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Abstract. In this paper we investigate the algebraic structure related to a new
type of correlator associated to the moduli spaces of S1-parametrized curves in con-
tact homology and rational symplectic field theory. Such correlators are the natural
generalization of the non-equivariant linearized contact homology differential (after
Bourgeois-Oancea) and give rise to an invariant Nijenhuis (or hereditary) operator
(à la Magri-Fuchssteiner) in contact homology which recovers the descendant theory
from the primaries. We also sketch how such a structure generalizes to the full SFT
Poisson homology algebra to a (graded symmetric) bivector. The descendant hamil-
tonians satisfy recursion relations, analogous to bihamiltonian recursion, with respect
to the pair formed by the natural Poisson structure in SFT and such bivector. In
case the target manifold is the product stable Hamiltonian structure S1

× M , with
M a symplectic manifold, the recursion coincides with genus 0 topological recursion
relations in the Gromov-Witten theory of M .
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Introduction

Starting from the early nineties, Boris Dubrovin and many of his collaborators have
studied the relation between Gromov-Witten theory and the theory of integrable systems
of PDEs, which was first noticed by Witten in [W]. The axioms of Frobenius manifold,
cf. [D], encode all the properties that are satisfied by the algebraic structure generated
by rational Gromov-Witten theory and that, in particular, generate an integrable Hamil-
tonian system of evolutionary PDEs. The structure of Frobenius manifolds has proven
to be central in many different areas of mathematics, from algebra to singularity theory,
and provides for instance the most immediate approach to mirror symmetry.

One of the consequences of the axioms of a (homogenous) Frobenius manifold is that
the associated Hamiltonian system of PDEs is actually bihamiltonian. Bihamiltonian
structures where introduced by Magri in [M1] in the analysis of the so-called Lenard
scheme (see e.g [GGKM]) to construct the KdV integrals. They consist of a manifold
endowed with two Poisson tensors Π1 and Π2, mutually compatible in the sense that
their Schouten-Nijenhuis bracket [Π1,Π2] vanishes. Under the condition that the Poisson
pencil Πλ = Π2 − λΠ1 (a one-parametric family of Poisson tensors) has constant co-
rank there exists a simple recursive procedure for constructing a sequence of commuting
integrals for both Poisson structures (see also [DZ] and the author’s survey [R2]).

Theorem 0.1 ([M1]). Let P be a manifold endowed with compatible Poisson tensors Π1,

Π2 and associated Poisson brackets { · , · }1, { · , · }2. Furthermore, let k = corankΠ1 =
corank (Π1 + ǫΠ2) for arbitrary sufficiently small ǫ. Then the coefficients of the Taylor

expansion

cα(x, λ) = cα−1(x) +
cα0 (x)

λ
+
cα1 (x)

λ2
+ . . .

of the Casimirs cα(x, λ), α = 1, . . . , k of the Poisson tensor Πλ = Π2 − λΠ1 commute

with respect to both Poisson brackets,

{cαi , c
β
j }1,2 = 0 , i, j = −1, 0, 1, . . . .

Moreover { · , cαi+1}1 = { · , cαi }2, i = −1, 0, 1, . . ..

While in the literature this procedure is often called bihamiltonian recursion, we will
use the term bihamiltonian reconstruction, to avoid confusion with the property of a
sequence of symmetries {Iα,i}α=1,...,k;i=−1,0,1,... of being in bihamiltonian recursion if

{ · , Iα,i}2 =
∑

β=1,...,k
j=0,...,i+1

Rβ,j
α,i{ · , Iβ,j}1

for some constant coefficients Rβ,j
α,i , α, β = 1, . . . , k, i, j = −1, 0, 1, . . ..
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In the context of Gromov-Witten theory and the associated Frobenius manifolds such
reconstruction can be used to recover at least part of the symmetries for the Hamilton-
ian system. Actually, with great generality, given a homogeneous Frobenius manifold,
finding a fundamental solution for the so called deformed flat connection (a special case
of topological recursion relations for rational one-descendant GW invariants, see [DZ]) is
a more powerful way to reconstruct the algebra of symmetries and, moreover, with this
method the solution is automatically normalized to match the generating series of rational
one-descendant GW invariants (often called J-function in the Gromov-Witten literature).
Besides, the symmetries found this way are in bihamiltonian recursion anyway.

In contrast, bihamiltonian reconstruction is not, in general, directly related with enu-
merative geometry, which results in discrepancies with the J-function. Worse, even when
the hypothesis of the above theorem are satisfied, it might happen that the two Pois-
son tensors have some Casimir in common. This means that, when starting with such
common Casimirs as cα−1(x), in the above Taylor expansion, all of the other coefficients
trivially vanish. This is precisely what happens in the case of the Gromov-Witten theory
of the projective line P

1, where bihamiltonian recursion is only capable of recovering the
symmetries generated by descendants of the Kähler class, but not those of the unity class.
This pathology of the Poisson pencil is called resonance.

This paper deals with symplectic field theory (SFT) and a recursion procedure for
descendants that has much in common with bihamiltonian recursion in Gromov-Witten
theory but is instead actually a generalization of the method of deformed flat coordinates.
Introduced by H. Hofer, A. Givental and Y. Eliashberg in 2000 [EGH], SFT is a very large
project and can be viewed as a topological quantum field theory approach to Gromov-
Witten theory. Beside providing a unified view on established pseudoholomorphic curve
theories like symplectic Floer homology, contact homology and Gromov-Witten theory, it
sheds considerable light on the appearence of infinite dimensional Hamiltonian systems in
the theory of holomorphic curves (see [R2] for a review on this topic which includes SFT).

Indeed, symplectic field theory leads to algebraic invariants with very rich algebraic
structures and in particular, as it was pointed out by Eliashberg in his ICM 2006 plenary
talk ([E]), the integrable systems of rational Gromov-Witten theory very naturally ap-
pear in rational symplectic field theory by using the link between the rational symplectic
field theory of prequantization spaces in the Morse-Bott version and the rational Gromov-
Witten potential of the underlying symplectic manifold (see the recent papers [R1], [R2]).
After introducing gravitational descendants (see [F2]) along the lines of Gromov-Witten
theory, it is precisely the natural algebraic structure of SFT that provides a natural link
between holomorphic curves and (quantum) integrable systems.

In this paper we explore the potentiality of an intrinsic difference between Gromov-
Witten and symplectic field theory: the moduli spaces of holomorphic maps studied by

158



Nijenhuis operator in contact homology and descendant recursion in SFT

the latter carry special evaluation maps controlling the relative gluing angle of different
components of a multi-floor configuration (the SFT generalization of nodal curves, see
[EGH]). These can be used to define new correlators that were not present in the original
theory, but give interesting recursive formulas for one-point descendants (and probably
beyond), which are similar but not equivalent to bihamiltonian reconstruction, topological
recursion and, ultimately, to the integrability properties of the SFT infinite dimensional
hamiltonian system.

In many senses these extra correlators which control the gluing angles of different
components of curves in the boundary strata are a natural generalization of the non-S1-
equivariant differential for the non-equivariant linearized contact homology of Bourgeois-
Oancea, [BO] (see also [FR1]), to non-linearized contact homology and full rational SFT.
With this in mind we conclude that the non-equivariant differential plays a role similar to
the second Poisson structure of Gromov-Witten theory with respect to gravitational de-
scendants. More precisely we show how our generalized non-equivariant differential (the
potential encoding such new correlators), denoted by N , satisfies (in contact homology)
the axioms of a Nijenhuis operator.

Recall from Magri and Fuchssteiner, [M2][Fu], that on a manifold M , a Nijenhuis (or
hereditary) operator N ∈ T (1,1)M (where T (k,l)M denotes the space of (k, l)-tensor fields
on M) is one whose Nijenhuis torsion T (N) ∈ T (2,1)M :

T (N)(X,Y ) : = [NX,NY ]−N([NX,Y ] + [X,NY ]) +N2[X,Y ] =

= (LNXN)Y −N(LXN)Y

vanishes (here X and Y are any two graded vector fields). In components the Nijenhuis
torsion reads:

T (N)acd = Na
b

(

∂N b
c

∂xd
−
∂N b

d

∂xc

)

−
∂Na

c

∂xb
N b

d +
∂Na

d

∂xb
N b

c (1)

This condition ensures that, given a sequence of commuting vector fields

Xα,0 ∈ T (1,0)M, [Xα,0, Xβ,0] = 0, α, β = 1, . . . , n

that are also symmetries of the operator N , i.e. LXα,0N = 0, we can enlarge the com-
muting system by recursively applying the operator N :

Xα,k := Nk(Xα,0), [Xα,k, Xβ,j] = 0, k, j ∈ N.

Given a Poisson tensor Π ∈ T (2,0)M on M , in [MM] Magri and Morosi further studied
the compatibility conditions of a Nijenhuis operator N with the Poisson structure. N is
said to be compatible with Π if the following two conditions hold:

N ◦Π = Π ◦ tN

Πlj

(

∂Nk
m

∂xl
−
∂Nk

l

∂xm

)

−Πkl ∂N
j
m

∂xl
−N l

m

∂Πkj

∂xl
+N j

l

∂Πkl

∂xm
= 0
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When these equations are satisfied, the pair (Π, N) is called a Poisson-Nijenhuis struc-
ture on M . The main property, then, is that one can define a sequence of (2, 0)-tensors
Πk = Nk ◦ Π, k = 0, 1, 2, . . . which are Poisson and are pairwise compatible in the sense
that they pairwise form Poisson pencils. In particular we get the bihamiltonian structure
(Π0 = Π,Π1 = N ◦Π).

The theory of Poisson-Nijenhuis structures is very well developed and its relation with
integrability is deep. In particular the study of the spectrum of N plays a fundamental
role, in that the eigenvalues of N form a system of commuting symmetries in bihamilto-
nian recursion (see for instance [MM],[KSM],[DLF]).

The first part of the paper deals with contact homology of contact manifolds. In this
case, thanks to the total absence of non-constant nodal configurations (due to the maxi-
mum principle for holomorphic curves in symplectizations), we prove that the knowledge
of N and of the primary theory (contact homology differential X , with no descendants)
is sufficient to completely reconstruct the descendant vector fields Xα,n as differential
operators in the variables associated to Reeb orbits on contact homology.

