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Surgery and tightness in contact 3-manifolds

Andy Wand

Abstract. This article is an expository overview of the proof of the author that
tightness of a closed contact 3-manifold is preserved under Legendrian surgery. The
aim is to give a somewhat more leisurely, motivated, and illustrated version of the

ideas and constructions involved in the original paper.

1. Introduction

The general context of this article is the story of porting the tools and methods of low-
dimensional topology to a more modern setting, in particular the world of complex, almost
complex, or symplectic 4-manifolds, with contact 3-manifold boundaries (the interested
reader may consult [CE] for an exhaustive overview of these structures and the interplay
between them). Following the development of Donaldson theory [D], and related dis-
coveries such as the Seiberg-Witten equations and Taubes’s Gromov invariants [T], such
structures have a prominent role to play in the study of smooth 4-manifolds; one is thus
interested in being able to apply the ‘cut and paste’ techniques of the smooth category
in the geometric setting. We think of cutting a 4-manifold into pieces, each a cobordism
between 3-manifolds, in a way which respects the geometry. Doing so then induces a
contact structure on each boundary component, so the ‘pasting’ is an identification of
contact 3-manifolds, the role of which is in some sense to keep track of the geometric
information.

For the purposes of this paper, we concern ourselves with the attachment of a
4-dimensional 2-handle. This operation plays a central role in the classical study of
low-dimensional smooth manifolds; a 4-dimensional 2-handlebody closes uniquely (by
Laudenbach and Poenaru [LP]), while of course each smooth 4-manifold admits such a
description. For various reasons, the 0- and 1- handles are not particularly interesting,
and one is left to understand the 2-handles. We thus focus on an elementary cobor-
dism gotten by thickening up a 3-manifold and adding a 2-handle, the trace of which on
the boundary manifold is a surgery on a knot. Much of the set-up of low-dimensional
topology, e.g. intersection forms of 4-manifolds, the Kirby calculus, Rolfsen surgery, link
invariants of 3-manifolds, and so on, are all based on this operation.

This paper loosely follows a talk given at the 2014 Gökova Geometry / Topology conference. The
author would like to thank the organizers for an extremely pleasant and productive week.
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Surgery and tightness in contact 3-manifolds

In the geometric setting, a very similar story has taken shape. Again the 0- and 1-
handles have little role to play, so we focus on the 2-handles. It was shown by Weinstein
[We] (for the symplectic case) and Eliashberg [El2] (for the Stein case) that by attaching
a 2-handle to a thickened contact 3-manifold in a particular way (to be explained further
in the paper) the resulting cobordism then carries the desired geometry, and so induces
a contact structure on the new ‘convex’ end. The resulting surgery on the boundary is
then referred to a Legendrian surgery, and plays much the role in the contact category
that Dehn surgery plays in the smooth category.

The story thus seems to translate as well as one may hope; a potential problem though
arises in application. As it happens, contact structures come in two varieties: tight
and overtwisted, the overtwisted ones being those for which (by Eliashberg [El1]) an ‘h-
principle’ holds, which in particular implies that they are (up to isotopy) completely
determined by their homotopy classes as plane fields. As such, we think of overtwisted
structures as the ‘non-geometric’ ones, as they are incapable of carrying any ‘modern’
information.

One would then like to know if, building a Stein cobordism from a tight structure, the
resulting convex end is again tight. This question was answered (in the affirmative) by
our paper [W2]; the purpose of this article is to give a somewhat more motivated (and
illustrated) overview of some of the ideas and constructions involved.

The main tool utilized is the correspondence theorem of Giroux, which establishes a
1-1 correspondence between isotopy classes of contact structures, and stabilization classes
of open book decompositions. We give a characterization of the tightness condition in
this setting, showing:

Theorem 4.1. Let M be a closed 3-manifold, ξ a contact structure. Then the following
are equivalent:

(1) ξ is tight.
(2) Some open book decomposition supporting (M, ξ) is consistent.
(3) Each open book decomposition supporting (M, ξ) is consistent.

