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Intersections of ω classes in Mg,n

Vance Blankers and Renzo Cavalieri

Abstract. We provide a graph formula which describes an arbitrary monomial in ω
classes (also referred to as stable ψ classes) in terms of a simple family of dual graphs
(pinwheel graphs) with edges decorated by rational functions in ψ classes. We deduce
some numerical consequences and in particular a combinatorial formula expressing
top intersections of κ classes on Mg in terms of top intersections of ψ classes.

Introduction

In [10], Mumford initiated the study of tautological intersection theory of the moduli
spaces of curves. Realizing that the full Chow ring of Mg,n was largely out of reach, he
sought to identify a set of classes that mediates between the following tension: on the
one hand, giving a theory with manageable algebraic structure, on the other capturing a
large number of Chow classes that are geometrically defined. Remarkably, the absolute
minimal requirements, i.e. to be subalgebras which contain fundamental classes, and to
be closed under push-forwards via the natural gluing and forgetful morphisms, already
produce a quite robust theory: many interesting classes such as the Chern classes of the
Hodge bundle, Hurwitz, Gromov-Witten and Brill-Noether classes are tautological ([4]).

In [6], Graber and Pandharipande exhibit a set of additive generators for the tautolog-
ical ring, parametrized by dual graphs with vertices decorated by monomials in κ classes
and flags decorated by powers of ψ classes. Following this result, a natural direction of
investigation is to describe geometrically defined tautological classes in terms of these
standard generators. There are two technical obstructions to this plan: first, the ranks of
the graded parts of the tautological rings for positive dimensional classes grow rather fast
as g or n get larger; second, there are many relations among the standard generators and
generally no canonical or especially meaningful choice for a basis of the tautological ring.
For this reason, until recently, the study of the structure of families of tautological cycles
was mostly restricted to top intersections (e.g. Gromov-Witten invariants, Hurwitz num-
bers); these are cycles of dimension 0, hence proportional to the class of a point. When
positive dimensional tautological classes come in families, it is desirable to describe them
in a way that highlights such structure. A graph formula, i.e. a formula that describes
a tautological class as a sum over graphs with local (vertex, edge, flag) decorations is a
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combinatorially pleasing and effective way to achieve this goal. In [8], the authors prove
a remarkable graph formula, conjectured by Pixton, for double ramification loci. In [3],
the second author and Tarasca give graph formulas for the classes of genus 2 curves with
marked Weierstrass points.

The tautological ψ classes (Definition 1.1) play a central role in this theory. They arise
when performing non-transversal intersections of boundary strata, which causes them
to appear as edge decorations for Pixton’s graph formulas. Tautological ψ classes are
almost stable under pull-back: Lemma 1.2 describes the rational tail correction between
the pull-back of a ψ class from Mg,n and the corresponding ψ class on Mg,n+1. When
imposing geometric conditions at marked points (for example in [3] the property of being
a Weierstrass point), it is often more convenient to work with the stable version of ψ
classes, which are called ω classes (Definition 1.7). In [5], analogs to ω classes on spaces
of stable maps are used to describe tangency conditions to a subvariety of the target
space.

It is simple to describe the difference between a ψi class and the corresponding ωi
class: it consists of all divisors where the i-th mark is contained in a rational tail. Tracking
down the corrections when intersecting a certain number of these classes quickly becomes
unwieldy, because one is performing both transverse and non transverse intersections of
boundary divisors whose irreducible components grow exponentially with the number of
marked points.

The main result of this article is Theorem 2.2, which gives a graph formula for an
arbitrary monomial in ω classes in terms of a family of graphs of rational tails, with
edges decorated by simple rational functions in ψ classes. The simplicity of the formula,
which certainly surpassed our initial expectations, witnesses the high degree of symmetry
and combinatorial structure present in the problem. We hope and expect that formula
(14) will be useful for further development and manipulation of other graph formulas in
the tautological ring, thus giving a positive contribution to the successful development
of a calculus for the moduli space of curves, as advocated by Pandharipande in his 2015
AMS Algebraic Geometry Program plenary lecture ([12]).

