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Isotoping 2-spheres in 4-manifolds

Selman Akbulut

Abstract. Here we discuss an example of a pair of topologically isotopic but smoothly
non-isotopic 2-spheres in a simply connected 4-manifold, which become smoothly
isotopic after stabilizing by connected summing with S2

× S2, and relate this to a
cork twisting operation.

1. The example

In [AKMR], among other things, the authors give an example of topologically
isotopic but smoothly non-isotopic spheres in a simply connected 4-manifold, which
become smoothly isotopic after connected summing with S2

× S2. In this note we show
that such an example already follows from [A2].

First we review [A2]: Let f : ∂W → ∂W be the cork twisting involution of the Mazur
cork (W, f). Since f fixes the boundary ∂D of a properly imbedded disk D ⊂ W up to
isotopy (as shown in Figure 1), f(∂D) bounds a disk in W as well (the isotopy in the
collar union D), hence we can extend f across the tubular neighborhood of N(D) of D
by the carving process of [A1]. This provides a manifold Q = W − N(D) of Figure 1,
homotopy equivalent to B3

× S1, and an involution on its boundary τ : ∂Q → ∂Q.
τ does not extend to Q as a diffeomorphism (otherwise f would extend to a self

diffeomorphisim of W ). So τ gives an exotic structure to Q relative to its boundary (just
as in the cork case). In [A4] such (Q, τ)’s are called anticorks because they live inside
of corks (W, f), and twisting Q by the involution τ undoes the effect of twisting W by
f . Notice that the loop γ = ∂D of Figure 1 bounds two different disks in B4 with the
same complement Q (where the identity map between their boundaries can not extend to
a diffeomorphism inside), they are described by the two different ribbon moves indicated
in the last picture of Figure 1. The two disks are the obvious disks which γ bounds in the
third picture of Figure 1, and the same disk after zero and dot exchanges of the figure.

Now let M be the 4-manifold obtained by attaching a 2-handle to B4 along the ribbon
knot γ of Figure 1, with +1 framing. Clearly M has two imbedded 2-spheres Si, i = 1, 2
of self intersection +1 generating H2(M) ∼= Z, corresponding to the two different 2-disks
which γ bounds in B4. Blowing down either S1 or S2 turns M into the positron cork W̄1

of Figure 2 ([AM]), and the two different blowing down processes turn the identity map
∂M → ∂M to the cork involution f : ∂W̄1 → ∂W̄1, i.e., the maps in Figure 2 commute
(this can be seen by blowing down γ of Figure 1 by using the two different disks). Hence
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Figure 1

S1 and S2 are not smoothly isotopic in M by any isotopy keeping ∂M fixed, though they
are topologically isotopic (by Freedman’s theorem); but they are isotopic In M#S2

× S2

relative to boundary (since surgery corresponds to turning the dotted circle to a 0-framed
circle, in the third picture of Figure 1).
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Since M = W̄1#CP2, this example shows that the operation of blowing up CP2 undoes
the cork twisting operation of (W̄1, f). Also since the Dolgachev surface E(1)2,3 differs

from its standard copy CP2#9 ¯
CP

2 by twisting the positron cork (W̄1, f) inside (Theorem 1
of [A3]), the manifold M in this example can be made to be closed (without boundary).

Remark 1.1. The reader can check that the two ribbon disks of the ribbon knot in
Figure 1 are actually the same ribbon disks (isotoping the last picture of Figure 1, by
forcing the two strands going through the circle b stay parallel, results the same picture
except the positions of a and b are exchanged) but f induces nontrivial identifications on
the boundaries of the ribbon complements.
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