Our main result is then to use this characterization to demonstrate:

Theorem 5.1. If (M, ξ) is obtained by Legendrian surgery on tight (M ′, ξ′), for M ′ a
closed 3-manifold, then (M, ξ) is tight.

2. Preliminaries

Let M denote a closed, oriented three-manifold, and ξ a positive co-oriented contact
structure on M ; i.e. ξ is the kernel of some global 1-form α satisfying the condition that
α∧ dα is a positive volume form on M . Put yet another way, ξ is a positive, co-oriented,
nowhere integrable plane field. The structure is overtwisted is there is some embedded
disc D ↩→ M such that, at each point p ∈ ∂D, we have TpD = ξp. Otherwise ξ is tight.

An open book decomposition of M is a pair (B, π) consisting of an embedded oriented
link B ↩→ M , and fibration π : M \ B → S1 such that each fiber is the interior of an
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Figure 1. To the left, the ‘standard’ tight contact structure on R3, with
cylindrical coordinates (r, θ, z), defined by dz + r2dθ = 0. To the right,
the standard overtwisted structure cos rdz+ r sin rdθ = 0; the blue circle
bounds an obvious overtwisted disc.

oriented surface with boundary B (i.e. a Seifert surface for B). For our purposes we will
often find it more useful to keep track only of the abstract data associated with this pair,
that is the Seifert surface Σ, and the monodromy map φ ∈ π0Diff+(Σ, ∂) of the fibration;
M is recovered from this data by forming the mapping torus Σφ := Σ×[0, 1]

/
(p,1)∼(φ(p),0)

,

and then filling in the boundary ∂Σ× S1 with ∂Σ×D2 in the obvious way. The surface
Σ is referred to as the page of the decomposition, while B is the binding.

Figure 2. The two points of view of an open book decomposition. To
the left, B is a fibered link in M , while to the right we reconstruct M
from the abstract data (Σ, φ).

Of particular importance to us is the operation of stabilization of an open book, gotten
by plumbing a (positive/negative) Hopf band, as follows:

Definition 2.1. Let (Σ, φ) be an open book decomposition of M , and σ a properly
embedded arc in Σ. Let Σ′ denote the surface given by attaching a 1-handle to Σ with
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attaching sphere ∂σ, and denote by s ⊂ Σ′ the simple closed curve gotten by taking the
union along the boundary of σ with the core of the new handle. Then the pair (Σ′, τ±s ◦φ),
where τ±s denotes the positive/negative Dehn twist about s, and φ the obvious inclusion
of the original φ (extended over the handle by the identity), is again an open book
decomposition of M , referred to as a positive/negative stabilization of (Σ, φ), via σ.

�

Figure 3. Stabilizing (Σ, φ) via σ results in (Σ ∪ h, τS ◦ φ).

Open book decompositions were introduced by Alexander in [A], where it was shown
that every 3-manifold admits such a decomposition. As it later turned out, they are
particularly well-adapted to keeping track of contact structures. Indeed, consider the
plane field on M which is tangent to the pages, and ‘flips’ passing across a meridional
disc of the binding (so, e.g. again using cylindrical coordinates for one of the solid tori,
with dz a volume form for the binding and (r, θ) coordinates on the unit-disc cross-section,
we may define our plane field in the torus by ker((1− r)dz + r2dθ).

Figure 4. The plane field associated to an open book, in a slice of the
thickened binding.

Thurston and Winkelnkemper [TW] demonstrated that the homotopy class of this
plane field contains a contact structure (intuitively, one ‘relaxes’ the twisting, allowing
it to continue across the page), thus providing a short proof that all 3-manifolds admit
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contact structures. This relation was then studied systematically by Giroux, culminating
in the following definition and theorem:

Definition 2.2. [Gi] A contact structure ξ = kerα is supported by open book (B, π) if α
is a positive volume form for B, and dα a positive volume form for each fiber π−1(p) .