In the case of full rational SFT our bihamiltonian recursion is slightly less effective be-
cause of the presence of non-constant nodal curves. Formally the result is similar, i.e. the
descendant Hamiltonians hα,n satisfy recursion relations which are completely analogous
to bihamiltonian recursion for a pair of bivectors Π, ω, where Π is the natural Poisson
structure on the SFT homology algebra and ω is a graded symmetric even bivector which
is the SFT-generalization of N .

In any case this looks like a fundamental step in understanding the relation between
completeness of the contact homology vector field system, or the SFT Hamiltonian sys-
tem, and the underlying symplectic topology of the target manifold. Indeed the full
information is contained in the non-equivariant correlators forming N and ω, and we plan
to study the consequences in a subsequent publication.

Finally, this paper aims more to convey the basic ideas of the constructions and proofs
involved in our results than to give a fully rigorous exposition. A brief discussion on the
level of rigour at which our arguments are presented can be found in Remark 1.9.
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1. Notions from Symplectic Field Theory

Symplectic field theory (SFT), introduced by Y. Eliashberg, A. Givental and H. Hofer
in [EGH], consists in a unified and comprehensive approach to the theory of holomorphic
curves in symplectic and contact topology. In the spirit of a topological field theory, it
assigns algebraic invariants to closed manifolds with a stable Hamiltonian structure. We
recall here the main ideas from [EGH],[FR],[FR1].

1.1. Stable Hamiltonian structures and contact structures

A Hamiltonian structure (see [BEHWZ]) on a closed (2n− 1)-dimensional manifold V
is a closed two-form Ω on V of maximal rank 2n − 2. This means that kerΩ, given by
{v ∈ TV : Ω(v, ·) = 0}, is a one-dimensional distribution. A Hamiltonian structure is
called stable if there exists a one-form λ and a vector field R (called Reeb vector field) on
V such that R generates kerΩ, λ(R) = 1 and ιRdλ = 0. Notice that, this way, ξ = kerλ
is a symplectic hyperplane distribution. Also, notice that if R exists, it is completely
determined by Ω and λ.

Example 1.1. Any contact form λ on V provides a stable Hamiltonian structure
(Ω := dλ, λ) on V where the symplectic hyperplane distribution coincides with the contact
structure. △

Example 1.2. Given a principal circle bundle π : V → M over a closed symplectic
manifold (M,ΩM ) and any connection 1-form λ, (Ω = π∗ΩM , λ) is a stable Hamiltonian
structure on V . △

Example 1.3. Given a closed symplectic manifold (M,ΩM ) and a symplectomorphism
φ ∈ Symp(M,ΩM ), consider the symplectic mapping torus

V =Mφ = R×M/{(t, p) ∼ (t+ 1, φ(p))}.

The natural splitting TV = TS1 ⊕ TM allows to define the lift Ω of ΩM to V . Then
(Ω, λ = dt), where t is the natural S1-coordinate, is a stable Hamiltonian structure (with
integrable symplectic distribution kerλ). △
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Given a stable Hamiltonian structure (V,Ω, λ), consider a complex structure Jξ on the
hyperplane distribution ξ = kerλ which is Ω|ξ-compatible (i.e. Ω|ξ(·, Jξ·) is a metric on
ξ). Such complex structures form a non-empty, contractible set. We extend Jξ uniquely
from ξ to an almost complex structure J on the cylinder R×V by requiring that J is
R-invariant and J∂s = R, ∂s being the R-direction.

1.2. Symplectic field theory

Symplectic field theory assigns algebraic invariants to closed manifolds V with a stable
Hamiltonian structure. In this exposition we will however restrict to the special cases of
contact manifolds (in the rest of the paper we will sometimes consider some particularly
well behaved stable Hamiltonian structures too, see the rest of the section and, in partic-
ular, remark 1.8, for more details). The invariants are defined by counting J-holomorphic
curves in R×V with finite energy.

Let us recall the definition of moduli spaces of holomorphic curves studied in rational
SFT of contact manifolds. Let Γ+,Γ− be two ordered sets of closed orbits γ of the Reeb
vector field R on V , i.e., γ : R → V , γ(t + T ) = γ(t), γ̇ = R, where T > 0 denotes the
period of γ. Here we assume that the contact structure is nondegenerate, i.e. all closed
orbits of the Reeb vector field are nondegenerate in the sense of [BEHWZ]; in particular,
the set of closed Reeb orbits is discrete. Given a closed Reeb orbit γ of any multiplicity,
we will denote by γ̄ its underlying simple Reeb orbit. At each simple Reeb orbit we will
fix a closed form dφγ̄ generating H1(S1).

Then the (parametrized) moduli space M0
r,A(Γ

+,Γ−) consists of tuples (u, (z±k ), (zi)),

where (z±k ), (zi) are three disjoint ordered sets of points on P
1, which are called positive

and negative punctures, and additional marked points, respectively. We will also fix an
asymptotic marker at each puncture, i.e. a ray originating at the puncture. The map
u : Ṡ → R×V starting from the punctured Riemann surface Ṡ = P

1 \{(z±k )} is required
to satisfy the Cauchy-Riemann equation

∂̄Ju = du + J(u) · du · i = 0

with respect to the complex structure i on P
1 and an R-invariant almost complex structure

J on V ×R compatible with the contact structure. Assuming we have chosen cylindrical
coordinates ψ±

k : R± ×S1 → Ṡ around each puncture z±k in the sense that ψ±
k (±∞, t) =

z±k , the map u is additionally required to show for all k = 1, ..., n± the asymptotic
behaviour

lim
s→±∞

(u ◦ ψ±
k )(s, t+ t0) = (±∞, γ±k (T±

k t))

with t0 ∈ S1 and with orbits γ±k ∈ Γ±, where T±
k > 0 denotes period of γ±k . In order

to assign an absolute homology class A to a holomorphic curve u : Ṡ → R×V , let us
assume for simplicity that H1(V ) has no torsion so that we can employ spanning surfaces
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uγ connecting a given closed Reeb orbit γ in V to a linear combination of circles cs
representing a basis of H1(V ),

∂uγ = γ −
∑

s

ns · cs

in order to define

A = [uΓ+ ] + [u(Ṡ)]− [uΓ− ],

where [uΓ± ] =
∑s±

n=1[uγ±
n
] viewed as singular chains.

Observe that the group Aut(P1) of Möbius transformations acts on elements in
M0 = M0

r,A(Γ
+,Γ−) in an obvious way,

ϕ.(u, (z±k ), (zi)) = (u ◦ ϕ−1, (ϕ(z±k )), (ϕ(zi))), ϕ ∈ Aut(P1),

and we obtain the moduli space M = Mr,A(Γ
+,Γ−) studied in symplectic field theory

by dividing out this action and the natural R-action on the target manifold (R×V, J).
Furthermore it was shown in [BEHWZ] that this moduli space can be compactified to
a moduli space M = Mr,A(Γ

+,Γ−) by adding moduli spaces of multi-floor curves with
nodes. In particular the appropriate transversality and gluing theorems are conjectured
to give that the moduli space has a codimension-one boundary components ∂M which
are kγ quotients of products M1 ×M2 = Mr1,A1(Γ

+
1 ,Γ

−
1 ∪ {γ})×Mr2,A2({γ}∪Γ+

2 ,Γ
−
2 )

of lower-dimensional moduli spaces by the T 2-action which rotates the asymptotic mark-
ers at the connecting orbit γ. Indeed every such quotient appears with a factor κγ in
the boundary: here the idea is that a 1-floor rational curve can degenerate to a 2-floor
rational curve where the datum of asymptotic markers at the connecting node/Reeb or-
bit γ is missing, hence the T 2-quotient, but there are κγ ways to smooth out the node
of a curve which is asymptotic to a Reeb orbit of multiplicity κγ . Another way to see
the T 2 quotients with factor κγ above is the result of first considering two-floor curves
with matching asymptotic markers at the connecting Reeb orbit, whose moduli space is
described as a fiber product over evaluation maps at the markers from the moduli space
to the simple Reeb orbit γ̄ underlying the connecting orbit γ (preimage of the diagonal
in γ̄ × γ̄), and then quotienting out the remaining S1-action of (simultaneously) rotating
the markers (this way the κγ factor is seen as coming from the degree of the evaluation
map to the underlying simple Reeb orbit, see below).

Let us now briefly introduce the algebraic formalism of rational SFT as described
in [EGH]:

Let us fix a trivialization of the symplectic bundle (ξ,Ω|ξ) over each curve ci. This
induces a homotopically unique trivialization of the same bundle over each periodic Reeb
orbit γ via the spanning surface uγ . Let us use this trivialization to define the Conley-
Zehnder index of the Reeb orbit (the Maslov index of the path in Sp(2m− 2,R) given by
the linearized Reeb flow along γ). Recall that a multiply-covered Reeb orbit γ = γ̄k is
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called bad if CZ(γ) 6= CZ(γ̄) mod 2, where CZ(γ) denotes the Conley-Zehnder index of
γ. Calling a Reeb orbit γ good if it is not bad, denote by P the space of good Reeb orbits.
We assign to every good Reeb orbit γ two formal graded variables pγ , qγ with grading

|pγ | = m− 3− CZ(γ), |qγ | = m− 3 + CZ(γ)

when dim V = 2m− 1.

Assuming we have chosen a basis A0, . . . , AM of H2(V ), we assign to every Ai a for-
mal variable zi with grading |zi| = −2c1(Ai). In order to include higher-dimensional
moduli spaces we further assume that a string of closed (homogeneous) differential forms
Θ = (θ1, . . . , θN ) on V is chosen and assign to every θα ∈ Ω∗(V ) a formal variable tα with
grading

|tα| = 2− deg θα.

With this let P be the Poisson algebra of formal power series in the variables pγ and
tα with coefficients which are polynomials in the variables qγ and Laurent series in the
Novikov ring variables zi, with Poisson bracket given by

{f, g} =
∑

γ

κγ

( ∂f

∂pγ

∂g

∂qγ
− (−1)|f ||g|

∂g

∂pγ

∂f

∂qγ

)

.

where κγ is the multiplicity of the orbit γ.

