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On the equatorial Dehn twist of a Lagrangian nodal
sphere

Umut Varolgunes

Abstract. Let (M4, ω) be a geometrically bounded symplectic manifold, and L ⊂M

a Lagrangian nodal sphere such that ω |π2(M,L)= 0. We show that an equatorial Dehn
twist of L does not extend to a Hamiltonian diffeomorphism of M . We also confirm

a mirror symmetry prediction about the action of a symplectomorphism extending

an equatorial Dehn twist on the Floer theory of the nodal sphere. We present ana-
logues of the equatorial Dehn twist for more singular Lagrangians, and make concrete

conjectures about them.

1. Introduction

Let (M,ω) be a four dimensional symplectic manifold. We assume that M is geomet-
rically bounded (e.g. closed, completion of a domain with contact boundary, . . .) in the
sense of [7]. This assumption is necessary for being able to do Floer theory on M . We call
L ⊂ M a Lagrangian nodal sphere if it is an immersed Lagrangian S2 with a single
transverse self-intersection point. We make the assumption ω |π2(M,L)= 0 throughout the
paper. We call the self-intersection point of a nodal sphere its double point.

Let us call a map L → L an equatorial Dehn twist if it can be obtained by doing
a Dehn twist around a simple closed curve in L which does not pass through the double
point (see Figure 1).

Theorem 1.1. An equatorial Dehn twist on L does not extend to a Hamiltonian diffeo-
morphism of M.

We discuss two proofs of this theorem. The first one uses Polterovich’s Lagrangian
surgery [15] to reduce Theorem 1.1 to a similar result of Lalonde-Hu-Leclercq [8] for
embedded Lagrangian submanifolds (see Theorem 2.1 in Section 2 for the complete state-
ment). We note that the proof of their result utilizes Lagrangian Floer theory.

In the second approach, we analyze the action of a symplectomorphism Φ : M → M
that extends an equatorial Dehn twist on the Floer theory of the Lagrangian nodal sphere
[3]. We stress here that this proof only works when L represents a homology class whose
self-intersection is zero, which is equivalent to the two branches at the double point having
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112



On the equatorial Dehn twist of a Lagrangian nodal sphere

positive intersection in the sense of Whitney [20]. There are good reasons for this, see
Corollary 2.4, Remark 3.2, and Remark 4.5.

Let A∞-algebra A be a chain level model of the Floer algebra CF (L,L) with C-
coefficients. It is known that A is formal and that its cohomology is isomorphic to
Λ := Λ∗(C2) [18].

The symplectomorphism Φ induces an A∞-quasi-isomorphism Φ∗ : A → A, which is
well defined only up to homotopy conjugation (see Subsection 3.2 for precise definitions
and more details). The following statement is independent of this ambiguity.

Theorem 1.2. Φ∗ acts as identity on H(A), but it is not homotopic to the identity as
an A∞−automorphism.

Note that Theorem 1.2 implies Theorem 1.1 using a straightforward generalization of
Section 10c of [17] to the immersed Floer theory (also see [5]), showing that such Φ cannot
be Hamiltonian isotopic to identity. We in fact have a more precise result concerning the
second part of Theorem 2, which we state only in a sketchy way. For a more detailed
version, see Subsection 4.2.

Let FAut0(C2) be the group of formal automorphisms of the plane C2, i.e. 〈p, q〉-
adically continuous C-algebra isomorphisms C[[p, q]]→ C[[p, q]]. The reader can think of
these as the isomorphisms that fix the ideal 〈p, q〉 and are uniquely determined by the
images of p and q. We will see that we can define a group homomorphism:

AutA∞(Λ)→ FAut0(C2) (1)

The crucial point about the map (1) is that it sends A∞-homotopic A∞-automorphisms
to the same formal automorphism. Using the formality of A, we can transfer
Φ∗ : AL → AL to an A∞-automorphism Λ → Λ, which is well defined up to homo-
topy and conjugacy. This way, we obtain a well defined conjugacy class in FAut0(C2).
The following computation also implies the second part of Theorem 1.2.

Theorem 1.3. A representative of the conjugacy class associated to Φ∗ is given by

ψ(p, q) = (pepq, qe−pq), (2)

where the exponential here is defined as the usual (formal) Taylor series expansion

es = 1 + s+ s2

2 + . . ..

At this point an example of such (M,L) pair is overdue. Consider the affine variety
{(xy−1)z = 1} ⊂ C3 with the standard symplectic structure induced from the embedding.
Then the set |xy− 1| = 1, |x| = |y| describes a Lagrangian nodal sphere [18]. It is easy to
see that our theorems all apply in this case. For generalizations of this example see [4];
and [5] for why our theorems would apply for them even though the asphericity condition
is not satisfied.

1.1. Motivation

The starting point for this study was a mirror symmetry conjecture.
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The curve 

that we are 

twisting along

Figure 1. An equatorial Dehn twist. The curve we are twisting along
is in red. The twist is supported in between the two black curves, and it
maps the blue curve to the green one in there.

Any Lagrangian nodal sphere with positive double point has a standard Weinstein
neighborhood. This is a Weinstein domain with a Lagrangian nodal sphere as its La-
grangian skeleton. Let us call this manifold W , and the skeleton Z.

It has been long known in the mirror symmetry community that the mirror of W is the
complex manifold C2−{xy = 1}. There are different constructions leading to it, and also
non-trivial checks of the claim especially from a homological mirror symmetry viewpoint
(see [18] and the references therein, and also [19]). As an important point we mention
that L is mirror to the skyscraper sheaf at the origin in this conjectural story.

It has been conjectured that the standard lift of an equatorial Dehn twist of L to
a symplectomorphism of W should be mirror to an actual complex automorphism ψ of
C2−{xy = 1}, and that ψ should preserve (setwise) the two cluster charts of C2−{xy = 1}.
A further investigation shows that there is not that many options for ψ, and the most
likely one is

ψ(x, y) = (x(1− xy), y(1− xy)−1). (3)

The final piece is that, invoking homological mirror symmetry, the formal automor-
phism that was mentioned in Theorem 3 then is supposed to be (see Remark 4.1 for
details) mirror to the action of ψ on the formal neighborhood of the origin, which is
simply given by:

ψ(x, y) = (x(1− xy), y(1− xy + (xy)2 + . . .)). (4)

To sum up, the precise conjecture is that the formal automorphism of Theorem 3
should be conjugate to this one, in other words, they should be related by a change of
variables. It is elementary to see that this is the case (see Remark 4.4).
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We note that the results of this paper will be proven without resorting to any of these
mirror symmetry considerations.

1.2. Technical details

Let us start with a situation that is simpler than the one we actually need. Let X
be a smooth Spin manifold and f : X → X a diffeomorphism that preserves the spin
structure. f can be lifted to a symplectomorphism F : T ∗X → T ∗X. It is well-known
that there is a PSS type A∞-quasi-isomorphism ([14],[1]):

CF (X,X)→ ΩdR(X),

where by X we also denote the zero section inside T ∗X. This isomorphism is defined in
a canonical way, but the fact that the diagram

CF (X,X)

F∗

��

// ΩdR(X)

(f−1)∗

��
CF (X,X) // ΩdR(X)

(5)

commutes up to homotopy, requires proof.
When L is a Lagrangian nodal sphere in (M4, ω) satisfying ω |π2(M,L)= 0, there exists a

similar deRham type dga AL, called the Abouzaid model, and an A∞-quasi-isomorphism
(see [1], and also [18] for the version that we will be using):

CF (L,L)→ AL.

An equatorial Dehn twist of L acts on AL by a version of pullback of differential forms.
In the case where there exists a symplectomorphism Φ : M →M extending the equatorial
Dehn twist, there is the obvious analogue of diagram (5) (see diagram (10) in Subsection
3.2), which again is expected to commute up to homotopy.