While we expect the readers to have had some exposure to the moduli space of curves,
we are hoping to be able to communicate and attract the interest of combinatorially
inclined algebraic geometers who might not be experts in Mg,n. For this reason, Section
1 provides a brief introduction to basic facts and techniques about tautological classes,
together with skeletal proofs for some basic computations on ψ and ω classes which
are well known to the experts, but hard to explicitly find in the literature. The reader
interested in more comprehensive references may look at [7] for a general introduction to
the theory, at [13] for a working reference to algorithms for intersecting boundary strata,
and at the unpublished notes [9] for psi classes. Section 2 states and proves Theorem 2.2:
the proof is a combination of induction and manipulation of rational tail boundary strata
to recognize genus zero ψ classes contributing to the formula. In Section 3, we specialize
to the case of top intersections of ω classes; in this case, projection formula gives a direct

38



Intersections of ω classes in Mg,n

and simple relation with certain top intersections of κ classes (Definition 3.2) on Mg,
and thus (14) produces a simple and explicit formula that expresses top intersections
of κ classes in terms of ψ classes. This provides an inverse to the classical formulas
[2, Formulas (1.12),(1.13)]] expressing top intersections of ψ classes as polynomials in κ
classes.
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1. Preliminaries

Given two non-negative integers g, n satisfying 2g − 2 + n > 0, we denote by Mg,n

the fine moduli space for families of Deligne-Mumford stable curves of genus g with n
marked points. The space Mg,n is a smooth and projective DM stack of dimension
3g − 3 + n, and it is stratified by locally closed substacks parameterizing topologically
equivalent pointed curves; strata are naturally indexed by dual graphs, constructed as
follows: given a pointed curve (C, p1, . . . , pn), consider the normalization ν : C ′ → C

of the curve C; attach a flag to each point ν−1(pi), labeled by the corresponding mark;
for each node x ∈ C, connect by an edge the two points in ν−1(x); then contract each
irreducible component of the normalization to a vertex, and label it by the genus of the
component. An example of the graph resulting from this construction is illustrated in
Figure 1.

Since we are interested in intersecting closed cycles, we denote by ∆Γ the closure of
the stratum identified by a dual graph Γ . We also adopt the common abuse of calling
boundary stratum the cycle obtained as the closure of a stratum. The codimension of
∆Γ in Mg,n is equal to the number of edges of Γ ; further, we have that ∆Γ1 ⊆ ∆Γ2 if and
only if Γ2 is obtained from Γ1 by a sequence of edge contractions. An edge contraction

is an operation on dual graphs that consists in contracting an edge and either adding the
genera of the two distinct vertices that get identified in the process, or, if the edge is a
loop, adding one to the genus of the vertex to which it is attached.

Strata arise as images of tautological gluing morphisms. Given a dual graph Γ , we
define

glΓ :
∏

v∈V(Γ)

Mg(v),val(v) → Mg,n (1)

to be the morphism that glues marked points corresponding to pairs of flags that form
an edge of the dual graph. The morphism glΓ is finite onto ∆Γ of degree |Aut(Γ)|.
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Figure 1. On the left-hand side, a topological type of genus 2 curves
with 5 marked poinsts; on the right-hand side the corresponding dual
graph. Vertices corresponding to genus zero components are represented
by filled in dots.

Given a mark i ∈ [n+ 1], there is a forgetful morphism

πi : Mg,n+1 → Mg,[n+1]r{i}
∼= Mg,n (2)

which assigns to an (n+ 1)-pointed curve (C, p1, . . . , pn+1) the n-pointed curve obtained
by forgetting the i-th marked point and contracting any rational component of C which
has less than three special points (marks or nodes). The morphism πi functions as a
universal family for Mg,n, and so in particular the universal curve Ug,n → Mg,n may

be identified with Mg,n+1.
The i-th tautological section

σi : Mg,n → Ug,n ∼= Mg,n+1 (3)

assigns to an n-pointed curve (C, p1, . . . , pn) the point pi in the fiber over (C, p1, . . . , pn)
in the universal curve. Such a point corresponds to the (n+1)−th pointed curve obtained
by attaching a rational component to the point pi ∈ C and placing the marks pi and
pn+1 arbitrarily on the new rational component. Via the identification of the universal
map with a forgetful morphism, the section σi may be viewed as a gluing morphism and
its image as a boundary stratum. The following diagram simultaneously illustrates this
concept and introduces the notation glD (for the gluing morphism attaching a three-
pointed curve at the marked point •), and Di,n+1 (the image of such morphism):

Ug,n
∼= // Mg,n+1

Im(σi)

⊆

Di,n+1

⊆

Mg,n

∼= //

σi

OO

Mg,[n]r{i}∪{•} ×M0,{⋆,i,n+1}

glD

OO

(4)
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We consider all Mg,n’s (for all possible values of g, n) as a system of moduli spaces
connected by the tautological morphisms, and define the tautological ring

R = {R∗(Mg,n)}g,n of this system to be the smallest system of subrings of the Chow

ring of each Mg,n, containing all fundamental classes [Mg,n] and closed under push-
forwards and pull-backs via the tautological (gluing and forgetful) morphisms. Clearly
boundary strata are elements of the tautological ring. When studying non-transverse
intersections of boundary strata (which are tautological by definition), a new family of
interesting tautological classes are introduced, which we now describe.

