial W$ be the cork twisting involution of the Mazur cork $(W, f)$. Since $f$ fixes the boundary $\partial D$ of a properly imbedded disk $D \subset W$ up to isotopy (as shown in Figure 1), $f(\partial D)$ bounds a disk in $W$ as well (the isotopy in the collar union $D$ ), hence we can extend $f$ across the tubular neighborhood of $N(D)$ of $D$ by the carving process of [A1]. This provides a manifold $Q=W-N(D)$ of Figure 1, homotopy equivalent to $B^{3} \times S^{1}$, and an involution on its boundary $\tau: \partial Q \rightarrow \partial Q$.
$\tau$ does not extend to $Q$ as a diffeomorphism (otherwise $f$ would extend to a self diffeomorphisim of $W$ ). So $\tau$ gives an exotic structure to $Q$ relative to its boundary (just as in the cork case). In [A4] such ( $Q, \tau$ )'s are called anticorks because they live inside of corks $(W, f)$, and twisting $Q$ by the involution $\tau$ undoes the effect of twisting $W$ by $f$. Notice that the loop $\gamma=\partial D$ of Figure 1 bounds two different disks in $B^{4}$ with the same complement $Q$ (where the identity map between their boundaries can not extend to a diffeomorphism inside), they are described by the two different ribbon moves indicated in the last picture of Figure 1. The two disks are the obvious disks which $\gamma$ bounds in the third picture of Figure 1, and the same disk after zero and dot exchanges of the figure.

Now let $M$ be the 4 -manifold obtained by attaching a 2 -handle to $B^{4}$ along the ribbon knot $\gamma$ of Figure 1, with +1 framing. Clearly $M$ has two imbedded 2-spheres $S_{i}, i=1,2$ of self intersection +1 generating $H_{2}(M) \cong \mathbb{Z}$, corresponding to the two different 2-disks which $\gamma$ bounds in $B^{4}$. Blowing down either $S_{1}$ or $S_{2}$ turns $M$ into the positron cork $\bar{W}_{1}$ of Figure $2([\mathrm{AM}])$, and the two different blowing down processes turn the identity map $\partial M \rightarrow \partial M$ to the cork involution $f: \partial \bar{W}_{1} \rightarrow \partial \bar{W}_{1}$, i.e., the maps in Figure 2 commute (this can be seen by blowing down $\gamma$ of Figure 1 by using the two different disks). Hence

[^0]
## Isotoping 2-spheres in 4-manifolds



Figure 1
$S_{1}$ and $S_{2}$ are not smoothly isotopic in $M$ by any isotopy keeping $\partial M$ fixed, though they are topologically isotopic (by Freedman's theorem); but they are isotopic In $M \# S^{2} \times S^{2}$ relative to boundary (since surgery corresponds to turning the dotted circle to a 0 -framed circle, in the third picture of Figure 1).

Blow down $\mathrm{S}_{1}$



Figure 2

Since $M=\bar{W}_{1} \# \mathbb{C P}^{2}$, this example shows that the operation of blowing up $\mathbb{C P}^{2}$ undoes the cork twisting operation of $\left(\bar{W}_{1}, f\right)$. Also since the Dolgachev surface $E(1)_{2,3}$ differs from its standard copy $\mathbb{C P}^{2} \# 9 \mathbb{C P}^{2}$ by twisting the positron cork $\left(\bar{W}_{1}, f\right)$ inside (Theorem 1 of [A3]), the manifold $M$ in this example can be made to be closed (without boundary).

Remark 1.1. The reader can check that the two ribbon disks of the ribbon knot in Figure 1 are actually the same ribbon disks (isotoping the last picture of Figure 1, by forcing the two strands going through the circle $b$ stay parallel, results the same picture except the positions of $a$ and $b$ are exchanged) but $f$ induces nontrivial identifications on the boundaries of the ribbon complements.

## References

[A1] S. Akbulut, On 2-dimensional homology classes of 4-manifolds, Math. Proc. Camb. Phil. Soc. 82 (1977), 99-106.
[A2] S. Akbulut, A solution to a conjecture of Zeeman, Topology, 30(3), (1991), 513-515.
[A3] S. Akbulut, The Dolgachev Surface (Disproving Harer-Kas-Kirby Conjecture), Comm. Math. Helvetici, 87(1) (2012) 187-241.
[A4] S. Akbulut, 4-Manifolds, Book manuscript, available from http://www.math.msu.edu/~akbulut/papers/akbulut.lec.pdf
[AM] S. Akbulut and R. Matveyev, A convex decomposition theorem for 4-manifolds, Int. Math. Res. Notices, 7 (1998) 371-381.
[AY] S. Akbulut and K. Yasui, Corks, Plugs and exotic structures, Journal of Gökova Geometry Topology, 2 (2008), 40-82.
[AKMR] D. Auckly, H. Kim, P. Melvin and D. Ruberman, Stable isotopy in four dimensions, preprint, arXiv:1406.4937.

Department of Mathematics, Michigan State University, MI, 48824
E-mail address: akbulut@math.msu.edu


[^0]:    Partially supported by NSF grants DMS 0905917 and FRG 1065827.