Strictly speaking, we do not prove these naturality statements in this paper. We instead
show that there exists a non-explicit A∞-quasi-isomorphism CF (X,X) → ΩdR(X) for
which the diagram (5) commutes up to homotopy. The philosophy here is the one of
categorical actions as described in the Section 10b of [17]. See Subsection 3.2 and the
Appendix for more details.

There is another detail that we should mention here. In [1], in addition to the as-
phericity assumption, the Lagrangians were assumed to satisfy an exactness assumption.
This was used to show that the computation of the Fukaya category can be done locally
in a Weinstein neighborhood, by means of the integrated maximum principle (Lemma 7.3
in [17]). Exactness assumption is in fact not necessary for the results of [1] to hold, and
locality can be achieved by either using virtual techniques [6], or by a careful use of the
monotonicity lemma [13]. Both of these methods are well-known to the experts. We omit
them in this paper. The skeptical reader can assume that, starting from Section 3, M is
exact, ω = dθ, and L is strongly exact in the sense that θ vanishes on H1(L,R). Note
that these exactness conditions hold for the example given after Theorem 1.3.
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1.3. Outline of the paper

In Section 2, we give the first proof of Theorem 1. We also give a neat corollary
of Theorem 1 showing that the “germ” of the aforementioned symplectomorphism of
W is exotic. We end the section with a conjectural generalization of this corollary to
the “Weinstein neighborhoods” of more general singular Lagrangians. In Section 3, we
summarize the Floer theoretic aspects of the computation regarding Theorem 1.3, most
importantly we introduce the Abouzaid model. We translate everything to a purely
algebraic problem. In Section 4, first we give a precise version of Theorem 1.3, and then
finish the computation. This requires some algebraic machinery, which is introduced
in the most elementary way possible. In the Appendix, we sketch an approach to the
technical Floer theoretical details we promised before.

We note that Section 2, and the portion that comes after it, are more or less inde-
pendent of each other. Section 2 is elementary, but starting from Section 3 the reader
is assumed to know the basics of A∞-algebras ([9] would be enough), and also immersed
Lagrangian Floer theory (since we always work in the simplest setting, [17] along with
[3] should be enough). The Lecture 11 of [18] is a precursor to the second portion of
the paper, and in particular all the references to [18] are to that lecture unless otherwise
stated. For the Appendix, the reader is assumed to be familiar with [1] in addition to all
this.

Here we note that all our A∞-algebras, maps etc. are c-unital. Another note is that
when we want to think of a dga as an A∞-algebra, we define the structure maps by:
µ1(a) = (−1)|a|da, µ2(b, a) = (−1)|a|ba, and µn = 0, n > 2. This is necessary if we want
to obey the sign conventions of [17], but also has some geometric content (see Definition
2.1 in [1]). Nevertheless, we will always write our formulas in terms of the structures of
the dga to avoid further confusion, which might make some signs look unusual.

1.4. Acknowledgements

My first and foremost thanks go to my advisor Paul Seidel, for suggesting the problem,
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2. The first proof of Theorem 1, some corollaries and conjectures

Let us first recall some definitions from the introduction. Let (M,ω) be a symplectic
four-manifold. We call a subset L of M a Lagrangian nodal sphere if it is the image
of a Lagrangian immersion S2 ↪→ M which brings two points of the sphere together
transversely and is an embedding outside of those two points. We make the assumption
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ω |π2(M,L)= 0. Finally, we call a map L → L an equatorial Dehn twist if it can be
obtained by doing a Dehn twist, supported away from the double point, around a simple
closed curve in L, which does not pass through the double point.

Before we go into the first proof of Theorem 1.1, we introduce the main ingredient,
which is a theorem of Lalonde-Hu-Leclercq [8]. Note that the proof of this theorem uses
Lagrangian Floer theory in a very essential way. One can write down a proof using only
the formalism of Section 8 of [17], modulo some technical details to extend the results
from the exact setting to the aspherical setting, but we skip this as most of the arguments
end up being repetitions of [8].

Theorem 2.1 (Lalonde-Hu-Leclercq). Let K be a Lagrangian submanifold of (M2n, ω),
and φ : K → K be a diffeomorphism. Assume that ω |π2(M,K)= 0. If there exists a
Hamiltonian diffeomorphism Φ : M →M extending φ, then φ∗ : H∗(K,Z2)→ H∗(K,Z2)
is the identity map. If K is orientable and relatively spin, and φ preserves orientation
and at least one relative spin structure, then the same statement with Z-coefficients holds.

Proof of Theorem 1.1. Let us assume that there exists such Φ : M →M . We denote the
double point of L inside M by p.

We will use the following lemma repeatedly. Note that V in the statement below
will generally be a common domain of definition of Hamiltonian vector fields defined on
different open neighborhoods of p, C will be the closure of a smaller neighborhood, and
S will be the portion of L lying in V .

Lemma 2.2. Let Ft be a time dependent Hamiltonian vector field defined on a symplectic
manifold V that vanishes along a connected subset S for all times. Let C be any compact
subset of V . Then, we can define a new time dependent Hamiltonian vector field F ′t on
V , which vanishes outside of an arbitrarily small open neighborhood of C, agrees with Ft
along C, and also still vanishes along S, for all times.

Proof. Because S is connected, we can choose Hamiltonian functions Ht for Ft that vanish
along S. We choose a new time dependent Hamiltonian of the form ρHt, where ρ is a
smooth bump function for any bounded open subset U that contains C, i.e ρ |U= 1,
and ρ |V−U ′= 0, where U ′ is any open subset such that Ū ⊂ U ′. The corresponding
Hamiltonian vector field satisfies the conditions, because along S:

d(ρHt) = Htdρ+ ρdHt = 0.

�

By a Hamiltonian isotopy {gt}t∈[0,1] of symplectic embeddings V → Y , where V and
Y are equidimensional symplectic manifolds, we mean that associated the vector fields
on gt(V ) are Hamiltonian in their domain of definition. We also say that such an isotopy
of embeddings (not necessarily Hamiltonian) is compactly supported, if there exists a
compact subset C of V such that gt |V−C is fixed for all times.
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Step 1: Φ can be Hamiltonian isotoped to another diffeomorphism Φ′ that still extends
the equatorial Dehn twist, but also for which there exists an open ball p ∈ B ⊂ M such
that at all points of B ∩ L, the Jacobian of Φ′ is the identity.

By a complementary Lagrangian subbundle along L, we mean a Lagrangian subbundle
of TM |L−{p}, which is transversal to T (L−{p}), and fits together smoothly with the two
tangent Lagrangian planes at p. Let W be a Weinstein neighborhood model for L. For
any complementary Lagrangian subbundle L, we can construct a symplectic embedding
from an open neighborhood of the nodal sphere in W to M . Moreover, if we are given a
one parameter family {Lt}t∈[0,1], we get a Hamiltonian isotopy of embeddings.

We start with an arbitrary L. Pushing forward by Φ produces another complementary
Lagrangian subbundle Φ∗L. We can find a one parameter family {Lt}t∈[0,1] such that
L0 = Φ∗L and L1 = L, becuse the space of complementary Lagrangian subspaces at each
point is contractible. By the previous paragraph, we obtain a time dependent family of
Hamiltonian vector fields defined on an open neighborhood of L. By construction, the
time 1 map of this flow sends Φ∗L to L. Using Lemma 2.2 we cut these off to get a
Hamiltonian isotopy supported near p, but defined in all of M , which fixes L pointwise,
and still sends Φ∗L to L near p. Since Φ |L, which is an equatorial Dehn twist, is identity
near p, and a linear symplectomorphism that preserves two complementary Lagrangian
subspaces and is identity on one of them has to be identity on the other as well, isotoping
Φ using this Hamiltonian isotopy indeed gives the desired Φ′.

Step 2: Φ′ can be Hamiltonian isotoped to another diffeomorphism Φ′′ that still
extends the equatorial Dehn twist, but also for which there exists an open ball p ∈ B′ ⊂M
such that all points of B′ are fixed under Φ′′.