Definition 1.1. For any choice of mark i ∈ [n], the class ψi ∈ R
1(Mg,n) is defined in

one of the following equivalent ways:

(1) ψi = c1(Li), where the i-th cotangent line bundle Li is defined by a natural
identification of its fiber over a point (C, p1, . . . , pn) with the cotangent space
T∗pi

(C).
(2) ψi = σ∗i (ωπ), where ωπ denotes the relative dualizing sheaf of the universal

family π : Ug,n → Mg,n.
(3) ψi = −π∗(c1(Nσi

)), where we denote by Nσi
the normal bundle to the image of

the i-th tautological section, and by π the universal family as above.

For g ≥ 2, the class ψi is not equivalent to a linear combination of boundary strata.
The following comparison lemma tells us that most of the geometric information of these
classes is contained in ψ1 ∈ R

1(Mg,1).

Lemma 1.2. [9] Consider the forgetful morphism πn+1 : Mg,n+1 → Mg,n, and let the

context determine whether ψi denotes the class on Mg,n or Mg,n+1. For i ∈ [n], we
have:

ψi = π
∗
n+1(ψi) +Di,n+1, (5)

where we recall that Di,n+1 denotes the image of the section σi, or equivalently the bound-
ary divisor generically parameterizing nodal curves where one component is rational and
it hosts the i-th and (n+ 1)-th marks.

Equation (5) leads to some combinatorially appealing representations of ψ classes in
genus zero as sums of boundary divisors. For a two part partition A ∪ B = [n] of the
set of indices with |A|, |B| ≥ 2, we denote by D(A|B) the (class of the) boundary divisor
generically parameterizing nodal curves where the marks in the subset A are in one
component, and those in B in the other; alternatively, the divisor isomorphic to the
closure of the image of glD : M0,A∪{•} ×M0,B∪{⋆} in M0,n.

Lemma 1.3. For i, j, k distinct elements of the set of marks, the class ψi ∈ R
1(M0,n)

may be represented by the following expression:

ψi =
∑

A ∋ j, k
B ∋ i

D(A|B). (6)
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Proof. This result follows from iterated applications of (5). The base case is
M0,{i,j,k}

∼= M0,3, where all ψ classes are 0 for dimension reasons. �

We note that such an expression is neither unique nor canonical, as it depends on
the choice of the auxiliary marks j, k. As a corollary of Lemma 1.3 we have a canonical
boundary expression for a sum of two ψ classes. We give a derivation of this easy result
since we could not find a reference in the literature.

Lemma 1.4. Let n ≥ 3; for any distinct i, j ∈ [n] the following idenitity holds in the
tautological ring of M0,n:

ψi +ψj =
∑

A ∋ j
B ∋ i

D(A|B). (7)

Proof. Choose a point k ∈ [n] − {i, j} and apply (6) to obtain:

ψi =
∑

A ∋ j, k
B ∋ i

D(A|B), ψj =
∑

A ∋ j
B ∋ i, k

D(A|B). (8)

The lemma follows immediately from adding the two terms in (8). �

Restricting ψi to a boundary stratum yields the pull-back of the corresponding class
ψi from the factor hosting the i-th mark: in the next lemma we make this statement
precise for a boundary divisor, leaving it to the reader the generalization to an arbitrary
stratum.

Lemma 1.5. Consider the gluing morphism

glD : Mg1,A∪{•} ×Mg2,B∪{⋆} → Mg,n,

whose image is the boundary divisor denoted D(g1, A|g2, B). Assume that i ∈ A, and
denote by p1 the first projection Mg1,A∪{•} ×Mg2,B∪{⋆} → Mg1,A∪{•}. Then

gl∗D(ψi) = p
∗
1(ψi). (9)

Proof. For a point in D(g1, A|g2, B), i.e. a nodal pointed curve (C = C1∪C2, p1, . . . , pn)
(with pi ∈ C1), we have T∗pi

(C) = T∗pi
(C1). This implies there is an isomorphism

gl∗D(Li)
∼= p∗1(Li), and the result follows. �

As we mentioned earlier, ψ classes arise when performing non-transversal intersections
of boundary strata. As before, we make a precise statement for the self intersection of a
divisor, and leave the more general statement as an exercise.

Lemma 1.6. With notation as in Lemma 1.5, the self intersection of a boundary divisor
D(g1, A|g2, B) ∈ R

1(Mg,n) is given by:

D(g1, A|g2, B)
2 = glD∗(−ψ• −ψ⋆), (10)

where the two ψ classes are understood to be pulled back via the two projections p1, p2.
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Proof. The germ of a path moving off the divisor D(g1, A|g2, B) consists of a first order
deformation of a nodal curve C = C1∪C2 (with appropriate sections that are disjoint from
the node), with smooth generic fiber. The local analytic expression for a one parameter
smoothing of a node is xy = t. Here t, the smoothing parameter, may be identified
with a local coordinate for the fiber of the normal bundle to the divisor D(g1, A|g2, B),
and x and y with coordinates on the tangent spaces for the components of the central
fiber at the points that are glued together to give the node. This identification yields the
isomorphism

ND(g1,A|g2,B)|Mg,n

∼= L
∨
• ⊠ L

∨
⋆
,

which implies (10). �

We now define ω classes, sometimes also called stable ψ classes, which are just pull-
backs of ψ classes from spaces of curves with only one mark.