Theorem 2.1. [Gi] Let M be a closed, oriented, smooth 3-manifold. Then there is a 1-1
correspondence between contact structures on M up to isotopy, and open book decompo-
sitions of M supporting ξ up to isotopy and positive stabilization.

3. Overtwisted discs in open book decompositions

3.1. Some historical background

Given the above then, it is natural to wonder if tightness/overtwistedness of a given
contact structure can be deduced from the data of a supporting open book decomposition.
There are historically two directions of approach to the problem, which we can distinguish
as on the one hand using global properties to obstruct existence of overtwisted discs (i.e.
detect tightness), or on the other using local information to exhibit such discs (i.e. detect
overtwistedness). For motivational purposes we will briefly sketch these approaches:

The first approach, toward detecting tightness, falls out of work of (in rough order of
chronological contribution) Gromov, Eliashberg, and Giroux. The rough idea is to show
that, given open book decomposition (Σ, φ) supporting (M, ξ), if φ admits a factorization
into positive Dehn twists, then one may use this to build a Lefschetz fibration of a Stein
domain X whose boundary is M . It then follows from Loi and Piergalinni [LP], Akbulut
and Ozbagci [AO], and Plamenevskaya [P], that ξ is isotopic to the contact structure on
M given by the complex tangencies of X. It follows then (from work of Gromov [Gr] and
Eliashberg [El3]) that ξ is tight. We summarize as follows:

φ admits a factorization
into positive Dehn twists

⇒ (M, ξ) is Stein fillable ⇒ ξ is tight

Unfortunately though, the converse holds for neither of these implications. Indeed,
Eliashberg first produced examples of tight structures which are not Stein fillable, while
in [W1] we exhibited examples of open book decompositions supporting Stein fillable
structures but such that the monodromy admits no positive factorization.

The second approach, that of detecting an overtwisted disc, again starts from the above
mentioned theorems of Eliashberg and Giroux, and follows the general method of using
properly embedded arcs in surfaces to generate mapping class invariants. Before going any
further, we lay out some conventions concerning such arcs, and their representations in
figures. To begin, throughout the remainder of the article, an arc will refer to a properly
embedded arc in the page of an open book decomposition, and will be represented by a
straight line in figures. The image of an arc under the monodromy map will be represented
by a curved line, and if the arc is oriented, its image will be given the opposite orientation.
Thus, given a collection of oriented arcs Γ in open book decomposition (Σ, φ), we may
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assign a sign to each point p ∈ Γ ∩ φ(Γ) by considering the ordered pair of vectors at p
along Γ and φ(Γ); if this pair gives the standard orientation of Σ at p, we say p is positive,
otherwise p is negative.

+

+

-

-

Figure 5

We start then with the observation that, given Eliashberg’s classification, and the fact
(due to Neuman and Rudolph [NR]) that a negative stabilization acts on the homotopy
class of the associated plane field by a +1 ‘shift’ of the ‘enhanced Milnor number’, it follows
immediately that any overtwisted structure is supported by an open book decomposition
that is a negative stabilization of some other. From the point of view of one actually
trying to detect this condition, we observe that we may characterize it as follows:

Definition 3.1. Let (Σ, φ) be an open book decomposition, and γ a properly embedded
arc in Σ. We say γ is negative-destabilizable if

(1) γ ∩ φ(γ) ∩ ∂Σ is a pair of negative points, and
(2) γ ∩ φ(γ) ∩ int(Σ) = ∅.

Existence of such an arc is clearly equivalent to (Σ, φ) being a negative stabilization,
with γ the co-core of the stabilization 1-handle. As the property of being a negative
stabilization easily implies connect sum with an overtwisted structure on S3, we then
have the following equivalence:

Corollary 3.1. A contact structure is overtwisted if and only if there exists some sup-
porting open book decomposition (Σ, φ) with a negative-destabilizeable arc.

This observation was then generalized by Goodman [Go], who makes the following
definition:

Definition 3.2. Let (Σ, φ) be an open book decomposition, and γ a properly embedded
arc in Σ. We say γ is sobering if

(1) at least one point of γ ∩ φ(γ) ∩ ∂Σ is negative, and
(2) each p ∈ γ ∩ φ(γ) ∩ int(Σ) is negative.