First let us deal with the following local case. Namely, we consider X := R2 × R2

with the symplectic structure ω obtained by its canonical identification with T ∗R2. Let
K ⊂ X be the Lagrangian that is the union of the zero section, and the cotangent fiber
of zero under that same identification.

In what follows Ui, i = 1, 2, 3, 4, are open contractible neighborhoods of the origin in
X, which shrink as i increases. We take a symplectic embedding f : U1 → X that sends
the points of K ∩ U1 to themselves, and moreover is the identity on TX |K∩U1

. Let us
say that such an embedding (not necessarily symplectic) is fixed on K ∩U1 to first order.

We want to show that there is a compactly supported Hamiltonian isotopy {ft}t∈[0,1]

of symplectic embeddings U1 → X such that:

(1) f0 = f
(2) f1 fixes an open neighborhood of the origin
(3) ft fixes K ∩ U1 pointwise.

We start with a compactly supported smooth isotopy {Ft}t∈[0,1] of embeddings U2 → X
which satisfies properties (1), (2) and a stronger version of (3), where we require fixing to
first order, not just pointwise. This isotopy can be constructed by taking convex linear
combinations of Id and f near p, and using a parametric version of the inverse function
theorem.

Now there exists a neighborhood U3 of the origin:
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• along which the family of forms sω + (1− s)(Ft)∗ω are all nondegenerate
• on which F1 is the identity
• which deformation retracts onto K ∩ U3.

For each t, we run the relative Moser argument for the family (varying with s)
sω + (1− s)(Ft)∗ω, and obtain Gt defined in some neighborhood of the origin such that
(Gt)

∗ω = (Ft)
∗ω, G0 = G1 = id, and Gt fixes K pointwise for all t. Here relative refers

to the way in which we choose primitives, which actually is the standard one for proving
neighborhood theorems in symplectic geometry, i.e. using the chain homotopy that we
obtain from the deformation retraction (as in the Lemma 3.14 of [12]). Moreover, there
is a common open domain of definition for Gt by smooth dependence on initial data. We
define the isotopy f̃t = fF−1

1−tG1−t which is symplectic and hence Hamiltonian. This de-
fines a time dependent Hamiltonian vector field on U4. Using Lemma 2.2, we can extend
it to U1 by cutting it off. This gives us the desired ft.

One then chooses local coordinates near p, and restricts Φ′ to obtain an embedding of
the form considered above. The compactly supported Hamiltonian isotopy constructed
in the local model can then be implanted inside M , which achieves our goal.

Step 3: We can do Polterovich surgery to L, at p, to obtain an embedded Lagrangian
T such that L \ T and T \ L both lie in an arbitrarily small neighborhood of p, and
moreover ω |π2(M,T )= 0.

Let us recall this surgery procedure very briefly (this reformulation is taken from [2]).
Again we work in the local model X with the Lagrangian K. We also introduce complex
numbers notation, namely we identify C2

z1,z2 → R2
x1,x2

× R2
y1,y2 using zj = xj + iyj .

Let us now draw any proper smooth curve γ : R → C in the plane which satisfy the
following conditions:

• There are no two numbers t, t′ ∈ R such that γ(t) = −γ(t′). In particular, γ
doesn’t pass through the origin,

• There exists a > b ∈ R such that γ(t) is a positive real number for all t ≥ a, and
γ(t) is a positive imaginary number for all t ≤ b.

To any such γ, we can associate an embedded Lagrangian in X, which is given by⋃
γ(t) ·S1, where S1 is the unit circle in R2

x1,x2
×{0}. Here · means scalar multiplication

by complex numbers.
L can also be modified by such γ to obtain an embedded Lagrangian T . We claim that

ω |π2(M,T )= 0 is satisfied, if the signed area between γ, and the piecewise linear curve
l that starts at +∞ · i, goes to 0 along the imaginary axis, and then continues in the
positive direction of the real axis is zero.

Consider the one parameter family of Lagrangians {Ls}s∈[0,1] such that L0 = T and
L1 = L, obtained by deforming γ to l, keeping the area condition satisfied, and so that
the first tangency points with the axes stay fixed for all times. We have canonical maps
Ls′ → Ls for s′ ≤ s ∈ [0, 1]. For any disk D with boundary on T , we can define a disk
D′ with boundary on L, by adding

⋃
s∈[0,1] im(L0 → Ls |∂D) to D.
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Figure 2. The curve that we use in the surgery procedure, where we
require Area1 = Area2

We claim that
∫
D
ω =

∫
D′
ω, which implies the asphericity statement we want. For

this, we need to show that the symplectic area of
⋃
s∈[0,1] im(L0 → Ls |∂D) is equal to 0,

which is a local computation depending only on ∂D.
If ∂D ∩

⋃
t∈[b,a] γ(t) · S1 consisted of horizontal lines (meaning lines of the form⋃

t∈[b,a] γ(t) · α, where α ∈ S1), then the claim would follow from the choice of γ. In

fact, we can make this happen by isotoping ∂D to another curve α on T . The final claim
is that the areas of

⋃
s∈[0,1] im(L0 → Ls |∂D) and

⋃
s∈[0,1] im(L0 → Ls |α) are the same.

We construct the two cycle formed by adding the isotopy between ∂D and α, and
its transport to L, to these two (one with changed direction) chains. This two cycle is
actually a boundary, as we can fill it in by the transports of the isotopy to other Lt’s.
Because T and L are Lagrangians, the claim follows by Stokes’ theorem.

Clearly, the surgery region can be chosen arbitrarily small.
Step 4: Get a contradiction using Theorem 2.1. Note that in the positive double

point case the result of the surgery T from Step 3 is a torus, whereas in the negative
double point case it is a Klein bottle. In both cases, H1(T,Z2) is two dimensional. We
proved in Steps 1,2,3 that there exists a Hamiltonian diffeomorphism of M that extends
a diffeomorphism of T which acts non-trivially on cohomology (a shear transformation in
both cases). This is a contradiction to Theorem 2.1. �

Remark 2.1. In the positive double point case, we can instead use Z-coefficients in Step
4 and obtain the theorem for any non-zero power of an equatorial Dehn twist. The only
point to comment is that, in general, it is not true that every orientation preserving
diffeomorphism Y → Y preserves at least one spin structure of Y (not even if they act
as identity on H1(Y,Z2), which is actually irrelevant). But, this statement is true for the
two torus, in fact for any orientable surface. This follows from the fact that orientable
3-manifolds are Spin, by looking at the mapping torus of the diffeomorphism.
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Remark 2.2. The statement of this theorem would be wrong if we allowed diffeotopies
instead of Hamiltonian isotopies. To see this note that any vector field on the sphere which
is zero at the two points that come together can be extended to a Weinstein neighborhood
of the nodal sphere.

2.1. Further directions

Let us start with some elementary definitions. Let W 4 be an open symplectic manifold,
and Z ⊂ W be a two dimensional compact topological submanifold, which is a smooth
Lagrangian submanifold away from finitely many points. We call such data a geometric
model, and when it is clear what Z is, we will denote it simply by the open manifold W .

Let X4 also be a symplectic manifold. We define LagGerm(Z,W,X) to be

{(U an open neighborhood of Z in W, symplectic embedding φ : U → X)}/ ∼,

where (U, φ) ∼ (U ′, φ′) if one has a V ⊂ U,U ′, open neighborhood of Z, such that there
exists symplectic embeddings {ψt : V → X}t∈[0,1] with φ = ψ0 and φ′ = ψ1 along V , and
the total map [0, 1] × V → X being smooth. One can also define the smooth analogue
Germ(Z,W,X).

Note that there is a special element in LagGerm(Z,W,W ) that is the germ of the
identity map. Let us call that element trivial. If φ is a symplectic embedding that defines
a germ in LagGerm(Z,W,W ), and fixes Z setwise, by its order we mean the smallest
positive integer n such that the germ of φn is trivial in LagGerm(Z,W,W ). If there is
no such n, we say that φ is of infinite order; if n = 1, we call φ itself trivial.