Consider the union Mr,n+,n−,A of all moduli spaces Mr,A(Γ
+,Γ−) for |Γ+| = n+

and |Γ−| = n−. As in Gromov-Witten theory we want to organize all moduli spaces
Mr,n+,n−,A into a generating function h ∈ P, called Hamiltonian. In order to include also
higher-dimensional moduli spaces, in [EGH] the authors follow the approach in Gromov-
Witten theory to integrate the chosen differential forms θα and [γ] (the canonical basis
of H∗(P)) over the moduli spaces after pulling them back under the evaluation maps
evi, i = 1, . . . , r, ev±,j , j = 1, . . . , n± at the marked points and punctures to the target
manifold V and the space of (positive or negative) good Reeb orbits P , respectively.
Consider furthermore evaluation maps ev±∞,j : M →

⋃

γ∈P γ̄, j = 1, . . . , n± defined by
the asymptotic markers at each puncture. Let

t =

N
∑

α=1

tαθα

p =
∑

γ∈P

1

κγ
pγ [γ]

q =
∑

γ∈P

1

κγ
qγ [γ]
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The Hamiltonian h is then defined by

h =
∑

r,A,

n+,n−

1

r!n+!n−!

∫

M
r,n+,n−,A

/R

r
∧

i=1

ev∗i t

n+
∧

j=1

(ev∗+,j p ∧ ev∗+∞,j dφγ̄+
j
)∧

n−

∧

k=1

(ev∗−,k q ∧ ev∗−∞,k dφγ̄−

k
) zA

with zA = zd0
0 · . . . ·zdM

M for A = d0A0+ . . .+dMAM . The index formula for the dimension

of the moduli space Mr,n+,n−,A [EGH] implies that |h | = 2(m− 3)− 1.

1.3. Gravitational descendants

We recall the definition of gravitational descendants in symplectic field theory (see
[F2]). In complete analogy to Gromov-Witten theory we can introduce r tautological line
bundles L1, . . . ,Lr over each moduli space Mr,A(Γ

+,Γ−), as the pull-back of the relative

dualizing sheaf of πi : Mr+1,A(Γ
+,Γ−) → Mr,A(Γ

+,Γ−) under the canonical section

σi : Mr,A(Γ
+,Γ−) → Mr+1,A(Γ

+,Γ−) mapping to the i-th marked point in the fibre.

As in Gromov-Witten theory we would like to consider the integration of (powers of)
the first Chern class of the tautological line bundles over the moduli space, which by
Poincaré duality corresponds to counting common zeroes of sections of such bundles.
However, in symplectic field theory the moduli spaces can have codimension-one bound-
ary, so we need to replace integration of the first Chern class of the tautological line
bundle over a single moduli space with a construction involving all moduli space at once,
which preserves the algebraic structure of SFT.

Following the compactness statement in [BEHWZ] and assuming transversality and
gluing, we have already said that the codimension-one boundary of a moduli space
M = Mr,A(Γ

+,Γ−) of SFT holomorphic curves consists of curves with two levels. More

precisely, each component of the boundary has the form of a fibred product M1 ×M2 =
Mr1,A1(Γ

+
1 ,Γ

−
1 ) ev

−,n
−
1

×ev+,1
Mr2,A2(Γ

+
2 ,Γ

−
2 ) of moduli spaces (of strictly lower dimen-

sion), quotiented by the T 2-action that rotates asymptotic markers at the connecting
puncture, and with the marked points distributed on the two levels. Consider a boundary
component where the i-th marked point sits, say, on the first level M1: it directly follows
from the definition of the tautological line bundle Li at the i-th marked point over M
that, over such boundary component,

π∗ Li |M1×M2/T 2 = π∗
1 Li,1

where Li,1 denotes the tautological line bundle over the moduli space M1, π denotes the

canonical projectionM1×M2 → M1×M2/T
2 to the quotient and π1 : M1×M2 → M1
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is the projection onto the first factor. With this we can now give the definition of coherent
collections of sections in tautological line bundles from [F2].

Definition 1.4. Assume that we have chosen sections si in the tautological line bundles

Li over all moduli spaces M of J-holomorphic curves of SFT. Then these collections of

sections (si) are called coherent if for every section si of Li over a moduli space M the

following holds: for each codimension-one boundary component M1 ×M2/T
2 of M we

have π∗(si|M1×M2/T 2) = π∗
1si,k with k = 1, 2 for the corresponding section si,k of the

tautological line bundle Li,k over Mk, assuming that the i-th marked point sits on the

k-th level.

Since in the end we will again be interested in the zero sets of these sections, we will
assume that all occuring sections are sufficiently generic, in particular, transversal to the
zero section. Furthermore, we want to assume that all the chosen sections are indeed
invariant under the obvious symmetries like reordering of punctures and marked points.
In order to meet both requirements, it follows that we actually need to employ multi-
sections (in the sense of branched manifolds). On the other hand, it is clear that one can
always find coherent collections of (transversal) sections by using induction on the dimen-
sion of the underlying moduli space: indeed, as was remarked already in [F2], existence
of coherent collections of sections is guaranteed thanks to the fact that, in the smooth
category, it is always possible to extend a section of a bundle from a lower dimensional
submanifold of the base to the full space. The idea is then to start by choosing sections
on the lowest dimensional moduli spaces and work our way up to the bigger dimensional
ones by extending such sections from the boundaries to the interiors of M.

For every tuple (j1, . . . , jr) of natural numbers we choose ji coherent collections of
sections (si,k) of Li. Then we define for every moduli space M = Mr,A(Γ

+,Γ−),

M
(j1,...,jr)

= s−1
1,1(0) ∩ . . . ∩ s

−1
1,j1

(0) ∩ . . . ∩ s−1
r,1(0) ∩ . . . ∩ s

−1
r,jr

(0) ⊂ M.

Note that by choosing all sections sufficiently generic, we can assume M
(j1,...,jr)

=

M
(j1,...,jr)

r,A (Γ+,Γ−) is a branched-labelled submanifold of the moduli spaceMr,A(Γ
+,Γ−).

Note that by definition

M
(j1,...,jr)

= M
(j1,0,...,0)

∩ . . . ∩M
(0,...,0,jr)

,

and it follows from the coherency condition that the codimension-one boundary of

M
(0,...,0,j,0,...,0)

is given by the products

M
(0,...,0,j,0,...,0)

1 ×M2/T
2 or M1 ×M

(0,...,0,j,0,...,0)

2 /T 2

(depending on whether the i-th marked point sits on the first or second level).

With this we can define the descendant Hamiltonian of SFT, which we will denote
by h̃, while the Hamiltonian h = h̃|tα,j=0,j>0 defined in [EGH] will from now on be
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called primary. In order to keep track of the descendants we will assign to every chosen
differential form θα now a sequence of formal variables tα,j with grading

|tα,j | = 2(1− j)− deg θα

and form an extended Poisson algebra P̃ accordingly. Then the descendant Hamiltonian
h̃ ∈ P̃ of (rational) SFT is defined by

h̃ =
∑

r,A,I

n+,n−

∫

M
(j1,...,jr)

r,n+,n−,A
/R

ev∗1 θα1 ∧ . . . ∧ ev∗r θαr

n+
∧

j=1

(ev∗+,j p ∧ ev∗+∞,j dφγ̄+
j
)∧

n−

∧

k=1

(ev∗−,k q ∧ ev∗−∞,k dφγ̄−

k
) tIzA,

where tI = tα1,j1 . . . tαr ,jr and zA = zd0
0 · . . . · zdM

M for A = d0A0 + . . .+ dMAM .

1.4. Hamiltonian systems with symmetries

Symplectic field theory assigns to every contact manifold not only a Poisson algebra,
rational SFT homology, but also, thanks to gravitational descendants, a Hamiltonian
system in it with an infinite number of symmetries.

Theorem 1.5. Differentiating the rational Hamiltonian h̃ ∈ P̃ with respect to the formal

variables tα,p defines a sequence of classical Hamiltonians

h̃α,p =
∂h̃

∂tα,p
∈ H∗(P̃, {h̃, ·})

in the rational SFT homology algebra with differential d̃ = {h̃, ·} : P̃ → P̃, which commute

with respect to the bracket on H∗(P̃, {h̃, ·}),

{h̃α,p, h̃β,q} = 0, (α, p), (β, q) ∈ {1, . . . , N} × N .

Everything is an immediate consequence of the master equation {h̃, h̃} = 0, which
can be proven in the same way as in the case without descendants using the results in
[F2]. The idea is simply using Stokes formula on the boundary of each moduli space
appearing in the definition of the Hamiltonian. Such integral over (κγ times) a boundary

components of the form M1 ×M2/T
2 can be expressed as an integral over the product

M1 ×M2 by integrating an extra 2-form which is the pull back of 1
kγ
(dφγ̄+ ∧ dφγ̄−) at

the connecting Reeb orbit γ (notice how the κ2γ , that is produced by integration of such

differential form over the fibres of the T 2-quotient projection, compensates with the 1/κγ
factor to give the correct contribution κγ). On the other hand, this integral must give

zero by Stokes theorem, as we are integrating closed differential forms on boundary ∂M.
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This results is expressed, using the above Poisson algebra formalism, as {h̃, h̃} = 0.

Now the boundary equation d̃ ◦ d̃ = 0, d̃ = {h̃, ·} follows directly from the identity

{h̃, h̃} = 0, while the fact that every h̃α,p, (α, p) ∈ {1, . . . , N} × N defines an element in

the homology H∗(P̃, {h̃, ·}) follows from the identity

{h̃, h̃α,p} = 0,

which can be shown by differentiating the master equation with respect to the tα,p-variable
and using the graded Leibniz rule,

∂

∂tα,p
{f, g} = {

∂f

∂tα,p
, g}+ (−1)|t

α,p||f |{f,
∂g

∂tα,p
}.

On the other hand,the fact that any two h̃α,p, h̃β,q commute after passing to homology

follows from the identity

{h̃α,p, h̃β,q}+ (−1)|t
α,p|{h̃,

∂2h̃

∂tα,p∂tβ,q
} = 0.

obtained by differentiating the master equation twice and by recalling that h̃ is homoge-
neous of odd degree.

We now turn to the question of independence of these nice algebraic structures from
the choices like contact form, cylindrical almost complex structure, representatives for the
classes [θα] ∈ H∗(V ) and [dφγ̄ ] ∈ H∗(S1), abstract polyfold perturbations and, of course,
the choice of the coherent collection of sections. This is the content of the following
theorem proven in [F2].

Theorem 1.6. For different choices of contact form λ±, cylindrical almost complex struc-

ture J± , representatives for the classes [θα] ∈ H∗(V ) and [dφγ̄ ] ∈ H∗(S1), abstract

polyfold perturbations and sequences of coherent collections of sections (s±j ) the result-

ing systems of commuting functions h̃
−

α,p on H∗(P̃
−
, d−) and h̃

+

α,p on H∗(P̃
+
, d̃+) are

isomorphic, i.e. there exists an isomorphism of the Poisson algebras H∗(P̃
−
, d̃−) and

H∗(P̃
+
, d̃+) which maps h̃

−

α,p ∈ H∗(P̃
−
, d̃−) to h̃

+

α,p ∈ H∗(P̃
+
, d̃+).