Now, Definition 3.2 clearly generalizes Definition 3.1, so any overtwisted contact struc-
ture is supported by an open book with a sobering arc. It turns out that the condition is
sufficient, as well, as Goodman shows by suspending such an arc in the open book decom-
position (see the proof of Theorem 3.4), and extending this to a surface which violates
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the Thurston-Bennequin inequalities, which generalize overtwisted discs and in particular
are known to be satisfied in tight manifolds. We arrive at:

Theorem 3.2. A contact structure is overtwisted if and only if there exists some sup-
porting open book decomposition (Σ, φ) with a sobering arc.

A final generalization was then given by Honda-Kazez-Matic [HKM1], showing that,
considering minimally intersecting pairs γ∩φ(γ), Goodman’s second condition is actually
unnecessary, as follows:

Definition 3.3. Let (Σ, φ) be an open book decomposition, γ a properly embedded arc
in Σ, and p an endpoint of γ. We say γ is mapped to the left (at p) if, after an isotopy of
φ(γ) minimizing γ ∩ φ(γ), p is negative.

Again, that any overtwisted contact structure is supported by an open book with such
an arc is immediate; the content of [HKM1] is thus to show, using the ‘bypass’ theory’
developed previously by Honda, that the condition is sufficient, giving:

Theorem 3.3. A contact structure is overtwisted if and only if there exists some sup-
porting open book decomposition with an arc which is mapped to the left at an endpoint.

(a) (b) (c)

Figure 6. Examples of arcs which are (a) a negative stabilization, (b)
sobering, and (c) mapped to the left at an endpoint.

(A mapping class which maps no arc to the left is referred to as right veering. We refer
the reader to our paper [W4] for a simple algorithm to stabilize any non-right-veering
open book decomposition into one which contains a particularly simple sobering arc, thus
giving an elementary alternate proof of Theorem 3.3, and a substantial simplification of
the proof of Theorem 3.2).

Again however none of these criteria completely characterizes overtwistedness in terms
of an arbitrary open book decomposition. Indeed, it is straightforward to see that any
open book decomposition can be stabilized to be right-veering.
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3.2. Overtwisted regions

The point to the remainder of this section then is to introduce a somewhat different
(almost) generalization of Definition 3.1, and to explain explicitly how it implies over-
twistedness.

Definition 3.4. Let (Σ, φ) be a open book decomposition, and Γ a collection of disjoint,
oriented arcs in Σ such that each point of ∂Γ is positive in Γ ∩ φ(Γ). An overtwisted
region (in (Σ, φ,Γ)) is an embedded disc A ↩→ Σ, with ∂A ↩→ (Γ ∪ φ(Γ)), such that:

(1) Corners of A alternate between points in ∂Γ, and negative points in the interior
of Σ.

(2) Each point of Γ ∩ φ(Γ) ∩ int(Σ) is a corner of A.
(3) A is the unique such disc.

(c)(b)(a)

Figure 7. (a) An overtwisted region. (b) A disc satisfying (1) but not
(2). (c) Each of the illustrated discs satisfy (1) and (2), but not (3).

Remark 3.1. It should be emphasized that there is no assumption concerning minimality
of Γ ∩ φ(Γ); in particular, for the case that Γ contains only a single arc, an overtwisted
region is a bigon.

As a justification for the terminology, we have the following lemma:

Lemma 3.4. Suppose (Σ, φ,Γ) has an overtwisted region. Then the supported contact
structure is overtwisted.