Remark 2.3. If the symplectic vector fields associated to some isotopy of symplectic
embedding happen to be Hamiltonian in a germ of their domain of definition, then the
Hamiltonians can be cut-off and extended to the whole ambient manifold making the flow
globally defined. This comment is of course true without any conditions for Germ and
isotopy of smooth embeddings.

As the sign of the intersection in the nodal sphere case shows LagGerm(Z,W,X) can
be sensitive to how Z sits inside W , not just to Z, when Z is not a smooth submanifold
(obviously only on an open neighborhood of Z inside W , but we choose to keep this
notation). Not surprisingly, it also depends on X (see the introduction of [8] for an
example that is based on the Kodaira-Thurston manifold).

2.1.1. The torus case

Let us start with a corollary of Theorem 1 in the case where the nodal sphere has a
positive double point.

We first construct the geometric model W corresponding to the Weinstein neighbor-
hood of such Lagrangian nodal sphere as the self plumbing of the disc bundle inside T ∗S
along the poles. See Figure 2 for a picture in the case of T ∗S1. We will think of S as
embedded in R3

x,y,z in the standard way for ease of visualisation. Let n and s be the north
and south poles. We take stereographic coordinates (qn1 , q

n
2 ) and (qs1, q

s
2) corresponding

121



VAROLGUNES

to charts φn : B0.101 → S and φs : B0.101 → S around n and s, where Bε is the ball of
radius ε in the xy-plane. This induces standard Darboux coordinates (qn1 , q

n
2 , p

n
1 , p

n
2 ) and

(qs1, q
s
2, p

s
1, p

s
2) inside T ∗S defined on the preimage of φn(B0.1) and φs(B0.1). Let U be

an open neighborhood of the zero section of T ∗S which intersects with these preimages
exactly along {|pn|2 < 0.1} and {|ps|2 < 0.1}. We can now define an open symplectic
manifold W by gluing U to itself via the map:

(qn, pn) 7→ (ps,−qs). (6)

Let us denote the canonical symplectic form on W by ωW . By construction, we have a
symplectic immersion U → W , which characterizes ωW . The image of the zero section
(which we denote by Z) inside W is our geometric model.

Assume without loss of generality that the equatorial Dehn twist is done near the actual
equator (i.e. intersection of the sphere with the xy-plane) and is supported at a small
neighborhood V ⊂ S of it. We take the U above such that it contains the entire cotangent
fibres above the points of V . Clearly, this equatorial Dehn twist can be extended to a
symplectomorphism g : W →W .

Figure 3. The plumbing construction for T ∗S1.

Corollary 2.3. g is trivial in Germ(Z,W,W ), but it has infinite order in
LagGerm(Z,W,W ).

Proof. The smooth statement is easy as commented on before in Remark 2.2. Let’s
assume that some power of g is trivial in LagGerm(Z,W,W ). By an application of the
symplectic flux technique [12], we can construct from the isotopy of symplectic embeddings
a Hamiltonian isotopy, which in the end extends the equatorial Dehn twist. This gives
the desired contradiction by Remark 2.1. The only thing to note, since H1(W,R) = R, is
the existence of a symplectic (but not Hamiltonian) vector field on W whose flow exists
for all times. This can be constructed by taking a function on S which is equal to 0 in a
neighborhood of s, and 1 in a neighborhood of n such that these neighborhoods contain
strictly the complement of V . This function can be pulled back to T ∗S. Even though
the function doesn’t descend to W , its exterior derivative does, and the symplectic dual
of this closed one-form gives us the desired vector field. Notice that this vector field is
supported only away from the plumbing region, where the manifold looks like the portion
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of T ∗S near the equator. The flow there translates the cotangent fibres by the one form
dρ on S.

�

Remark 2.4. It is easy to see that a diffeomorphism S2 → S2 fixing the poles extends
to an element of LagGerm(Z,W,W ) if and only if JnJ

T
s = id where Jn and Js are the

Jacobian matrices at the poles in the q coordinates we used in the construction. This
implies that a rotation along the z-axis of S2 extends to a symplectic embedding, whereas
if the tangent spaces rotated in any other way in relation to each other it would not.

Remark 2.5. It is tempting to try to prove that g as a diffeomorphism is smoothly iso-
topic to identity. In fact it is not even isotopic to a compactly supported diffeomorphism,
which can be seen by looking at its action on the cohomology at infinity (as in [10]). Also
note that the careful choice of U in the construction of g is irrelevant for Corollary 2.3.

2.1.2. The Klein bottle case

This immediately prompts the question of whether analogues of the previous subsection
hold in the negative double point case. There we can construct the geometric model W ′

by changing the plumbing map to

(qn1 , q
n
2 , p

n
1 , p

n
2 ) 7→ (ps1,−ps2,−qs1, qs2). (7)

Let us denote the analogous symplectomorphism by g′ : W ′ →W ′.

Corollary 2.4. g′ is trivial in Germ(Z ′,W ′,W ′) but it has order two in
LagGerm(Z ′,W ′,W ′) .

Proof. We show that the square of g′ is trivial in LagGerm(Z ′,W ′,W ′). The other
statements are completely analogous the positive double point case. The point is that
now the condition in the Remark 2.4 has changed to JnRJ

T
s R = id, where R is reflection

along the ∂
∂q2

axis. Hence, now the diffeomorphisms S2 → S2 that extend (if the Jacobian

matrices at the poles are assumed to be rotations) to a germ are the ones that rotate the
two poles in opposite directions. Here opposite term means opposite to the effect of the
rotation along z-axis. Hence, one can see that in fact g is equivalent as a germ to the
standard lift of 180 degrees rotation along the z-axis, from which the claim follows. �

2.1.3. More singular Lagrangians

Let us now construct W in a different way. Consider the solution set Z̃ of the equation
x2 = y2 inside C2. If we equip C2 with the symplectic structure Re(dxdy), then Z̃
becomes an immersed Lagrangian. Now let us attach an open neighborhood of the zero
section of T ∗(S1 × (−ε, 1 + ε)) to the unit ball in C2, along a Weinstein neighborhood of
Z, near the boundary. More precisely,

Z ∩ {(x, y) | 1− ε < (|x|2 + |y|2)1/2 < 1} (8)

can be identified with S1 × (−ε, 0) ∪ S1 × (1, 1 + ε) such that the radius coordinate
corresponds to the second coordinate. There are two different ways of gluing, which
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corresponds to the double point being positive or negative. It is enough to consider the
positive one to make the point. We lift this to the desired symplectic gluing by Weinstein
neighborhood theorem and the standard symplectic lift. This gives an open manifold W
with the nodal sphere Z, formed by the union of Z̃ with the core of the handle, inside
(i.e. a geometric model). W can be given a Weinstein structure but that seems irrelevant
for our considerations.

Now, consider the diffeotopy of the unit ball: (x, y) 7→ (e2itx, e2ity), which fixes Z.
When t = π/2, this gives a symplectomorphism. The diffeotopy can be extended to an
open neighborhood of the core of the handle in such a way that S1 × (−ε, 1 + ε) rotates
less and less from 0 to ε, does not rotate at all in [ε, 1− ε], starts rotating more and more
from 1 − ε to 1, and it matches the rotation of Z in the gluing regions. Moreover this
can be done in such a way that at t = π/2 the extension is still symplectic. This requires
some care, a Moser argument is necessary in the gluing of two parts (as in the proof of
Theorem 1.1) since the two (germs of) flows match up only up to Hamiltonian isotopy
(on the handle we start with the standard lift of the smooth flow). The resulting element
of LagGerm(Z,W,W ) is the same as the germ of g above.

Clearly this construction can be generalized to the case where x2 = y2 is replaced
by xm = yn. W can also allow more general handle attachments to the link at infinity.
The case where (m,n) = 1 is the cleanest. There the link of the singularity has just
one component, and we attach a disk to get the geometric model Wm,n with Lagrangian
Zm,n inside. The flow has to be replaced by (x, y) 7→ (enitx, emity). Let us call φm,n
the symplectic germ obtained at t = 2π

m+n (after extending to the handle, which is more

canonical than the cylinder case by the Alexander trick).