This theorem is an immediate extension of the theorem in [EGH] which states that for
different choices of auxiliary data the Poisson algebras H∗(P

−, d−) and H∗(P
+, d+) with

d± = {h±, ·} are isomorphic. In particular the extension in [F2] is about the coherent
collection of sections (s±j ). Here one needs a notion of a collection of sections (sj) in the
tautological line bundles over all moduli spaces of holomorphic curves in the cylindrical
cobordism interpolating between the auxiliary structures, which are coherently connecting

the two coherent collections of sections (s±j ).

We want to point out the fact that the primary Poisson SFT homology algebra can
be thought of as the space of functions on some abstract infinite-dimensional Poisson
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super-space. Indeed, consider the Poisson super-space V underlying the Poisson algebra
P. Then the kernel ker({h, ·}) can be seen as the algebra of functions on the space O of
orbits in V of the Hamiltonian R-action given by h, that is, the flow lines of the Hamil-
tonian vector field Xh associated to h. Even in a finite dimensional setting the space
O can be very wild. Anyhow the image im({h, ·}) is an ideal of such algebra and hence
identifies a sub-space of O given by all of those orbits o ∈ O at which, for any f ∈ P,
{h, f}|o = 0. But such orbits are simply the constant ones, where Xh vanishes. Hence the
Poisson SFT-homology algebra H∗(P, {h, ·}) can be regarded as the algebra of functions
on X−1

h
(0), seen as a subspace of the space O of orbits of h, endowed with a Poisson

structure by singular, stationary reduction. In particular the descendant Hamiltonians

hα,j :=
∂h̃

∂tα,j

∣

∣

∣

tα,j=0,j>0
∈ H∗(P, {h, ·}) are examples of functions on such space.

Finally we recall a result from [FR] that states that, besides commutativity, the SFT
Hamiltonians satisfy analogues of the well-known string, dilaton and divisor equations
of Gromov-Witten theory. Such equations hold, after passing to SFT homology, for any
auxiliary choice used to define the Hamiltonians.

Theorem 1.7. For any choice of differential forms and coherent sections the following

string, dilaton and divisor equations hold after passing to SFT-homology

∂

∂t1,0
h̃ =

∫

V

t ∧ t+
∑

k

tα,k+1 ∂

∂tα,k
h̃ ∈ H∗(P̃, {h̃, ·}),

∂

∂t1,1
h̃ = DEuler h̃ ∈ H∗(P̃, {h̃, ·}),

(

∂

∂t2,0
− z

∂

∂z

)

h̃ =

∫

V

t ∧ t ∧ θ2 +
∑

k

tα,k+1cβ2α
∂h̃

∂tβ,k
∈ H∗(P̃, {h̃, ·}),

where t1,k is the t-variable associated to the k-th descendant of the unity class 1 ∈ H∗(V ),
t2,k is the one associated with θ2 ∈ H2(V ) and z the corresponding Novikov ring variable,

and DEuler is the linear differential operator

DEuler := 2−
∑

γ

pγ
∂

∂pγ
−
∑

γ

qγ
∂

∂qγ
−
∑

α,p

tα,p
∂

∂tα,p
.

Remark 1.8. Most of the above results actually hold in the case of more general stable
Hamiltonian structures, beyond the contact situation, but their precise statement and
the involved construction require some variations. One of the main problems arises from
the fact that, in the non-contact case, the coefficients of monomials in the variables pγ
in the Hamiltonian h might not be polynomials in the qγ variables. The Hamiltonian h

would then fail to be an element of the Poisson algebra P as we have defined it and the
construction of invariants would be more subtle. In the following we will mostly stick
to the contact case, but whenever we consider target manifolds that have a non-contact
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stable Hamiltonian structure, we will assume that these problems do not arise and the
above contructions remain valid. △

Remark 1.9. We end this introductory section with a short discussion about the level of
rigour of our results. All the algebraic results we present for holomorphic curves rely first
of all on the fact that all appearing moduli spaces are (weighted branched) manifolds (or
orbifolds) with corners, of dimension equal to the Fredholm index of the Cauchy-Riemann
operator. In order to equip the zero set of the Cauchy-Riemann operator with such
structure, one would like to apply an infinite-dimensional version of the classical implicit
function theorem, and the crucial step here is to prove a transversality result for the
Cauchy-Riemann operator. While it is well-known that transversality holds for a generic
choice of almost complex structure as long as all holomorphic curves are simple, several
problems appear when the curve is multiply-covered. This problem is already present
in (symplectic) Gromov-Witten theory and Floer homology, and very involved tools like
virtual moduli cycles, Kuranishi structures and polyfolds were developed to solve it. In
particular the polyfold approach of Hofer, Wysocki and Zehnder, see [HWZ] is supposed
to solve all the challenges in the most satisfactory way (see also the survey [F3]), but it
is not yet fully completed. Since they promise to prove transversality for symplectic field
theory and Gromov-Witten theory in one of their upcoming papers, we follow other papers
in the field in considering everything up to transversality and state it nevertheless as a
theorem. However, beside not dealing with these foundational problems, the proofs we
give in this paper are admittedly somewhat sketchy. However we claim that most missing
technical details (apart transversality), with special emphasis on the non-S1-equivariant
moduli spaces we consider throughout the paper, can be recovered in the literature. In
particular this paper uses the description of moduli spaces of S1-parametrized cylinders
with punctures which appered in [BO], where a version of non-S1-equivariant contact
homology is presented, to shed some light on the elegant algebraic structure that can
be deduced from it. Even when we introduce some other versions of moduli spaces of
parametrized curves (in the proof of theorems 2.4 and 2.6, for instance) and describe what
form their compactification (and in particular codimension-1 boundary) should have, we
use the same type of curve degeneration (the matching of the S1-parametrization at the
corresponding node/Reeb orbit). In the final part of the paper, when we move to the case
of rational SFT, we use again the same ideas to sketch how some analogous definition of
non-S1-equivariant correlators produce an algebraic structure so natural that it integrates
perfectly with the Hamiltonian systems formalism of the theory (even pointing to an
answer to the integrability problem for such systems, for which for now no approach was
found). We would like, in any case, to stress the “research announcement” character,
especially for the second part of the paper, as we leave a more attentive analysis of the
geometry of the moduli spaces (again, even apart from transversality) for a future work.

△
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2. N-recursion for contact homology

2.1. Contact homology

Contact homology is a reduced version of symplectic field theory that only uses curves
with at most one positive puncture. In case the target manifold V is contact, the maxi-
mum principle for holomorphic curves in symplectizations forbids that a SFT-holomorphic
curve with s+ positive punctures can degenerate to a multi-floor curve where any of the
components has more than s+ positive punctures. The absence of local maxima further
implies that any curve with no positive punctures must be constant. In particular this
means that we can study moduli spaces of SFT-curves with only one positive puncture
and be safe that the boundary only involves moduli spaces of the same type. Besides, in
such moduli spaces nodal degeneration only involve the appearance of constant bubbles
(when different marked points come together).

The algebraic structure we obtain is the linear part in the p-variables of the one de-
scribed for full SFT. In particular we get a complex formed by the graded commutative
algebra A generated by the variables qγ over the power series in the variables tα = tα,0

with coefficients in the Novikov ring of variables zk (i.e. the evaluation at p = 0 of the
Poisson algebra P), and differential given by the (odd) vector field

X =
∑

γ

Xγ ∂

∂qγ
=
∑

γ

κγ
∂ h

∂pγ

∣

∣

∣

∣

p=0

∂

∂qγ
.

The master equation {h,h} = 0 reduces to [X,X ] = 0 (the square bracket here stands
for graded Lie bracket on graded vector fields and, from the formula above and the fact
that |h | = 2(m− 3) − 1 is odd, we obtain that |X | = −1, so X is an odd vector field),
the resulting homology will be denoted by CH(A;X) (or simply CH(V ) when there is
no danger of confusion) and the system of commuting (on SFT-homology) descendant

Hamiltonians hα,i = ∂h̃
∂tα,i

∣

∣

∣

tβ,j=0,j>0
, (α, i) ∈ {1, . . . , N} × N induce a system of Lie-

commuting vector fields on contact homology

Xα,i =
∑

γ

κγ
∂ hα,i

∂pγ

∣

∣

∣

∣

p=0

∂

∂qγ
: CH(V ) → CH(V ).

2.2. The non-equivariant differential revisited

Consider now a moduli spaces of punctured S1-parametrized cylinders with marked

points. We start with the fully parametrized space MS1,0
r,A (γ0, γ∞,Γ

−) consisting of tuples

(u, (z−k ), (zi)), where (z−k ), (zi) are two disjoint ordered sets of points on P
1 \({0,∞}) =

S1 × R (namely negative punctures with asymptotic markers, and r additional marked
points).
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The map u : Ṡ → R×V from the punctured Riemann surface Ṡ = P
1 \({0,∞}∪{(z−k )})

is required to satisfy the Cauchy-Riemann equation

∂̄Ju = du + J(u) · du · i = 0

with the complex structure i on P
1. Assuming we have chosen cylindrical coordinates

ψ−
k : R− ×S1 → Ṡ around each puncture z−k , in the sense that ψ−

k (−∞, t) = z−k , the map
u is additionally required to show for all k = 1, ..., n− the asymptotic behaviour

lim
s→−∞

(u ◦ ψ−
k )(s, t+ t0) = (−∞, γ−k (T−

k t))

with t0 ∈ S1 and with orbits γ−k ∈ Γ−, where T−
k > 0 denotes period of γ−k , and analogous

asymptotic behaviour at 0 and ∞ for s → +∞ and s → −∞ respectively, for orbits γ0
and γ∞ and with respect to the natural coordinates on S1×R. We assign to each curve an
absolute homology class A employing as usual a choice of spanning surfaces. In order to

obtain the S1-parametrized space MS1

r,A(γ0, γ∞,Γ
−) we only divide out the R-component

of the S1 × R group of automorphisms of the cylinder P
1 \({0,∞}) and, as usual, the

R-action coming from the cylindrical target V × R as well.