Proof. We begin by recalling that an open book decomposition decomposes M into two
parts: the mapping torus Σφ = (Σ × [0, 1])/(p,1)∼(φ(p),0), and a collection of solid tori
filling in the boundary. Motivated by Goodman’s proof, we consider then the restriction
D of this construction to an element γ ∈ Γ; that is

D := (γ × [0, 1])/ ∼
∪

{2 meridional discs}
In words, D is constructed from a rectangle (γ × [0, 1]), the corners of which are then
identified in two pairs by ∼, resulting in an object which has the homotopy type of a
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sphere with three holes, two of which are capped by meridional discs of the solid tori.
The remaining boundary component is the simple closed curve on Σ0 := Σ × {0} given
by γ ∪ φ(γ), which we smooth and push into the interior of the page.

Figure 8. To the left, the suspension of γ in the open book decomposi-
tion, in a neighborhood of an endpoint of γ. To the right, the suspension
by itself, in a neighborhood of γ. The blue boundary component is thus
γ ∪ φ(γ), pushed to lie in the interior of Σ0, while each of the two black
components closes to bound a meridional disc of the binding over which
D extends.

Repeating the construction on each element of Γ, we have a collection of embedded
discs {Di} in M , each with boundary on Σ× {0}, and such that each intersects the next
in exactly one point (a negative corner of A). Again following Goodman, we observe that
each such intersection may be resolved by a surgery, the topological realization of which
may be seen as pushing the discs slightly apart and connecting by a twisting ribbon
for each such point, so as to preserve the orientations (Figure 9). This resolution of
∪iDi is then an embedded cylinder in M , one boundary component of which bounds the
overtwisted region A, the other a homotopically non-trivial curve on Σ0.

As such, capping the cylinder with A, we obtain an embedded disc with boundary on
the page, whose disc framing matches the framing it gets from the page. It follows then
after using the standard Legendrian realization techniques of Giroux and Honda that our
disc is in fact an overtwisted disc in (M, ξ).

�

As it turns out, existence of an overtwisted region not only implies overtwistedness of
the supported contact structure, but also ‘stably’ completely characterizes the condition,
as follows:
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Figure 9. Resolving ∪iDi.

Definition 3.5. A class φ ∈ MCG(Σ) is inconsistent if there is some arc collection Γ in
(Σ, φ) such that, stably, (Σ, φ,Γ) has an overtwisted region. Otherwise, φ is consistent.

Here a stabilization of a triple (Σ, φ,Γ) is the triple (Σ ∪ h, τs ◦ φ, ι(Γ)), where
(Σ ∪ h, τs ◦ φ) is the usual data associated to a stabilization, and ι the obvious inclusion
induced by any stabilization done so that the attaching sphere of the handle is disjoint
from ∂Γ. Thus ‘stably’ simply means ‘there exists a sequence of positive stabilizations
such that’.

4. Characterizing tightness

We turn now to the proof of Theorem 4.1, whose statement we recall:

Theorem 4.1. Let M be a closed 3-manifold, ξ a contact structure. Then the following
are equivalent:

(1) ξ is overtwisted.
(2) Some open book decomposition supporting (M, ξ) is inconsistent.
(3) Each open book decomposition supporting (M, ξ) is inconsistent.

In fact, we will find it convenient to add a couple of further equivalent statements to
the theorem; in particular:

(4) For any open book decomposition (Σ, φ) supporting ξ, and any basis B and curve
system L in Σ, B stably detects overtwistedness relative to L.

(5) There exists an open book decomposition (Σ, φ) supporting ξ, and basis B of Σ,
such that for any curve system L in Σ, B stably detects overtwistedness relative
to L.

As for the new vocabulary contained in these new statements, a basis of a surface with
boundary is a collection of simply embedded arcs which cut the surface into a disc, while a
curve system is any collection of properly embedded curves and arcs which are disjoint in
the interior of the surface. Finally, we say a basis B stably detects overtwistedness relative
to a curve system L if there is an arc collection Γ, sequence S of stabilizations (here S
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actually denotes the composition of the Dehn twists associated to the stabilizations), and
subsequence S′ of S, such that:

• Each element of Γ is isotopic to one of B,
• (Σ ∪H,S ◦ φ,Γ) has an overtwisted region A, and
• there is some negative corner y of A such that , for any neighborhood Uy of y,
S′(L) can be isotoped such that S′(L) ∩ (Γ ∪ S(φ(Γ))) ⊂ Uy.

