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On infinite order corks

Selman Akbulut

Abstract. We construct an infinite order loose cork.

1. Introduction

A cork is a pair (W, f), where W is a compact contractible Stein manifold, and
f : ∂W → ∂W is an involution, which extends to a self-homeomorphism of W , but
does not extend to a self-diffeomorphism of W . It follows that, if F : W → W is any
homeomorphism extending f , and WF is the smooth structure pulled back from W by F ,
then WF is an exotic copy of W relative to ∂W . We say (W, f) is a cork of M , if there is
an imbedding g : W ↪→M and cutting g(W ) out of M and re-gluing with g ◦ f produces
an exotic copy M ′ := M(f, g) of M :

M = W ∪g [M − g(W )] 7→M(f, g) = W ∪g◦f [M − g(W )]

The operation M 7→M ′ is called cork-twisting M along W . A first example of a cork
appeared in [A1]; and in [M] and [CFHS], it was proven that, any exotic copy M ′ of a
closed simply connected 4-manifold M is obtained by cork twisting along a contractible
manifold as above. Furthermore in [AM], it was shown that this contractible manifold can
be taken to be a Stein manifold. Since then, the Stein condition has become a part of the
definition of a cork (e.g. [AY1], [AM]). Cork twisting can make 4-manifolds exotic either
by varying g or f . For example, it is possible to obtain infinitely many distinct exotic
copies of a manifold by twisting along a fixed cork (W, f) while varying its imbedding
g, i.e. corks can be knotted ([AY3]). So it is a natural to ask whether the same can be
accomplished by fixing an imbedding g = g0, and varying f instead. For simplicity, let
us denote M(f) = M(f, g0). Clearly to do this we need to abandon the “involution”
assumption on f , then hope that the infinitely many iterations fn = f ◦ f ◦ · · · ◦ f induce
distinct smooth structures on M via the cork-twistings M 7→M(fn).

Finding infinite order corks is an open problem. Here, we will discuss construction
of a weaker version of this object, namely an infinite order loose cork (W, f), where the
Stein property on W is dropped. We do this by introducing a technique we call a δ-move,
which is basically introducing a 2/3-cancelling handle pair along an appropriate curve
δ ⊂ ∂W , and then twisting W along the 2-handle similar to Gluck-twist. Previously, we
proposed an infinite cork example in [A5] and then withdrew our paper due to a mistake.
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More recently, in [G1] R. Gompf has announced a similar example of an infinite order
loose cork, with a correct proof. The example discussed here (Figure 1) turns out to
coincide with Gompf’s (Remark 2.1), so in particular this δ-move technique explains his
proof as well. The difference between our approach and that of [G1] is similar to the
difference between [A6] and [G2]; namely in our case we use canceling 2/3-handle pairs to
generate 3-manifold diffeomorphisms, whereas [G1] produces 3-manifold diffeomorphisms
by twisting along their sub-tori. Since our method uses a 3-handle, initially we do not
expect the resulting loose corks obtained this way to have Stein property (at least it is
not obvious). So we still do not know if infinite order corks exist. Let us call a cork (W, f)
without the Stein property a loose cork.

Theorem 1.1. The manifold W in Figure 1 is an infinite order loose cork (its cork
twisting map is a δ-move, which will be described below).

Figure 1. W

2. Construction

First recall the 3-manifold difeomorphism of Figure 2, that is used to describe the
Gluck twisting operation in (e.g. [A4] p.65), which is a 4-manifold operation. Here we
will utilize this operation to generate 3-manifold diffeomorphisms of the boundary of a
4-manifold X.
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Figure 2. Gluck twisting
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Let X be any 4-manifold with boundary, and C be a zero framed circle in ∂X, and
δ ⊂ X be an unknot in ∂X, which is obtained by connected summing two parallel copies
of C along some possibly long complicated band (framed arc), i.e. δ = C+ ∪ band ∪ C−
as indicated in Figure 3. Define δ-move to be the diffeomorphism

fδ : ∂X → ∂X

obtained by first attaching a 2-handle to δ with 0-framing and canceling it with a 3-handle
(recall δ is an unknot), then blowing up along C+ a 1-framed circle, then sliding it along
the 0-framed δ, and then blowing down along C− circle (as described in Figure 3). At
the end of this operation the resulting right and left twists cancel each other, and we are
left with the same picture; so this is a 3-manifold self-diffeomorphism of ∂X. Here we
can have any number of framed knots (2-handles) and circles-with-dots (1-handles) going
through C, since this is only a 3-manifold diffeomorphism.

n

      other

1-and 2-handles
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0

0

C

C
+

-

Figure 3. δ–move, performed n times.