Conjecture 2.5. φm,n is trivial in Germ(Zm,n,Wm,n,Wm,n) but has order m + n in
LagGerm(Zm,n,Wm,n,Wm,n).

The hard part is to show that φm,n doesn’t have lower order in LagGerm. In [19],
Shende et. al. construct non-isotopic exact Lagrangians inside Wm,n and from their
construction it seems like φm,n permutes those Lagrangians by a permutation which has
order m + n. In the case of (m,n) = (3, 2), I, very recently, proved this statement by
a more explicit understanding of these 5 Lagrangians. The main geometric ingredient is
to generalize Polterovich surgery with a combined use of possibly partial smoothings of
complex singularities (e.g. cusp to node) and the hyperkahler trick, and to understand the
exactness properties of these Lagrangians for a carefully chosen primitive. The method
would likely generalize to all cases. The details of this will appear elsewhere.

3. The abouzaid model

3.1. The model

From now until the end of the paper, we work in the setting where L is Lagrangian
nodal sphere with a positive double point inside a geometrically bounded symplectic
manifold M4 such that ω |π2(M,L)= 0.
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S2 is orientable and has a unique spin structure. It is well-known that in this case the
Z2-graded Floer cochain groups CF ∗(L,L) with Z-coefficients are well defined. Under
the asphericity assumption we are making, this works almost identically to the embedded
case ([3],[5]).

In [1], Abouzaid introduced topological models for CF ∗(L,L). He used Morse and
simplicial models. In [17], a deRham model was described, and that is the one we will
use in this paper.

Let us again think of S as embedded inside R3 as the standard unit sphere with the
poles being the self-intersection points, and also let D := {|z| < 1} ⊂ C. Let A : S → S be
the antipodal map. Denote the poles on S by n and s, and fix an embedding ιn : D → S
onto a small neighborhood of n. Let ιs := A◦ ιn. We note that we could choose any other
embedding onto a neighborhood of s with orientation different from ιn.

Abouzaid model AL is a non-commutative dga. The underlying Z2 graded vector space
is:

Ω∗(S2)⊕ Ω∗(D)[−1]⊕ Ω∗cpct(D)[1].

We made a point of putting −1 shift to stress that a Z grading is algebraically possible.
The differential is the deRham differential acting on each component separately. The
product structure is given by

(α2, β2, γ2)∗(α1, β1, γ1) = (α2α1 + (−1)|β1|ιn,∗(γ2β1) + (−1)|γ1|ιs,∗(β2γ1),

ι∗n(α2)β1 + (−1)|α1|β2(ι∗sα1), ι∗s(α2)γ1 + (−1)|α1|γ2(ι∗nα1)).

Theorem 3.1 (Abouzaid). There exists an A∞-quasi-isomorphism AL → CF ∗(L,L).

Remark 3.1. The proof of this theorem goes by comparing the two sides with a Morse
model ML. The comparison of ML with AL is relatively standard differential topology,
whereas that of ML and CF (L,L) is a little bit trickier, and involves setting up a PSS
type moduli problem. In particular, one has to make a certain amount of choices for
both sides to be defined (not to suggest that the former comparison is devoid of choices,
for example a parametrization S2 ↪→ M of L is needed in both). We will modify this
construction in the Appendix to our needs so that we can prove the naturality statement
we need. A priori it is not obvious if the quasi-isomorphism we use in the end is the same
with the one constructed in [1].

The proof of the following can be found in [18]. We also write down an explicit A∞-
quasi-isomorphism in the proof of Theorem 8, in Section 4.3.

Proposition 3.2 (Abouzaid, Seidel). AL is formal, and its cohomology H(AL) is iso-
morphic to Λ := Λ∗C2.

Remark 3.2. In the negative double point case, the underlying Z2 graded vector space
is:

Ω∗(S2)⊕ Ω∗(D)⊕ Ω∗cpct(D).

The only difference in the product structure is that the embeddings of the disk are both
assumed to be orientation preserving. The formula is the same. Of course this drastically
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changes everything. The resulting dga is again formal and its homology is C[x, y]/(x2, y2),
where everything has even degree.

3.2. The action

Let us start with an algebraic definition. Let A be an A∞-algebra. We call two
A∞-quasi-isomorphisms f, g : A → A homotopy conjugate if there exists A∞-quasi-
isomorphisms h, h′ : A → A, which are homotopy inverses of each other, such that f is
homotopic to h′gh. In the c-unital context that we are working in, this is equivalent to
the existence of a homotopy commutative diagram for a quasi-isomorphism h : A → A:

A

f

��

h // A
g

��
A h // A.

(9)

If Ψ : X → X is a symplectomorphism which fixes an embedded Lagrangian K, then
it gives a, well-defined up to homotopy conjugation, action on the Floer cochain groups
of K, Ψ∗ : CF (K,K) → CF (K,K). Let us spell this out in more detail. The strategy
is to create an A∞-category K with Z many objects, denoted by Kn, where each object
geometrically corresponds to the same Lagrangian K, and morphisms and structure maps
are obtained by Floer theory. This requires a certain amount of choices, and the goal is
to make those choices such that φ induces a strict A∞-functor K → K, in other words, a
Z-action. Here strict means that only the first order term of the functor is allowed to be
non-zero.

We follow Section 10b of [17] pretty closely. We first make a universal choice of strip
like ends. Then, we choose arbitrary Floer data for CF (K0,Kn), n ∈ Z, and define the
Floer data for CF (Ki,Ki+n) by pushing forward the chosen Floer data by Ψi. These
give the morphism spaces in our category. Now we choose regular universal perturbation
data for all d > 2 pointed discs with integer labels such that the analogous equivariance
is satisfied, by induction on d. More precisely, for each new d, we deal with the moduli
spaces with the label 0 to the left of the output first, satisfying the consistency and
compatibility conditions, and then extend this to the other moduli spaces with d marked
points using powers of Ψ (the conditions are automatically satisfied for those). We then
define the structure maps of our category as in [17].

Hence we constructed an A∞-category with:

• a strict Z-action such that the orbit of one of the objects gives all the objects of
the category

• any two objects of the category are quasi-isomorphic

Let us call such a category an A∞-groupoid with a strict transitive Z-action.
Given such a category K, any A∞-algebra that is quasi-isomorphic to the endomorphism
A∞-algebra of an object of K is called an algebra model.
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Lemma 3.3. Let K be an A∞-groupoid with a strict transitive Z-action and A be an
algebra model for K. Then we obtain an A∞-quasi-isomorphism A → A, that is well-
defined up to homotopy conjugacy.

Proof. This follows immediately from Theorem 2.9 in [17], and the basic lemmas of the
next subsection. �

Remark 3.3. For a carefully chosen model, one might be able to reduce the ambiguity
to only homotopy. Yet, this seems less natural, and also not more helpful in terms of its
practical use, as it seems unlikely that the statement of Theorem 3.4 can be made any
stronger.

This picture carries over to the context of the Lagrangian nodal sphere immediately
because an equatorial Dehn twist acts trivially near the double point. Hence for Φ : M →
M extending an equatorial Dehn twist of L, we get Φ∗ : CF (L,L) → CF (L,L), well
defined up to homotopy conjugation.

Theorem 3.4. There exists a homotopy commutative diagram,

AL

(φ−1)∗

��

// CF (L,L)

Φ∗

��
AL // CF (L,L)

(10)

where the horizontal arrows are given by the same A∞-quasi-isomorphism.

Proof. See the Appendix. �

Corollary 3.5. The induced action HF (L,L)→ HF (L,L) is trivial.

Proof. We remind the reader that there is nothing exotic about the differential on AL.
With that in mind, one can easily find cocycles in AL of which cohomology classes give
a basis for homology and which are strictly fixed by (φ−1)∗. �

3.3. Homotopy transfer

As was commented on before AL is formal. Hence we have (non-canonical!) A∞-quasi-
isomorphisms, F : AL → Λ and G : Λ→ AL, which are (two sided) homotopy inverses of
each other.