This moduli space can be compactified to M
S1

= M
S1

r,A(γ0, γ∞,Γ
−) by adding mod-

uli spaces of S1-parametrized multi-floor curves with ghost bubbles, where the puncture
at 0 is always the positive puncture of the top floor, the puncture at ∞ can be on any
floor and the S1-parametrization is remembered when going through connecting punc-
tures as explained in [BEHWZ] (compactification of the space of curves with decorations).
More explicitly, in such compactification, a n-floor curve with the ∞-puncture on its k-th
component from the top, has the upper k components that are S1-parametrized curves
where, at each connecting puncture, the S1-coordinates of different components match,
while the lower (n−k) are non-S1-parametrized. Also, both type of components possibly
have stable constant bubbles.

The space M
S1

carries, besides the usual evaluation maps at marked points, orbits
and asymptotic markers, also evaluation maps at the special punctures at 0 and ∞ to the
corresponding target simple Reeb orbits given by the special S1-coordinate on the curve,

ev+∞,0 : M
S1

→ γ̄0 ≃ S1

ev−∞,∞ : M
S1

→ γ̄∞ ≃ S1.

These two evaluation maps are similar to the ones defined at any other puncture by as-
ymptotic markers, but are now coupled thank to the fixed parametrization.
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We form the space M
S1

r,n−,A(γ0, γ∞) by taking the union over Γ− of all the spaces

M
S1

r,A(γ0, γ∞,Γ
−) with |Γ−| = n−.

This moduli space was actually already introduced in [BO] to define the non-S1-
equivariant linearized contact homology differential. We will proceed in a similar way
defining a (1, 1)-tensor N(tα) depending on parameters t1, . . . , tN , on the super-space Q

underlying the algebra A. A point q ∈ Q is a cohomology class q =
∑

γ∈P
1
κγ
qγ [γ] on P ,

with the notations of section 1. We will write qγ instead of qγ to be coherent with the
notion that qγ is treated here as a coordinate for the space Q, while we will treat the t-
variables as parameters on which the functions on Q can depend. Using such coordinates
we define

N = Nγ2
γ1
(t, q) dqγ1 ⊗

∂

∂qγ2

where we sum over repeated indices, and

Nγ2
γ1
(t, q) =

∑ 1

r!n−!κγ1

∫

M
S1

r,n−,A(γ1,γ2)

r
∧

i=1

ev∗i t

n−

∧

j=1

(ev∗−,jq ∧ ev∗−∞,j dφγ̄−

j
) ∧

∧ ev∗+∞,0 dφγ̄1 ∧ ev∗−∞,∞ dφγ̄2

With the usual grading of the SFT variables, and assigning degree 0 to the exterior
differential d on the superspace V, from the index formula for the dimension of the
moduli space of SFT-curves, we deduce that N has even degree:

|N | = −2

This comes from the fact our moduli space has dimension one less than the ordinary,
S1-equivariant, moduli space of curves involved in the definition of the contact homology
vector field X , because of the extra constraint we are imposing when we want the asymp-
totic markers at 0 and ∞ to be coupled (so the degree of N is one less than the degree of
X).

Let us now briefly describe the codimension one boundary of the moduli space M
S1

,
assuming transversality and following [BO]. Such boundary consists of 2-floor curves
of one of the following two types. Either the the connecting node/Reeb orbit γ sep-
arates the 0- and ∞-puncture and the global S1-parametrization is remembered when
going through such node (meaning that the parametrizations of the two floors match
when meeting at γ) or the 0- and ∞-puncture are both on the top floor, which is then
again an S1-parametrized cylinder (with punctures and marked points), while the bot-
tom floor is an ordinary unparametrized curve of the type usually studied in ordinary,
S1-equivariant, contact homology. More precisely, denoting these two components of

the boundary ∂′(r1,A1,Γ1|γ|r2,A2,Γ2)
M

S1

and ∂′′(r1,A1,Γ1|γ|r2,A2,Γ2)
M

S1

respectively (the sub-

script indicates how marked points, homology class and negative punctures distribute
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among the two floors, Γ− = Γ−
1 ∪ Γ−

2 , r = r1 + r2, A = A1 +A2), we have the identifica-
tions:

∂′M
S1

≃ M
S1

r1,A1
(γ0, γ,Γ

−
1 ) ev−∞,∞

×ev+∞,0
M

S1

r2,A2
(γ, γ∞,Γ

−
2 )

∂′′M
S1

≃ (M
S1

r1,A1
(γ0, γ∞,Γ

−
1 ∪ {γ})×Mr2,A2(γ,Γ

−
2 ))/T

2

Notice that the no-descendant (or primary) contact homology differential X (still
parametrized by the primary variables tα) induces a differential LX (Lie derivative along
the vector field X) on the space of (k, l)-tensor fields T (k,l)Q (again with parameters tα)
on the super-space Q. The resulting homology, which we denote CH(T (k,l)Q;LX), is a
module over CH(A;X) = CH(T (0,0)Q;LX) and is an invariant of the contact structure
on V , as it can easily be proved with the same procedure as for CH(A;X). In partic-
ular, for two different choices of contact form λ±, cylindrical almost complex structure
J± , representatives for the classes [θα] ∈ H∗(V ) and [dφγ̄ ] ∈ H∗(S1), abstract poly-

fold perturbations and sequences of coherent collections of sections (s±j ), there exist an
isomorphism

dϕ± : CH(T (k,l)Q+,LX+) → CH(T (k,l)Q−,LX−)

which is simply the differential of the isomorphism

ϕ± : CH(A+;X+) → CH(A−;X−),

constructed in [EGH] by studying curves in the cobordims W =
−−−−→
V +V − interpolating

between the two different choices. This differential dϕ± is in the sense of differential
geometric lift to the tensor algebra of a diffeomorphism of our base formal manifolds Q+

and Q−: since the diffeomorphism φ± passes to homology with respect to a derivation
X , its differential passes to homology with respect to the Lie derivative LX (see also the
discussion on invariance for satellites in SFT from [EGH], which is completely analogous).

Theorem 2.1.

LXN = 0

and, denoting by N± the two (1, 1)-tensors resulting from two different choices of contact

form λ±, cylindrical almost complex structure J± , representatives for the classes [θα]
in H∗(V ) and [dφγ̄ ] ∈ H∗(S1), abstract polyfold perturbations and sequences of coherent

collections of sections (s±j ),

dϕ± : CH(T (1,1)Q+,LX+) → CH(T (1,1)Q−,LX−)

N+ 7→ N−

so that N ∈ CH(T (1,1)Q,LX) is an invariant of the contact structure on V .

Proof. For the proof of the equation LXN = 0 we need to apply Stokes theorem to
codimension-one boundary of the moduli spaces involved in the definition of N , i.e.,
moduli spaces of punctured P

1 with a marked R
+ line connecting two punctures 0 and ∞

mapped to orbits γ1 and γ2, at which we pull back 1-forms from the underlying simple
orbits. In the picture below we represent a moduli space by drawing the corresponding
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generic element (the curve with the marked red R
+ line) and we represent the constraining

of the endpoints via 1-forms by the small triangles (a triangle pointing towards an orbit
γ means that the red line is S1-constrained at that orbit by integrating the pull-back of
the form dφγ̄).

Let us consider the three terms in the right hand side of the pictorial equation above.
The first two terms correspond to curve degenerations forming the boundary components

of type ∂′M
S1

described above. Here we use the fact that, when a curve splits at a
puncture γ through which the R

+ line passes, the S1-parametrizations match and this
constraint is expressed by pulling-back a representative of the diagonal class in H∗(γ×γ).

Indeed, integrating a differential form over the fibered product ∂′M
S1

is equivalent to
integrating over the cartesian product the same form times the pullback via evaluation
maps of the diagonal form 1

κγ
(dφγ̄ ⊗ 1 + 1 ⊗ dφγ̄), which gives the constraints at the

connecting orbit for the first two terms in the right-hand side of the picture. Here the
factor 1/κγ compensates for the fact that we want the S1-parametrizations to match in
the source rational curves, whose punctures branch with orderκγ over the connecting or-
bit γ̄. The effect of pulling back the diagonal class at a connecting orbit is, hence, the
appearence of two terms in the right hand side of the pictorial equation (corresponding

175



ROSSI

to the two summands in the 1-form), whose only difference is the direction of the trian-
gle at the connecting orbit (integrating (dφγ̄ ⊗ 1 corresponds to constraining the upper
S1-parametrization or red line, while 1⊗ dφγ̄ the lower one). Finally the third term rep-

resents boundary components of the type ∂′′M
S1

, where the connecting orbit is disjoint
from the red line representing the fixed S1-parametrization.

All we need to notice, at this point, is that, taking orientation into account for the right
signs, the three terms on the righ-hand side of the equation represented in the picture
exactly correspond to the three summands in the coordinate expression of the (graded)
Lie derivative LXN , which hence vanishes by Stokes theorem applied to the boundary of
our moduli space.

For the second part of the theorem, about invariance with respect to auxiliary choices in
the definition ofA, X andN a similar approach is needed, where we study the boundary of
the moduli spaces of the same type of curves, but this time in the cobordism interpolating
between two different choices of auxiliary data. Drawing again the same kind of pictures
(only remembering, as explained in [BEHWZ], that the boundary of moduli spaces of
connected curves in the cobordism is formed by 2-floor curves in which one of the floors
is a connected curve in the cylindrical manifold over one of the boundaries and the other
is a possibly disconnected curve in the cobordism). Algebraically this gives precisely the
transformation rule for N described in the statement with respect to the lift dϕ± of the
isomorphism ϕ± to the homology tensor algebras of Q±. �

Corollary 2.2. For any α = 1, . . . , N and any i = 0, 1, 2, . . .