We pause in an attempt at giving some intuition to the theorem. In short, the thing to
take away is as follows: Suppose we know that a given contact structure is overtwisted,
and we have an arbitrary supporting open book decomposition, some basis of the surface,
and some curve system. The theorem then says that we can always find a collection of
arcs, each isotopic to some element of the basis, and then stabilize the open book such
that, in the stabilization, the arcs and their images determine an overtwisted region.
Moreover, there is some subsequence of the Dehn twists associated to the stabilizations
such that the image of our curve system under the subsequence intersects the arcs and
their images in a particularly simple way, in particular all such intersections occur in a
neighborhood of a single corner of the region.

Figure 10. Some arbitrary initial open book (Σ, φ), basis B and curve
system L, is stabilized into (Σ ∪H,S ◦ φ,Γ) satisfying all desired prop-
erties.

Sketch of proof. The implications (4) ⇒ (3) ⇒ (2) are immediate, while (2) ⇒ (1) follows
from Lemma 3.4.

(1) ⇒ (5) Using the characterization of overtwistedness in terms of negative stabi-
lizations (Corollary 3.1), we observe that if an arc γ is negatively-destabilizable in some
open book decompositon, B any basis containing γ, and L any curve system, then after
the sequence of three stabilizations illustrated in Figure 11 we achieve all conditions of
statement (5) (note that by attaching the handles in a sufficiently small neighborhood of
∂γ we ensure that any points of L ∩ ∂Σ are away from the picture, and thus irrelevant).

(5) ⇒ (4) There are two parts to prove: That the property of detecting overtwistedness
relative to a given curve system in a given open book decomposition is independent of
the choice of basis, and then that it is moreover independent of the choice of open book
decomposition. The proof of the first comes from considering ‘arc-slides’ in the surface.
It is known that any two bases are related by such slides, so it suffices to show that these
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(a)

)(

(b) (c) (d)

L

1 2

3

Figure 11. The stabilization arcs are (a) boundary parallel, (b) parallel
(in the original surface Σ) to γ, and (c) parallel to φ(γ).

preserve all desired properties. We refer to the original paper [W2] for details. Once we
have this, though, the second statement becomes nearly trivial. In particular, as Giroux’s
theorem (Theorem 2.1) tells us that all supporting open book decompositions are related
by positive stabilization and destabilization, it is left only to show that these operations
preserve our properties. However, as we are free to work with any basis, we may choose
one whose image is unaffected by a given stabilization or destabilization. As stabilization
and destabilization each send curve systems to curve systems (note in particular that this
would not follow if we considered only closed curves), the result is immediate.

�

5. Legendrian surgery

With the statement of Theorem 4.1 fresh in our minds, we turn to the proof of Theorem
5.1:

Theorem 5.1. If (M, ξ) is obtained by Legendrian surgery on tight (M ′, ξ′), for M ′ a
closed 3-manifold, then (M, ξ) is tight.

We briefly recall the set-up: given (M ′, ξ′), and Legendrian knot L in M ′ (recall that
this simply means that the tangent bundle of L is contained in ξ), we start with the trivial
cobordism M ′ × [0, 1], then add a 2-handle to M ′ × {1}, with attaching sphere L× {1},
and framing (−1) relative to ξL. The result is then a Stein cobordism with concave end
(M ′, ξ′), and convex end (M, ξ).

We begin by translating the problem into the language of open book decompositions.
We require:

Lemma 5.2. (Giroux - see e.g. [Et], Corollary 4.23) There exists an open book decompo-
sition (Σ, φ) supporting (M, ξ) such that L is a homologically non-trivial curve in a page
(in fact, for our purposes, we only require homotopical non-triviality).