We then define the transfer quasi-isomorphism Λ → Λ to be F (φ−1)∗G, i.e. as in the
diagram:

AL

(φ−1)∗

��

Λ
G
oo

��
AL

F // Λ

More generally we have a map TrF,G : AutA∞(AL)→ AutA∞(Λ).
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Lemma 3.6. Assume that we are given a diagram:

A

T ′

��

G′ // B

H
��

A
G
oo

T
��

A B F //
F ′
oo A

such that the left and the right squares are homotopy commutative; and also F and F ′

are homotopy inverses of G and G′ respectively, then T is homotopy conjugate to T ′.

Proof. This follows immediately from preservation of homotopy under left and right com-
positions: T ′ ∼ F ′HG′ ∼ FG′F ′HG′F ′G ∼ FHG ∼ T , where ∼ denotes homotopy
conjugate. �

The following lemma is proved in a very similar manner.

Lemma 3.7. TrF,G preserves homotopy conjugacy.

For Λ (or more generally any A∞-algebra with vanishing differential), one can talk
about on the nose conjugacy because quasi-isomorphisms Λ → Λ admit unique strict
(two sided) inverses.

Lemma 3.8. For Λ, homotopy conjugacy equivalence relation is the same as the one
generated by homotopy and conjugacy.

Remark 3.4. It is easy to see that the latter equivalence relation can be more succintly
described by F and G are equivalent to each other if F is homotopic to a conjugate of G.

Corollary 3.9. As a result of all these constructions, starting from Φ : M → M , we
obtain a well-defined A∞-quasi-isomorphism Λ→ Λ, up to homotopy and conjugacy, for
which the map on the first level is the identity.

4. The formal automorphism of the plane

Recall that we have the Abouzaid algebra AL, and the Dehn twist acting on AL by
pullback. We have also seen that this can be transferred to the minimal model φ : Λ→ Λ,
where φ is only well-defined up to conjugation and homotopy.

4.1. Motivation

We start with the following general situation. Let f, g : B → B be twoA∞-automorphisms
(i.e. self quasi-isomorphism) of an A∞-algebra B. We want to ask the question of whether
f and g are A∞-homotopic to each other. Induced maps on homology is one invariant
that could work for this purpose, but as the situation we encountered in this paper shows
it may not be enough.

We then go to the main wisdom of Morita theory, and consider modules over B to
analyze the situation. The crucial fact here is that given any A∞-module over B, we can
pull it back by any A∞-automorphism and obtain another A∞-module. Moreover if we
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apply this procedure using f and g, and they happen to be homotopic automorphisms,
then the obtained modules turn out to be equivalent in the appropriate category.

Hence one naive strategy would be to consider the moduli space of all A∞-modules
over B up to equivalence (a formidable object), and show that f and g do not act exactly
the same on this moduli space. Instead of analyzing the whole action what we end up
doing mostly is to observe that B as an A∞-module over itself is a fixed point of both
actions. Hence a more approachable canonical action to analyze is the one on the formal
neighborhood of this fixed point.

This formal neighborhood is (tautologically) the space of formal deformations of B as
an A∞-module over itself, and by the general premise of deformation theory it admits a
very concrete description in terms of Maurer-Cartan elements, which we will use to make
our computation.

Another important point that comes up in applications is the non-uniqueness of the
model, in other words we might be in a situation where we want to do the computation
in a quasi-isomorphic A∞-algebra B′, and it often happens that we do not have too much
control over how identify B and B′. The formal neighborhood we described is suited well
for this purpose. The choice of a quasi-isomorphism (really its homotopy class) between
B and B′ gives us an identification of the formal spaces, which we can use to transfer
actions of automorphisms. The upshot is that the conjugacy class of the action of an
automorphism on the formal neighborhood is a completely model invariant notion. As
a concrete consequence of this observation we point out that in Theorem 3.4, we do not
need to (and in fact cannot at this point) specify anything about horizontal arrows, i.e.
the identification.

4.2. Maurer-Cartan elements of Λ

Before we begin, we bring out a confusing point. We have been only assuming that
our vector spaces are Z2-graded, but in fact AL, Λ, all the maps we have used, and
will construct involving these two A∞-algebras can be made Z-graded (nothing has to
be changed in what we wrote). The Z-grading of AL is the one we alluded to when
we first introduced it (Section 3.1), whereas the one of Λ is the one with its generators
having degree 1. Moreover, the computation we are about to undertake makes sense and
is exactly the same if we start using these Z-gradings. We will do that from now on, only
because it simplifies notation in a couple of places.

We will try to explain our computation staying in the exterior algebra Λ as much as we
can, since everything is much more elementary there. Notice though that we do not really
know much about the transferred automorphism Λ → Λ, but we have full information
about AL → AL. Hence, we will have to go get the information from there at some point.

For B = Λ or AL, we define a B-MC-element to be an element α of B1[[p, q]], which
satisfies,

dα+ α · α = 0,
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and has constant term equal to zero. In case B = Λ, the formal space of such elements is
literally the formal neighborhood we talked about above, whereas if B = AL, one needs
to mod out by what is called the gauge action of B0[[p, q]], which we do not go into here.

Lemma 4.1. All Λ-MC elements are given by f(p, q)a + g(p, q)b where a and b are a
basis for the underlying vector space of Λ, and f, g ∈ C[[p, q]] with zero constant terms.

We call such a pair f and g a formal mapping of the plane by thinking of them as
the corresponding adically continuous algebra homomorphism C[[p, q]] → C[[p, q]], given
by p 7→ f(p, q), q 7→ g(p, q). Clearly, the invertible elements are the ones with invertible
first order maps. We call such a pair a formal automorphism, and denote their set
by FAut0(C2). Note that FAut0(C2) is a group, where the multiplication is given by
composition.

We can push-forward MC-elements, which confusingly corresponds to pulling-back
modules. More precisely, if ψ : B → B′ is an A∞-quasi-isomorphism, where both source
and target are either Λ or AL, and α is a B-MC element, then

ψ∗α :=
∑

ψn(α, . . . , α) (11)

is a B′-MC element.
If we have an A∞-map φ : Λ → Λ, and an MC element α = f(p, q)a + g(p, q)b, the

push forward MC element admits a nice description:

φ∗α :=
∑

φn(α, . . . , α)

=(
∑
k,l

(
∑

∑
ai=k+l,a0≥0

φk+l(a, . . . , a︸ ︷︷ ︸
a0

, b, . . . , b︸ ︷︷ ︸
a1

, a . . .)a)fkgl)a+

(
∑
k,l

(
∑

∑
ai=k+l,a0≥0

φk+l(a, . . . , a︸ ︷︷ ︸
a0

, b, . . . , b︸ ︷︷ ︸
a1

, a . . .)b)f
kgl)b,

The following lemma provides the basis of the argument, which is just a reformulation
of the computation we just did.

Lemma 4.2. Let φ : Λ → Λ be an A∞-map. Let φ̃ : C[[p, q]] → C[[p, q]] be the formal
mapping corresponding to the pushforward of pa+ qb. Then the pushforward of any MC
element f(p, q)a+ g(p, q)b is given by the composition:

φ̃(f(p, q), g(p, q)))a+ φ̃(f(p.q), g(p, q)))b (12)

We define the symmetrization map S : AutA∞(Λ)→ FAut0(C2), by S(φ) = φ̃. Its
properties are summarized in the following theorem.

Theorem 4.3. (1) S is a group homomorphism.
(2) If φ and φ′ are homotopic as A∞-maps, then S(φ) = S(φ′).

Proof. The first part follows immediately from Lemma 4.2. For the second part, one
first observes that the homotopy implies that the first order terms are the same. Then,
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a simple induction on degree using the formula for the pushforward we derived above
finishes the proof as the homotopy relation is (schematically written):

f − g = f(. . .) ∧H(. . .)−H(. . .) ∧ g(. . .) + · ∧H(. . .)−H(. . .) ∧ ·

�

If α and β are two B-MC-elements, we can define a chain complex:

hom(α, β) := (B[[p, q]], D), where Dγ = dγ + (−1)|γ|α · γ − γ · β. (13)

Here is the quasi-isomorphism invariance statement that we will use. This is the one
place in the main line of argument that we do not present a proof.