LXα,i
N = 0 ∈ CH(T (1,1)Q,LX)

Proof. Simply expand the equation LXN = 0 in powers of the t-variables and consider
the linear terms. �

Example 2.3. Consider the case V = S1 with t = t1θ1 + τ1Θ1, θ1 = 1 and Θ1 = dϕ
where ϕ is the angular coordinate on S1. It is easy to compute N̄ := N |τ1=0. Writing just
k for the index kγ associated to the k-th multiple of the orbit γ = V , from the dimension
formula for the moduli space of SFT-curves and an easy curve counting we immediately
see that

N̄ l
k =

l − k

k
ql−k, l > k

N̄ l
k = 0, l ≤ k

Indeed, from dimension counting for M
S1

we see that the only 0-dimensional moduli
spaces are those which contain branched covers of P1 with a single l-fold branch point
over ∞ and two branch points, of branch numbers k and (l− k) over 0 (we are of course
identifying S1 × R with P

1 \ {0,∞}). Once we have fixed these two zeros and one pole
we have an S1-worth of meromorphic functions to P

1 (modulo real multiplicative factors,
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which is the R-action we are quotienting out), to which the S1-parametrization (with
respect to the positive and one of the negative punctures) and the position of the asymp-
totic marker over the other negative punctures are to be added. M is hence a S1-bundle
over T 2. One S1-degree of freedom is taken care of by integrating ev∗−,1 dϕ along the

S1-fibers (it gives a factor (l − k), which cancels out with the denominator appearing in
the definition q =

∑

γ∈P
1
κγ
qγ [γ])), while the further combinatorial factor (l − k) comes

from integrating the form ev∗+∞,0 dϕ ∧ ev∗−∞,∞ dϕ over the residual T 2 (this can be seen

by reporting a fixed point p ∈ V × {−∞} along a geodesic on the source P
1 of our curve

all the way to V × {+∞}: as the phase factor of our meromorphic function makes k
complete tours, the image of p at V × {+∞} makes (l − k) complete tours, so there are
precisely (l− k) phases for which a meridian from 0 to ∞ in our source P

1 is asymptotic
to the same point p at the two Reeb orbits at ±∞) and the denominator k was directly
in the definition of N . △

2.3. Vanishing of Nijenhuis torsion of N

In a graded context like the one we work with, it is possible to define a graded version
of the Nijenhuis torsion for an even vector valued one-form N (see for instance [ILMM]).
Its definition is still

T (N)(X,Y ) = [NX,NY ]−N([NX,Y ] + [X,NY ]) +N2[X,Y ]

where X and Y are now any two graded vector fields and the brackets are graded Lie
brackets of graded vector fields.

Theorem 2.4.

T (N) = 0 ∈ CH(T (1,2)Q,LX)

Proof. For the proof we need to apply Stokes theorem to the boundary of a new type of
moduli space, namely a space of holomorphic curves with one positive and many negative
punctures, three of which have special “coupled” asymptotic markers, namely the positive
one and two of the negative ones. Let us give an idea of the generic element in such moduli
space. In the interior of the moduli spaces we have maps from (P1 \ {a, b, c, (z−j )}, (zi))

to V × R. The special positive puncture is a ∈ P
1, and the two negative ones are b ∈ P

1

and c ∈ P
1. There are further negative punctures (z−j ) and marked points (zi). We have

asymptotic markers at all puntcures, as usual, but the markers at a, b and c are mutu-
ally constrained (any marker determines the other two) in the following way. Choosing
any parametrization of P

1 and given an asymptotic marker at a, we can map it to a
marker at b and a marker at c along the only two arcs of circle l1, l2 issuing from a in
the tangent direction of its marker and passing through b or c respectively (notice that
this construction is independent of the parametrization, as circles are mapped to circles
by Möbius transformations). We will use these asymptotic markers to define evaluation
maps and pull back classes dφγ1 , dφγ2 and dφγ3 at the orbits γ1, γ2 and γ3 respectively.
This moduli space is introduced because its boundary contains more familiar type of
curves. We want to integrate differential forms over such boundary to obtain equations
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for the corresponding generating functions for moduli spaces we already defined before.
Let us then study (what an ideal transversality result should give as) the codimension-one
boundary of such moduli spaces. It is clear that every time a curve degenerates into a
2-floor configurations and one special puncture is separated from the other two, we will
have a matching condition for the S1-parametrization at the connecting node/Reeb orbit.
As we have seen above, we express this matching by pulling back the diagonal class at
the connecting orbit. If the splitting into two floors leaves all of the special punctures
on the same floor, then one floor will have a constrained parametrization as we described
above, while the other one will be an ordinary unparametrized curve.

The picture in Figure 1, with the usual notations, represents the possible 2-floor de-
generations in such moduli spaces. The two lines, with common tangent direction at
the positive puncture a ∈ P

1, represent the image of l1 and l2. They determine coupled
evaluation maps to γ1, γ2 and γ3, along which we can then pull-back dφγ̄ classes. As
usual the triangles point towards the orbit if we pull back a dφγ̄ class (i.e., if we decide
to constrain the marker) at that orbit. The effect of pulling back the diagonal class at a
connecting orbit, as in the proof of the theorem above, is the appearence of two terms in
the right hand side of the pictorial equation, whose only difference is the direction of the
triangle at the connecting orbit (this happens specifically at the first two terms, or the
fourth and fifth, or again at the sixth and seventh).

Let us now interpret the right hand side of the equation in terms of generating func-
tions. The second, third, fourth and sixth term form the Lie derivative along X of the
(1, 2)-tensor whose correlator counts the holomorphic curves with three special punctures
described above, and hence disappear when taking homology with respect to LX . The

first term spells out as Nγ1
γ

(

∂Nγ
γ2

∂qγ3 −
∂Nγ

γ3

∂qγ2

)

. Indeed the curves represented in the lower

floor of the first summand have two lines on them, whose tangents at the positive punc-
ture must match but are not otherwise constrained. This matching condition can be
expressed (similarly to what happens for the matching condition of two lines from two
different floors at the connecting orbit) by pulling back to the moduli space the form
1
κγ

(dφγ̄ ⊗ 1 − 1 ⊗ dφγ̄)). This form represents the anti-diagonal class in H∗(γ × γ), the

class of the diagonal in S1 × (−S1), where the minus in the second factor comes from the
fact that, because of our way of transporting asymptotic markers from γ2 and γ3 to γ,
the induced maps between the corresponding Reeb orbits have opposite orientations). We

therefore get the term
(

∂Nγ
γ2

∂qγ3 −
∂Nγ

γ3

∂qγ2

)

, where this difference corresponds to the difference

in the above anti-diagonal in the following way. Each summand of the anti-diagonal form
S1-constrains the positive end of one of the two lines, leaving the other one free. Con-
sidering that such lines are both S1-constrained at their negative ends, we end up with a
doubly S1-constrained line, while we can just forget the other one, which is S1-constrained
just once. Hence, of the three indices involved in the picture (the three punctures with
lines on them), two of them are indices of N (doubly constrained line) and the third is the
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Figure 1

index of a simple q-derivative (a marked negative puncture). We promptly recognize this
as the first term of the coordinate expression (1) of the Nijenhuis torsion of N . Finally,
the remaining two summands, the fifth and the seventh, give (up to signs corresponding
to the grading of q-variables) the remaining part of (1) and we can conclude that, up to
LX -homology, T (N) = 0.

�
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Corollary 2.5. For any Y ∈ CH(T (1,0)Q,LX),

LYN = 0 ∈ CH(T (1,1)Q,LX) ⇒ LN(Y )N = 0 ∈ CH(T (1,1)Q,LX)

Proof. Simply spell out in components the difference LYN − LN(Y )N to see that it is
proportional to the left-hand side of the master equation for N . �

2.4. Descendant vector fields and N-recursion

The following result shows how the non-equivariant Nijenhuis endomorphism N is
related to the geometry of gravitational descendants and the combined knowledge of
the primary vector fields Xα,0 ∈ CH(T (1,0)Q,LX) and of the endomorphism N in

CH(T (1,1)Q,LX) allows for completely recovering all of the descendant vector fields
Xα,i ∈ CH(T (1,0)Q,LX), i > 0.

Theorem 2.6.

Xα,n = N(Xα,n−1) + Cµ
α,n−1Xµ,0 ∈ CH(T (1,0)Q,LX)

where

Cµ
α,n = Cµ

α,n(t) =
∂2

∂tα∂tν

∫

V

t∧(n+3)

(n+ 3)!
ηνµ

Proof. Once more we need to study the codimension-1 boundary of a moduli space of
curves. In this case we consider contact homology curves with three special points:
the positive puncture at the orbit γ, a marked point at which we pull back the unity
class 1 ∈ H∗(V ) and another marked point carrying the n-nth descendant of the class
θα ∈ H∗(V ) (and no other point carries gravitational descendants). Mapping these three
points to {0, 1,∞} ∈ P

1 we obtain an asymptotic direction at the positive puncture given
by the R

+-line in P
1 and we constrain such direction as usual via the asymptotic marker

at the corrisponding positive Reeb orbit.

In the usual way the picture in Figure 2 shows the different types of codimension-1
boundary degeneration for such moduli space. We are already familiar with the first
four terms of the right-hand side: they represent all possible 2-floor degenerations of the
1-floor curve on the right hand side. Notice however that, since the two special marked
points are constrained to a line which is in turn S1-constrained at the Reeb orbit, a special
kind of codimension-1 phenomenon appears, which is not anymore a 2-floor curve, but
is instead a 1-floor curve with a constant sphere-bubble carrying the two special marked
points (which corresponds to the limit where the point carrying the class 1 ∈ H∗(V )
moves along the R

+-line to reach the other marked point carrying the descendant), rep-
resented as the last term in the right-hand side in the picture. It is easy to convince
one-self, by dimension counting of the moduli of each of the two components, that this
nodal configuration is a codimension-1 phenomenon, but of course, once more, in order to
have a rigorous result, the appropriate transversaility and gluing theorems (making this
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moduli space a well-behaved manifold with corners) are needed.

Figure 2

Now we notice that the first and fourth terms in the right-hand side correspond to
the Lie derivative along X of a vector field on Q whose component along ∂

∂qγ are given

by the correlator counting the curves described above. Notice further that the factor
corresponding to top floor in the second summand is zero unless the curve is a constant
cylinder, because the marked point carrying the class 1 ∈ H∗(V ) is always unconstrained
along the R

+-line and the only way to achieve a zero-dimensional moduli space is by
quotienting out the vertical symmetry in constant cylinders over the Reeb orbit γ . Taking
homology, what is left can be spelled out as

(

Xγ1
α,nδ

γ
γ1

−
∂Xγ1

α,n

∂t1
Nγ

γ1
−
∂Cµ

α,n

∂t1
Xγ

µ,0

)

∂

∂qγ
= 0 ∈ CH(T (1,0)Q,LX)
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where Cµ
α,n is the term accounting for the constant bubbles with one psi-class to the power

n. Such term is easily calculated from the well known fact that, on the Deligne-Mumford
space of genus 0 curves with r marked points,

∫

M0,r

ψn
i =

{

1, r = n+ 3
0, r 6= n+ 3

Finally we need to use the string equation of Theorem 1.7 on the above equation to obtain
the statement. �

Corollary 2.7.