To do this operation, we need an interesting δ-loop on the boundary, as described
above. For example, in case of the manifold W of Figure 1, we can use the green circle of
Figure 4 as a δ-loop (check that it is the unknot on the boundary).
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Figure 4. W with a δ-loop
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Proof of Theorem 1.1. Now construct a new 4-manifold S from W , by attaching three
2-handles to its boundary along the three framed circles a, b and c, with framings −1,−1
and 0, respectively (Figure 5); and then attach a 3-handle. That is, we extended W to
S by gluing a cobordism H to its boundary. Check that the loop δ is still the unknot in
∂S, so we can still use it to introduce 2/3-handle pair. Now we can perform δ moves to
W ⊂ S, n-times, and obtain the decompositions:

S = W ∪id H and Sn = W ∪fnδ H

-1

-1

0

-1
-1

0a

b

c

-1

Figure 5. S

Therefore, by cork twisting S along W , by n consecutive δ-moves

fnδ : ∂W → ∂W,

we get Figure 6, and then by handle slides and canceling (e.g. by performing the operation
described in Figure 1.17 of [A4]), we obtain the top picture of Figure 7, which is a
description of Sn. Since the 0-framed loop δ is the unknot, after the δ-moves we canceled
it with a 3-handle; hence δ is no longer present in the figures Figures 6 and 7.

Now it is easy to check that S is the Stein manifold of Figure 8, and Sn is obtained by
the Fintushel-Stern knot surgery operation to S by using the torus inside the cusp C ⊂ S,
and using the n-twist knot Kn (the algorithm of drawing handlebody of knot surgery
operations was introduced and discussed in [A2] and [A3]). By the following Lemma 2.1,
all Sn are all mutually nondiffeomorphic exotic copies of S, and hence (W, fδ) is an infinite
order loose cork (it is loose, because we do not know if it is a Stein manifold).

�
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Figure 6. Sn
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Figure 7. Sn is obtained by knot surgery operation S  Sn
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Figure 8. S
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Lemma 2.1. For different values of n = 1, 2, .., the manifolds Sn are mutually distinct
exotic smooth copies of S.

Proof. Let M be the closed symplectic manifold with b+2 (M) > 1, obtained by compacti-
fying S (by [LM], [AO], or [A4], p.107). Hence by [T], M has nontrivial Seiberg–Witten
invariant. Let Mn be the closed manifold obtained from M by replacing S by Sn inside.
Hence by [FS], all Mn’s have different Seiberg–Witten invariants (because the knots Kn

have different Alexander polynomials for different values of n). So Mn’s are mutually
distinct exotic manifolds. Now we claim that, this implies Sn’s are distinct exotic mani-
folds: To see this, consider the diffeomorphism f : ∂S → ∂Sn obtained by restricting the
identity M − S → Mn − Sn. From the construction, we see that ∂S is a T 2 bundle over
S1 with mondromy A = a2b, where a, b are the standard Dehn twist generators of T 2:

a =

(
1 −1
0 1

)
, b =

(
1 0
1 1

)
=⇒ A =

(
−1 −2
1 1

)
By standard 3-manifold theory, f can be isotopped to a fiber preserving isotopy (e.g.

[BO]), and let B ∈ SL(2,Z) be its action on the fiber. In particular, f has to commute with
the monodromy of ∂S. Then by solving AB = BA, we get B = ±I or B = ±A. In both
cases the corresponding diffeomorphisms, considered as an automorphism, f : ∂S → ∂S
extends inside S → S (one is the identity, the other is induced by the PALF structure).
So if Sn was diffeomorphic to S, f would extend to a diffeomorphism S → Sn, which
implies M would be diffeomporphic to Mn, this would be a contradiction. Similarly, to
show Sn is not diffeomorphic to Sm (for n 6= m) we prove the diffeomorphism f above
extends to a diffeomorphism Sn 7→ Sn. �

Remark 2.1. In the handlebody picture of W (in Figure 1), we can undo the −1 twist
across the middle strands, by replacing it with a circle-with-dot with a −1 framed circle
linking it. We can then cancel the original −1 framed 2-handles of Figure 1 with the
corresponding 1-handles, while dragging the newly introduced circle-with-dot along for a
ride, which eventually becomes a ribbon knot mentioned in [G1].

Acknowledgements: I would like to thank Bob Gompf for sharing his ideas in [G1],
which motivated me rethink about infinite order corks; also thank Cagri Karakurt for
discussing some of the constructions of this paper with me.
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