Lemma 4.4. Let α and β be two Λ-MC elements, and let f, f ′ : Λ→ AL be two homotopic
quasi-isomorphisms. Then, α = β if and only if H0(hom(f∗α, f

′
∗β)) 6= 0.

Proof. First note that the B = Λ, f = f ′ = id case is trivially true by explicit computa-
tion. Then we use section (3m) in [17] to conclude in the general case. �

Remark 4.1. Let us briefly explain how this formal automorphism story comes up in
algebraic geometry. Let Y n smooth variety, and ψ : Y → Y be an automorphism which
fixes a closed point y. By taking formal coordinates around y this produces for us a
formal automorphism C[[x1, . . . , xn]]→ C[[x1, . . . , xn]], which is well-defined up to change
of variables (i.e. conjugation).

In [16], Segal shows that this formal automorphism can also be interpreted in the
following categorical way. Let C be the DG-enhancement of Db(Coh(Y )), which can be
conceretely realized as the homotopy category of bounded perfect complexes in this case.
A Koszul resolution K of the skyscraper sheaf Oy is an object of C and we can talk
about its formal neighborhood in the moduli space of objects of C. Manifestly ψ acts
on this formal neighborhood, and as shown in [16], this action agrees with action from
the first paragraph. The formal neighborhood is concretely given by A∞ (or dg)-module
deformations of B := HomC(K,K) as a module over itself. Note that B is also formal,
and hence quasi-isomorphic to Ext∗(Oy, Oy) = Λ, as would be expected from mirror
symmetry [18]. Therefore, after choosing a quasi-isomorphism B → Λ (akin to the choice
of coordinates in the first paragraph), even more conceretely, this formal neighborhood
is precisely the moduli space of MC elements that we talked about in this section. The
action can then alternatively be computed in a similar manner as above, i.e. by first
transferring the action on B to Λ and then computing its symmetrization map.

Obviously, it is the categorical interpretation that we use to make the mirror symmetry
prediction. On the symplectic side, since we do not have an analogue of Segal’s theorem,
we also need to use the alternative computation technique.

4.3. The computation

Let us now state the problem again, with all terminology and tools introduced.
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We have the homotopy commutative diagram

AL

(φ−1)∗

��

Λ
G
oo

Tr

��
AL

F // Λ,

(14)

with F and G homotopy inverses of each other, and we want to compute S(Tr). Note
that only S(Tr) up to change of variables is meaningful and we are free to choose F and
G as we please.

Theorem 4.5. F and G can be chosen such that S(Tr) is given by:

p 7→ pepq, q 7→ qe−pq, (15)

where the exponential here is defined as the usual (formal) Taylor series expansion

es = 1 + s+ s2

2 + . . ..

Proof. Step 1: In order to choose G let us describe some elements of AL:

• 1 := (1, 0, 0)
• x := (0, 1, 0)
• Choose one η ∈ Ω2

cpct(D) such that
∫
D
η = 1 and let y = (0, 0, η).

• Choose one ξ̃ ∈ Ω1(S) such that dξ̃ = ιn,∗η+ ιs,∗η and A∗ξ̃ = ξ̃. Let ξ = (ξ̃, 0, 0).

Note the important relationships:

• dξ = −xy − yx.
• ξy = yξ = 0
• ξx+ xξ = 0

Now we define G by G1(1) = 1, G1(a) = x, G1(b) = y, G1(a ∧ b) = −yx, G2(a, b) = ξ,
G2(a, a ∧ b) = xξ. We declare that all the other ways of inputting the basis elements
1, a, b, a∧ b into Gn’s give zero, and we extend by linearity. It’s tedious but easy to check
that this is an A∞-quasi-isomorphism, keeping in mind the sign conventions of changing
from a dga to an A∞-algebra.

We define F to be any homotopy inverse of G.
Step 2: Let α be the MC element pa + qb, and β := pepqa + qe−pqb. We want

to show that Tr∗α = β. We will use Lemma 4.4. Clearly, G : Λ → AL and
(φ−1)∗GTr−1 : Λ→ AL are homotopic. Hence it suffices to show that

H0(hom(G∗β, ((φ
−1)∗G)∗α) 6= 0. (16)

Before we do that we need to describe a couple more elements of AL.

• ξ′ := (φ−1)∗ξ
• Using Stokes’ theorem two times, we see that if ρ̃ ∈ Ω0(S) is such that dρ̃ =

(φ−1)∗ξ̃ − ξ̃, then ρ̃(n) − ρ̃(s) = 1. We choose one such that ρ̃(n) = 1, and
ρ̃(s) = 0. Let ρ = (ρ̃, 0, 0).

Note the relations:
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• ρx = x, xρ = 0
• yρ = y, ρy = 0

Let us now describe the two MC elements that appear in (16). In fact it is straight-
forward to see that:

G∗β = pepqx+ qe−pqy + pqξ

((φ−1)∗G)∗α = px+ qy + pqξ′

Step 3: We define the degree 0 element:

epqρ :=
∑ (pq)nρn

n!
= (

∑ (pq)nρ̃n

n!
, 0, 0) ∈ hom(G∗β, ((φ

−1)∗G)∗α). (17)

Obviously epqρ is not a coboundary, hence it is enough to show that it’s a cocycle:

Depqρ = depqρ + (pepqx+ qe−pqy + pqξ)epqρ − epqρ(px+ qy + pqξ′)

= pqepqρdρ+ (pepqx+ qy + pqepqρξ)− (pepqx+ qy + pqepqρξ′)

= pqepqρdρ+ pqepqρ(ξ − ξ′) = 0.

Therefore, we finished the proof of (16). This implies by Lemma 4.4 that β = Tr∗α,
which by definition translates to the statement of the theorem. �

Remark 4.2. The choice of the cochain in Step 3 might look mysterious. Among the ele-
ments that we have defined so far really the only candidates are of the form

∑
i≥0 ai(p, q)ρ

i.

If one goes backwards in the presented proof, (17) comes out easily as the unique choice.

Remark 4.3. If one is interested only in proving that Φ∗, or equivalently Tr : Λ→ Λ, is
not homotopic to identity (as in Theorem 1.2), there is an alternative proof, which uses
more high-brow conceptual reasoning but is computationally more straightforward.

First of all, for this proof, one needs explicit formulas for both F and G, which requires
the use of homotopy transfer formulas from [11]. For an explicit choice of starting data,
i.e a “Hodge decomposition” in the sense of [11] , one can compute that Tr2 = 0 for
all inputs, and Tr3 6= 0 (in addition to the a priori known Tr1 = id). This means that
Tr is the exponential of a Hochschild cocycle η (as in the Lecture 8 of [18]) with the
first nontrivial part η3 which is equal to Tr3. If Tr were to be homotopic to identity
then η would have to be a Hochschild coboundary, which in particular means that Tr3

represents the trivial Hochschild cohomology class. Using Hochschild-Kostant-Rosenberg
and also the explicit description of Tr3 it is easy to find the cohomology class of Tr3

(essentially given by symmetrization) and see that it is non-zero. This corresponds to the
(conjugacy invariant) fact that the first non-trivial coefficient in the formal diffeomorphism
we computed is in degree 3, though it is tricky to show rigorously this link.

Remark 4.4. In order to tie this back to the mirror symmetry prediction we have to
show that p 7→ pepq, q 7→ qe−pq and p 7→ p(1 − pq), q 7→ qe(1 − pq + p2q2 . . .) are con-
jugate to each other. The easiest way to see this is to observe that these maps are the
time-1 map of the (formal) Hamiltonian vector fields of the Hamiltonians −(pq)2/2 and
− 1

1·2 (pq)2 + 1
2·3 (pq)3 − 1

3·4 (pq)4 + . . . respectively. Hence any change of variables that
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sends −(pq)2/2 → − 1
1·2 (pq)2 + 1

2·3 (pq)3 − 1
3·4 (pq)4 + . . . would do the job, and it is easy

to see that this exists.