Xα,n =

n
∑

k=0

Cµ
α,n−k−1 N

k(Xµ,0) ∈ CH(T (1,0)Q,LX)

where

Cµ
α,n = Cµ

α,n(t) =
∂2

∂tα∂tν

∫

V

t∧(n+3)

(n+ 3)!
ηνµ

Proof. Just apply Theorem 2.6 n times to Xα,n. �

Naturally the above theorem and corollary hold for any choice of auxiliary data given
the completely covariant behaviour of the equations. In particular the above corollary
shows how the descendant vector fields Xα,n are expressed in closed form in terms of the
primary vector fields Xα,0 and the endomorphism N .

Example 2.8. Consider again the example of V = S1. In this case we have X̄ :=
X |τ1=0 = 0 and X̄1,n := ∂X

∂τ1,n

∣

∣

τ=0
, with X̄k

1,0 = kqk, where as before we write k for the
index kγ associated to the k-th multiple of the orbit γ = V .

Applying the above Theorem 2.6 we obtain

X̄ l
1,1 = X̄k

1,0N̄
l
k + C̄1

1,0X̄
l
1,0

. Here C̄1
1,n = C1

1,n|τ1=0 = (t1)n+1

(n+1)! , hence we obtain

X̄ l
1,1 = l t1ql +

∑

0<k<l

(l − k)qkql−k =

= l t1ql +
1

2

(

∑

0<k<l

(l − k)qkql−k +
∑

0<k′<l

k′q−k′+lqk
′

)

=

= l t1ql +
l

2

∑

0<k<l

qkql−k

and, with the same procedure we obtain, by Corollary 2.7 and denoting q0 := t1,

X̄ l
1,n =

l

(n− 1)!

∑

k1,...,kn≥0
k1+...+kn=l

qk1 . . . qkn
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(here one needs to use the following trick
∑

k1,...,kn≥0
k1+...+kn≤l

(l − k1 − . . .− kn) q
k1 . . . qknql−k1−...−kn =

=
1

n











∑

k′
1,k2,...,kn≥0

k′
1+k2+...+kn≤l

k′1q
l−k′

1−k2−...−kn+

+ . . .+
∑

k1,...,kn−1,k
′
n≥0

k1+...+kn−1+k′
n≤l

k′nq
l−k1−...−kn−1−k′

n











=

l

n

∑

k1,...,kn≥0
k1+...+kn≤l

qk1 . . . qknql−k1−...−kn

to take the numerical coefficient out of the sum). △

3. ω-recursion in rational SFT

An approach similar to the one we used above for contact homology should also work
in the case of full rational SFT, the main difference coming from the presence of non-
constant nodal curves which is very naturally incorporated in the algebraic formalism of
Lie derivatives and tensor fields by trading the Nijenhuis operator N for a bivector ω well
defined on SFT homology. This section should be seen as a research announcements of
the algebraic results that follow from assuming that the anlysis of the previous sections
carries over without troubles to the more general context of SFT of contact manifolds (or
even more general stable Hamiltonian structures). In particular this means that we are
introducing new moduli spaces of S1-parametrized rational curves and we are assuming
the same type of degenerations of such curves that we have studied above, also serve as
compactification (with the appropriate transversality and gluing theorems) in this case
(with the substantial difference that nodal degenerations inside a given floor separating the
top and bottom puncture of the given S1-parametrized cylinder happen in codimension
1, as explained below).

3.1. The ω bivector in rational SFT

For a target contact manifold V and compatible cylindrical almost complex structure
J on V ×R, consider the following moduli spaces of punctured S1-parametrized cylinders
with marked points. We start with the fully parametrized space

MS1,0
r,A ((γ0,±), (γ∞,±),Γ+,Γ−))
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consisting of tuples (u, (z±k ), (zi)), where (z+k ),(z
−
j ),(zi) are three disjoint ordered sets

of points on P
1 \({0,∞}) = S1 × R (positive and negative punctures, and r addi-

tional marked points). The map u : Ṡ → R×V from the punctured Riemann surface

Ṡ = P
1 \({0,∞}∪ {(z+k )} ∪ {(z+k )}) is required to satisfy the Cauchy-Riemann equation

∂̄Ju = du + J(u) · du · i = 0

with respect to the complex structure i on P
1. Assuming we have chosen cylindrical

coordinates ψ±
k : R± ×S1 → Ṡ around each puncture z±k , in the sense that ψ±

k (±∞, t)

gives z±k , the map u is additionally required to show for all k = 1, ..., n± the asymptotic
behaviour

lim
s→±∞

(u ◦ ψ±
k )(s, t+ t0) = (±∞, γ±k (T±

k t))

with t0 ∈ S1 and with orbits γ±k ∈ Γ±, where T±
k > 0 denotes period of γ±k , and analogous

asymptotic behaviour at 0 and ∞ for s → ±∞ (the signs here correpond to the signs in
(γ0,±), (γ∞,±) in the notation for the moduli space) for orbits γ0 and γ∞ with respect to
the natural coordinates on S1×R. We assign to each curve an absolute homology class A
employing as usual a choice of spanning surfaces. In order to obtain the S1-parametrized

space MS1

r,A((γ0,±), (γ∞,±),Γ+,Γ−) we only divide out the R-component of the S1 × R

group of automorphisms of the cylinder P
1 \({0,∞} and, as usual, the R-action coming

from the cylindrical target V × R as well.

The compactification M
S1

= M
S1

r,A((γ0,±), (γ∞,±),Γ+,Γ−) is obtained as usual by

adding multifloor S1-parametrized curves. In genus zero each floor has only one non-
trivial connected component, all the others being trivial cylinders over Reeb orbits (pos-
sibly S1-parametrized). If the 0 and ∞ punctures determining the S1-parametrization
appear on the k-th and l-th floor of a n-floor curve, it means that all non-trivial curves
appearing on the m-th floor are S1-parametrized curves when k ≤ m ≤ l and ordinary
unparametrized curves when m < k or m > l. As anticipated above, nodal curves should
also be added to the picture, both in the usual codimension ≥ 2 strata (when the node
does not separate the 0- and ∞-puncture, and as a new type of codimension ≥ 1 stratum,
when a node separates the 0- and ∞-punctures on a given floor. In the second case each
component carries its own S1-parametrization with respect to the node and the 0- or
∞-puncture respectively and such two parametrizations have no matching condition at
the common node (it is easy to convince one-self that this type of nodal degeneration of
S1-parametrized cylinders should happen in codimension 1, just by counting the dimen-
sions of the moduli of each of the two components).

As in the contact homology case, the space M
S1

carries, besides the usual evaluation
maps at marked points, orbits and asymptotic markers, extra evaluation maps at the
punctures at 0 and ∞ to the corresponding target simple Reeb orbits given by the special
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S1-coordinate on the curve,

ev±∞,0 : M
S1

→ γ̄0 ≃ S1

ev±∞,∞ : M
S1

→ γ̄∞ ≃ S1.

We form the space M
S1

r,n+,n−,A((γ0,±), (γ∞,±)) by taking the union over Γ+ and Γ−

of all the spaces M
S1

r,A((γ0,±), (γ∞,±),Γ+,Γ−) with |Γ−| = n+ and |Γ−| = n−.

We will now define a (1, 1)-tensor on the Poisson super-space V0 underlying the Pois-
son subalgebra P0 ⊂ P generated by p and q-variables and even t-variables only. In
other words, if H∗(V ) = H∗

even(V ) ⊕ H∗
odd(V ), with H∗

even(V ) =< θ1, . . . , θN > and
H∗

even(V ) =< Θ1, . . . ,ΘL >, we denote by t
α the (even) formal variable associated to the

class θα, α = 1, . . . , N , and by τ α̌ the (odd) formal variable associated to Θα̌, α̌ = 1, . . . , L.

Then P0 = P |τ=0. Correspondingly we define h0 := h |τ=0 and hα̌,n := ∂h̃
∂τ α̌,n |τ=0. No-

tice that the Hamiltonians hα̌,n are always even elements in P0.

We will denote globally by vA any of the coordinates tα, pa or qa (again, to avoid
confusion, we have raised the indices of p and q variables, coherently with their interpre-
tation as coordinates for V0). We will always use lower case roman indices (e.g. va) to
refer indistinctly to a p or q variable, greek indices (e.g. vα) for t variables and checked
greek indices (e.g. vα̌) for τ -variables. Also, for convenience, we let v(γ,+) := pγ and
v(γ,−) := qγ , so that the roman upper case indices A, B, etc. can take the values α, β,
etc. when the corresponding variable is a t-variable, or the values (γ1,±), (γ2,±), etc.
or again simply a and b when the corresponding variable is a p or q-variable. Notice
also that, as opposed to what we did for the space Q, the t-variables are treated here as
genuine coordinates and not as parameters. In particular, the Poincaré metric η will split
into two blocks (one the transpose of the other) always pairing even with odd cohomology
classes. We denote the matrix corresponding to each of such blocks by ηαα̌ = η(θα,Θα̌).

Using such coordinates we define the (graded) symmetric bivector

ω = ωAB ∂

∂vA
⊗

∂

∂vB

where we sum over repeated indices, with

ω(γ1,±)(γ2,±) =
∑ 1

r!n−!

∫

M
S1

r,n+,n−,A((γ1,±),(γ2,±))

r
∧

i=1

ev∗i t
n+
∧

j=1

(ev∗+,jp ∧ ev∗+∞,j dφγ̄+
j
)

n−

∧

j=1

(ev∗−,jq ∧ ev∗−∞,j dφγ̄−

j
) ∧ (ev∗±∞,0 dφγ̄1) ∧ (ev∗∓∞,∞ dφγ̄2)
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and

ωaα = Πabηαµ̌
∂ hµ̌,0

∂vb

∣

∣

∣

∣

τ=0

= ωαa (2)

and zero otherwise.

As in contact homology, from the index formula for the virtual dimension of the moduli
space of SFT curves, we have

|ω| = −2.