Using this, it then follows easily from standard low-dimensional topological methods
(see e.g. [L]) that the open book decomposition (Σ, τ−1

L ◦ φ) supports (M ′, ξ′). Bringing
all of this together, we re-write Theorem 5.1 as follows:

Theorem 5.3. Let φ ∈ MCG(Σ) be inconsistent, and L ⊂ Σ a homotopically non-trivial
simple closed curve. Then τ−1

L ◦ φ is again inconsistent.
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Proof. Following Theorem 4.1, we may find an arc collection Γ, and stabilizations
S = τsn · · · τs2τs1 , such that the stabilized triple (Σ ∪ H,S ◦ φ,Γ) has overtwisted re-
gion A. Moreover, we can find some subsequence S′ of S, and a negative corner y of A,
such that S′(L) ∩ (Γ ∪ S(φ(Γ))) is contained in an arbitrary neighborhood of y. On the
other hand, we know from the above fact that (Σ, τ−1

L ◦φ) is an open book decomposition
supporting (M ′, ξ′).

We consider then a somewhat more general set-up: supposing that one starts with
an open book decomposition (Σ, φ), and some arc σ, and simple closed curve L in the
page. One may then use these to modify the open book data in two ways: stabilization
via σ, or composition of the monodromy with a negative Dehn twist about L, which we
will refer to as surgering the open book via L. Now, using the well-known (and easily
verifiable) fact that the map one obtains by conjugating a Dehn twist about a curve by a
surface diffeomophism is isotopic to the Dehn twist about the image of the curve under the
diffeomorphism, one can easily verify that the open book one gets by stabilizing first via
σ and then surgering via L is in fact the same open book that one gets by first surgering
via L, and then stabilizing via τ−1

L σ:

Similarly, first surgering via L and secondly stabilizing via σ is equivalent to first
stabilizing via σ and secondly surgering via τs(L) (where, as usual, s refers to the closed
curve gotten by extending σ over the stabilization handle):

Using this observation, then, it is straightforward in our particular setup to find a

stabilization sequence Ŝ such that stabilizing (Σ, τ−1
L ◦φ) (which, recall, supports (M ′, ξ′))

with the sequence Ŝ is equivalent to surgering (Σ∪H,S ◦φ) (which supports (M, ξ), and
has overtwisted region A) via τS′(L) (Figure 12).

We are left then to consider the augmented open book decomposition given by
(Σ ∪H, τ−1

S′(L) ◦ S ◦ φ,Γ). It is immediate (again referring to Figure 12) that this triple

determines a region (which we again refer to as A) which satisfies all conditions of an
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�
✁

�
✂

-1

✄☎

Figure 12. The effect of surgery via S′(L) on the overtwisted region A
in (Σ ∪H,S ◦ φ), giving the configuration to the right in an open book
supporting (M ′, ξ′).

overtwisted region other than the condition on intersections of arcs and their images in
the interior of the page (condition (2) of Definition 3.4). As such, the result will follow
if we are able to remove all such intersections. Indeed, an algorithm to do just this can
be found in [W4]. We will however follow our original argument from [W2], which while
being somewhat less self-reliant is also substantially quicker.

Consider then firstly the case that A is a bigon - clearly then τ−1
S′(L) ◦ S ◦ φ maps the

arc γ to the left (Definition 3.3), and so the result follows directly from that of Honda,
Kazez, and Matic (Theorem 3.3).

It turns out though that one may in fact always reduce to this case. To see this, let
γ denote the element of Γ containing the point y, and consider some other element γ′

of Γ. It is then clear that γ′ is the co-core of a stabilization 1-handle, and so may be
destabilized. Focusing then on a neighborhood of γ′ (Figure 13), let s denote the simple
closed curve obtained by pushing γ′ ∪S(φ(γ′)) into the interior of Σ. The destabilization
is then obtained by composing φ with a negative Dehn twist about s (Figure 13(b)), and
cutting Σ along γ′. As s∩S(φ(Γ)) is a single point, all of this can be kept track of in this
neighborhood; we leave it to the reader to observe that the effect is to reduce the number
of edges of A by 2, as indicated in the figure. Iterating the process, we arrive at a bigon,
completing the proof.

-1
�

�

(b)(a)

Figure 13
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