Remark 4.5. This analysis can also be made in the case of a negatively self-intersecting
nodal sphere. This will appear in a future paper. We just note that the action on the
corresponding deformation space is trivial, even though one can in fact detect some non-
triviality by looking at a nearby Klein bottle with a local system that has −1 monodromy
along the equator. This suggests putting some extra data (analogous to the universal
local systems in the case of embedded Lagrangians and Family Floer theory) for the
nodal sphere to capture all the nearby information.

5. Appendix

The aim of this appendix is to sketch a proof of Theorem 3.4. We start with two easy
algebraic lemmas about A∞-groupoids with transitive strict Z-actions, and the induced
automorphisms of their models. Recall that these notions were defined in Subsection 3.2.

Let C and D be two A∞-groupoids with transitive strict Z-actions, and let C and D
be a choice of models. Hence we have automorphisms C → C and D → D, both well
defined up to homotopy conjugation. The following follows from the naturality of the
constructions before Theorem 2.9 in [17]

Lemma 5.1. If we have a strictly Z-equivariant quasi-equivalence C → D, then there is
a quasi-isomorphism C → D such that the diagram

C

��

// D

��
C // D

commutes up to homotopy.

Let B be an A∞-algebra with a given A∞-automorphism, f : B → B. We construct
an A∞-category B which has Z many objects, where all morphism spaces are equal to B
and structure maps are the same with the ones of B. B has a tautological transitive strict
Z action, which induces g : B → B - as usual well-defined up to homotopy conjugation.
The following is a tautology.

Lemma 5.2. f and g are homotopy conjugate.

We first prove the naturality statement for embedded Lagrangians. Namely, let K
be an embedded Lagrangian inside a geometrically bounded symplectic manifold X such
that π2(X,K) = 0. Let ψ : K → K be a diffeomorphism and assume that Ψ : X → X is
a symplectomorphism extending ψ.

As in Lemma 3.3, if we take any model A for the Floer algebra of K, we get a well-
defined (up to homotopy conjugation) action Ψ∗ : A → A.
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Theorem 5.3. There exists an A∞-equivalence A → ΩdR(K) such that

A

Ψ∗

��

// ΩdR(K)

(ψ−1)∗

��
A // ΩdR(K)

commutes up to homotopy.

Proof. This goes by relating a chain of different models. More precisely, our road map
will be Floer→Morse→ Simplicial→ Singular→ DeRham. For each of these we prepare
A∞-categories with transitive strict Z-actions. This is done in a very similar manner to
Section 3.2 for the first three, and by the tautology explained right before Lemma 5.2 for
the last two. Recall that Ψ∗ was constructed using the Floer version of these categories.
Then, we define strictly Z-equivariant functors by again the same strategy, along with the
constructions that are classical by now. For example, for Floer→ Morse, we consider the
usual PSS moduli spaces, but where we use Lagrangian labels for disk moduli spaces and
labelings of the regions of the plane for gradient flow ones by the integers, encoding which
Floer data, Morse functions, perturbation data etc are to be used. Again, we choose the
required perturbation data inductively over the number of inputs, where we first deal with
the case where the leftmost label is 0 and then transfer those data to the other labelings
by the symplectomorphism. After all these functors are constructed, Lemma 5.1 and 5.2
gives the desired result. Note that the direction of the arrow in the road map may not
match with the direction of the more natural functor as in Singular → DeRham. �

In [1], which mainly dealt with two transversely (or cleanly) intersecting embedded
Lagrangians, the case of an immersed Lagrangian with transverse double points was only
mentioned in the introduction. The generalization is straightforward, but there are two
points that needs explanation.

For the Morse model introduced in [1], to define the A∞-structure maps, labeled planar
trees were used. Labeling meant assigning 0 or 1 to all the connected components of the
complement of the planar tree. This then was used to tell the edges of the tree which
gradient flow it should follow. The labeling of regions in this case is completely determined
from where the inputs of the structure maps come. It might appear that in our case there
is not enough data to do the labeling. This is not true, because we definitely have the
data to label which input edges make switches from 0 to 1, or 1 to 0. This determines
uniquely a 0 or 1 labeling of all the regions, except when there is no switch in the inputs,
in which case a labeling would be extraneous anyways.

In order to use the analysis of [1] for mushroom maps directly, we make a small modifi-
cation to the construction of the Floer algebra of an immersed Lagrangian with transverse
self intersections, assuming asphericity as usual. Let us describe this for the Lagrangian
nodal sphere L (the generalization will be clear). In the usual construction, in order to
define CF (L,L), one first chooses a Hamiltonion isotopy ft of M , making L and f1(L)
transverse, and then declares that the time 1 Hamiltonian chords of ft starting and ending
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at L are the generators of the vector space. Assume that ft(L) stays sufficiently C1 close
to L.

The four chords are of two kinds: the two that come from the double point, which
we call strange chords, and the other two that we call true chords (the ones that would
persist if the isotopy were to be pulled back to T ∗S). Note that if f is small enough,
there are no pseudo-holomorphic strips that involve the strange chords [3]. What we
want to do is to replace the strange generators with two generators both corresponding
to the actual double point, but labeled with the two possible branch jumps. This defines
a new vector space (which is canonically identified with the old one, as the strange chords
also have the property of doing branch jumps in different directions), with the same
differential. Then, when we define higher structure maps, if one of these new generators
occur in one of the marked points, we use zero Hamiltonians in the corresponding strip
like ends (in particular the curve converges to the double point at that strip like end),
and moreover, we require that the lift of the boundary map to S2 changes branches in
the direction labeled by the new generator (something that happened automatically for
the corresponding strange chord).

One can either take this as the definition of CF (L,L), or, seeing the double point
generators as a limit of strange generators of a carefully chosen one parameter family
of Hamiltonian perturbations, show that this new A∞-algebra is quasi-isomorphic to
the usual CF (L,L), using parametrized moduli spaces. But, if we choose the second
option, we also have to show that the quasi-isomorphism respects the action of Φ. This
requires us to again go back and define (or remember that we already did that) the actions
through A∞-groupoids with transitive strict Z-actions, construct strictly Z-equivariant
functors using parametrized moduli spaces, and replace the quasi-isomorphism with the
non-explicit one given by algebra.

When all of this is done, then the argument in [1] needs no modification. We choose
the Floer data and Morse functions in our categories to satisfy the consistency condition
(5.11) from [1]. The paragraph about the Morse model applies to Lagrangian labelings (of
pseudo-holomorphic discs and mushroom maps) as well, because we know which generator
coming from the double point should be considered a 0 to 1 switch (and vice versa). As
explained right after (5.11), this lets us make the required Z2 labeling of the stem and
the cap of a mushroom consistently.

Note that in addition to this Z2-labeling, which is pretty crucial in obtaining com-
pactness of moduli spaces (see Lemmas 2.5 and 5.18 in [1]), we will also have an extra,
harmless, Z labeling in what follows, completely analogous to the embedded case consid-
ered in the theorem above. These two labelings are totally independent of each other.

Proof of Theorem 3.4. We follow exactly the same strategy with the proof of Theorem
5.3. Using the first description of the Simplicial model in [1], it is easy to construct a
Singular model. With a little bit more work in Steps 1 and 2 of the proof of Theorem
1.1, we can show that Φ can be Hamiltonian isotoped so that it looks like the standard
symplectic lift of the equatorial Dehn twist near all of L, not just near the double point.
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After this modification, Floer → Morse step is exactly the same, where we replace the
PSS construction with the more complicated construction of [1] of course. Morse →
Simplicial is also a little bit tricky, but again this was done in [1], and we only need to
add the Z-labelings. The rest of the functors are constructed without any major additional
complications to their embedded counterparts. �
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