Algebraically, the SFT differential d0 : P0 → P0, defined as the vector field X0 =
Xh0 = {h0, ·} : P0 → P0 induces a differential LX0 on the space of (k, l)-tensor fields
T (k,l)V0 on the Poisson super-space V0 underlying P0. The resulting homology, which
we denote by H∗(T

(k,l)V0;LX0), is a module over H∗(P0, d0) = H∗(T
(0,0)V0;LX0) and

is an invariant of the contact structure on V . In particular, for two different choices
of form λ±, cylindrical almost complex structure J± , representatives for the classes
[θα], [Θα̌] ∈ H∗(V ) and [dφγ̄ ] ∈ H∗(S1), abstract polyfold perturbations and sequences of

coherent collections of sections (s±j ), there exist an isomorphism

dϕ± : H(T (k,l)V+
0 ,LX0+) → H(T (k,l)V−

0 ,LX0−)

which is simply the lift to the tensor algebra of the isomorphism

ϕ± : H∗(P
+
0 ; d

+
0 ) → H∗(P

−
0 ; d

−
0 ),

constructed in [EGH] by studying curves in the cobordims W =
−−−−→
V +V − interpolating be-

tween the two different choices (see also the discussion on invariance for satellites there).

Moreover the descendant hamiltonians hα̌,n induce covariant (with respect to dϕ±)

Hamiltonian vector fields Xα̌,n ∈ H∗(T
(1,0)V0;LX0), α̌ = 1, . . . , L, n = 0, 1, 2, . . ..

Theorem 3.1.

LX0ω = 0

Proof. We proceed exactly as in the contact homology case, only keeping in mind that, this
time, nodal configurations can appear in codimension 1 when studying the moduli spaces,
relevant for N , of curves with a doubly S1-constrained line joining the two special 0 and
∞ punctures. Indeed, for such extra boundary, containing nodal curves where the node
separates the 0 and∞ puncture on the same level, the matching condition translates into a
gluing condition for the domains at the node. This breaks the usual S1-symmetry, forcing
this phenomen to occur in codimension one (as a simple dimension check for the involved
moduli spaces will show). Because of our definition of the t-components of ω, equation

(2), this can be expressed as the term ωAµ ∂(X0)B

∂tµ
∂

∂vA ⊗ ∂
∂vB and ∂(X0)A

∂tµ ωµB ∂
∂vA ⊗ ∂

∂vB

in the Lie derivative LX0ω, coherently with the fact that, in the full SFT picture, our
formal Poisson manifold V0 has coordinates tα, beside pa and qa. �
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3.2. Descendant Hamiltonian vector fields and ω-recursion

The following result is the analogue of Theorem 2.6 (and proved in completely sim-
ilar way) for the rational SFT case, and shows how the non-equivariant bivector ω is
related to the geometry of gravitational descendants and the combined knowledge of
differential of the Hamiltonian dhα̌,n ∈ H∗(T

(0,1)V0,LX0) and of the graded sym-

metric bivector ω ∈ H∗(T
(2,0)V0,LX0) allows to recover the descendant vector fields

Xα,n+1 ∈ H∗(T
(1,0)V0,LX0), n ≥ 0. Notice however how, in general, this is not equiva-

lent to recovering the Hamiltonians hα,n+1 themselves.

Theorem 3.2.

Xα̌,n+1 = Π(·, dhα̌,n+1) = ω(·, dhα̌,n) ∈ H∗(T
(1,0)V0,LX0)

Proof. The statement is proved precisely in the same way as for Theorem 2.6. Notice
only that the analogue of the term containing the constants Cµ

α,k, counting nodal curves,
in this case is absorbed in the Lie derivative that vanishes in homology. �

Notice that the above recursion makes sense for n = −1 too if we define hα̌,−1 := ηα̌βt
β .

Then all of our sequences of Hamiltonians hα̌,n satisfy to a recursion which starts from
a Casimir at level n = −1. This allows to deduce commutativity {hα̌,i,hβ̌,j} = 0, which
we know to hold on homology, simply from the recursion, since

{hα̌,i,hβ̌,j} = ω(dhα̌,i, dhβ̌,j−1) =

= −{hα̌,i+1,hβ̌,j−1} =

= . . . =

= (−1)j+1{hα̌,i+j+1,hβ̌,−1} = 0.

Example 3.3. Consider again the case V = S1 with t = t1θ1 + τ1Θ1, θ1 = 1 and
Θ1 = dϕ where ϕ is the angular coordinate on S1. Here, as in any other circle bundle
over a symplectic manifold with even cohomology, h0 = 0 and everything happens at
chian level. Even in the full rational SFT case, it is straightforward to compute ω. We
write ±k for the index (kγ,±) associated to the k-th multiple of the positive or negative
orbit γ = V and we use the index 0 to refer to the component along t1 (or, in other words,
v0 = t1). From the dimension formula for the moduli space of SFT-curves we see that the
only nonzero components of ω correspond to branched covers of the target P

1 \ {0,∞}
by an S1-parametrized cylinder with an extra puncture and another non-marked branch
point (whose target S1-coordinate is fixed by constraining at both punctures the chosen
S1-parametrization of the source cylinder). This way we immediately see that

ωkl = (k + l)vk+l, k, l ∈ Z
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Applying ω-recursion we can recover the n-th descendant Hamiltonian. Indeed, let us
start with

h1,0 =
1

2

∑

k

v−kvk.

Recursion tells us

∂ h1,1

∂vj
Πjl = l

∂ h1,1

∂v−l
=
∑

k

(k + l)v−kvk+l =

=
1

2

(

∑

k

(k + l)v−kvk+l +
∑

k′

(−k′)vk
′+lv−k′

)

=

=
l

2

∑

k

v−kvk+l

from which we deduce

h1,1 =
1

6

∑

v−kvk+lv−l.

Notice that, actually, for l = 0, the above equation is void, as we expected. The same
procedure can be reiterated to find

h1,n =
1

n!

∑

k1+...+kn=0

vk1 . . . vkn .

△

Example 3.4. It is actually possible to explicitly compute the operator ω for the sta-
ble Hamiltonian structure of the type described in example 1.2, where V is the trivial
S1-bundle over a symplectic manifold (M,ωM ). The rational Symplectic Field Theory
of such manifold V = S1 ×M requires a Morse-Bott approach (as the Reeb orbits come
in a family parametrized by M , every fiber S1 being one such orbit) and is described in
[B] and [EGH] for the case of contact manifolds. The trivial bundle case can be treated
analogously and, in case the base symplectic manifold is Kähler, it even falls inside the rel-
ative Gromov-Witten theory approach (together with all other holomorphic S1-bundles)
as described in [K]. For simplicity we will assume M to have only even cohomology,
Hodd(M) = 0. Of course one has H∗(V ) = H∗(M)⊕ (H∗(M)⊗ dϕ) where ϕ is the fiber
coordinate, while H2(M) = H2(V ). We then choose a basis ∆1, . . . ,∆N of H∗(M) and
denote by ηαβ the Poincaré pairing on H∗(M). We pull back ∆1, . . . ,∆N to H∗(V ) and
complete them to a basis by adding odd classes Θ1, . . . ,ΘN , with Θk = π∗(∆k)⊗ dϕ. By
setting tα = vα,0, α = 1, . . . , N and using the unified notation vα,k, α = 1, . . . , N , and
either k < 0 or k > 0 for p and q variables associated (to cohomology classes of) the space
M of Reeb orbits, we can define generating functions

vα(x) :=
∑

k∈Z

vα,keikx, α = 1, . . . , N
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Let us denote by fM = fM (t) the full descendant rational Gromov-Witten potential of
M , where t is short-hand notation for tα,n, α = 1, . . . , N , n = 0, 1, 2, . . . , the formal
variables associated in Gromov-Witten theory to the elements in our basis for H∗(M)
and thier descendants. Let f = f(v) = fM |vα,n=0, n>0 be the primary potential and

hα,n = ∂fM
∂vα,n

∣

∣

vβ,j=0, j>0
be the one-descendant components (often called J-function).

It is a result of Bourgeois [B] that can be found also in [EGH] that one can write the
SFT-hamiltonians in terms of the GW-potential in the following way:

hβ̌,n =
1

2π

∫ 2π

0

hβ,n(t = v(x))dx.

Moreover notice that h0 = 0 because of the S1-symmetry of the target.

We use now topological recursion relations (see e.g. [G]) for the rational GW theory
of M to recover the explicit form of the operator ω for an S1-bundle. Indeed, because of
the form of the Poisson tensor, which can be written in terms of the generating functions
as the formal distribution (see [R2])

{vα(x), vβ(y)} = −iδ′(x− y)

we can write the (α, k)-component of the hamiltonian vector field relative to hβ̌,n as

Xα,k

β̌,n
=
dvα,k

dtβ̌,n
= −

i

2π
ηαµ

∫ 2π

0

(

d

dx

∂hβ,n
∂tµ

)

eikxdx

= −
i

2π
ηαµ

∫ 2π

0

∂2hβ,n
∂tµ∂tν

vνxe
ikxdx

Using topological recursion relations for the rational Gromov-Witten theory of M

∂hβ,n
∂tµ∂tν

=
∂hβ,n−1

∂tǫ
ηǫδ

∂3f

∂tδ∂tµ∂tν

we get

Xα,k

β̌,n
= −

i

2π
ηαµ

∫ 2π

0

∂3f

∂tµ∂tν∂tδ
vνxη

δǫeikx
∂hβ,n−1

∂tǫ
dx

=
∑

l∈Z

(

−
i

2π
ηαµ

∫ 2π

0

∂3f

∂tµ∂tν∂tδ
vνxe

i(k+l)xdx ηδǫ
)(

1

2π

∫ 2π

0

∂hβ,n−1

∂tǫ
e−ilxdx

)

=
∑

l∈Z

(

−
i

2π
ηαµ

∫ 2π

0

∂3f

∂tµ∂tν∂tδ
vνxe

i(k+l)xdx ηδǫ
)

∂ hβ̌,n−1

∂vǫ,l
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from which we read the expression for the components of the bivector ω

ω(α,k)(ǫ,l) = −
i

2π
ηαµ

∫ 2π

0

∂3f

∂tµ∂tν∂tδ
vνxe

i(k+l)xdx ηδǫ =

= −
i

2π

∫ 2π

0

cαǫν (t = v(x)) vνx e
i(k+l)xdx

where cαǫν = cαǫν (t1, . . . , tN ) are the structure functions of the quantum product on the
cotangent bundle of quantum cohomology of M . In the formal loop space formalism (see
e.g. [DZ]) this last formula reads

ω(δvα(x), δvǫ(y)) = cαǫν (v(x)) vνx δ(x− y)

Notice in particular how this formula reduces to what we computed in example 3.3
when M = pt and V = S1. △
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