Definition 1.7. Let g, n ≥ 1, i ∈ [n], and let ρi : Mg,n → Mg,{i} be the composition of
forgetful morphisms for all but the i-th mark. Then we define

ωi := ρ
∗
iψi

in R1(Mg,n).

Iterated applications of Lemma 1.2 show the relation between the classes ψi and ωi
on Mg,n. Denote by D(A|B) the divisor D(g,A|0, B). We call any boundary stratum
where all the genus is concentrated at one vertex of the dual graph a stratum of rational
tails type.

Lemma 1.8. Let g, n ≥ 1 and i ∈ [n]. Then:

ψi = ωi +
∑

B∋i

D(A|B) (11)

In words, this means that ψi is obtained from ωi by adding all divisors of rational
tails type where the i-th mark is contained in the rational component.

We conclude this section by discussing howω classes restrict to boundary strata. When
the i-th mark is on a component that remains stable after forgetting all other marks, then
one can show, with an identical proof to the case of ψ classes, that ωi restricts to the
class ωi pulled back via the projection from the factor containing the i-th mark. Things
are more interesting when the i-th mark is on a rational tail, as we show in the next
lemma.

Lemma 1.9. Let D(A|B) be a divisor of rational tails type, and suppose the i-th marked
point is on the rational component (i ∈ B). Then, for any non-negative integer k

ωki ·D(A|B) = glD∗(ω
k
• ), (12)

where as usual ω• denotes the class pulled back from the projection

p1 : Mg,A∪{•} ×M0,B∪{⋆} → Mg,A∪{•}.
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Figure 2. The dual graph identifying the divisor D(A|B), with A =

{1, 2, 4, 5} and B = {3, 6, 7}. The graph is decorated with a ψ class on a
flag. This is shorthand for glD∗p

∗
1(ψ•).

Proof. Consider the following diagram:

Mg,A∪{•} ×M0,B∪{⋆}

Mg,n Mg,A∪{i} Mg,{i}

glD
p1

ρA∪{i} ρi

The map p1 is the projection onto Mg,A∪{•} composed with the isomorphism which
relabels • to i. Then by the commutativity of the diagram and the definition of ωi,

ωki ·D(A|B) = glD∗gl
∗
D(ω

k
i )

= glD∗gl
∗
Dρ

∗
A∪{i}ρ

∗
i (ψ

k
i )

= glD∗p
∗
1ρ

∗
i (ψ

k
i )

= glD∗(ω
k
• ).

�

Remark 1.10. In order to streamline notation, when we write ψ and ω classes relative
to some flag of a dual graph, we implicitly mean the push-forward via the appropriate
gluing morphism of the pull-back via the projection to the factor hosting the flag, of the
corresponding class. See Figure 2 for an illustration that should make this tongue twister
much more clear.

2. Main theorem

In this section we state and proof the graph formula for the class of an arbitrary
monomial in ω classes. We begin by introducing the family of boundary strata which
appear in the formula. Throughout this section, we fix two positive integers g and n for
genus and number of marked points.

We denote by P ⊢ [n] a partition of the set [n], i.e. a collection of pairwise disjoint
subsets P1, . . . , Pr such that

P1 ∪ . . . ∪ Pr = [n].

We wish to consider partitions as unordered: in other words, we identify two partitions
if they differ by a permutation of the parts. We assume all the Pi’s are non-empty, and
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Figure 3. The dual graph to the generic curve parameterized by the
pinwheel stratum ∆P , with P = {1}, {4}, {2, 5}, {3, 6, 7}. The flags of the
graph are decorated with the auxiliary markings coming from the gluing
morphism.

say P has length r (and write ℓ(P) = r). We assign to this data a stratum in Mg,n, of
codimension equal to the number of parts of P of size greater than one. as follows.

Definition 2.1. Given P ⊢ [n], when |Pi| = 1 denote by •i the element of the singleton
Pi. For |Pi| > 1, introduce new labels •i and ⋆i. The pinwheel stratum ∆P is the image
of the gluing morphism

glP : Mg,{•1,...,•r} ×
∏

|Pi|>1

M0,{⋆i}∪Pi
→ Mg,n

that glues together each •i with ⋆i. The class of the stratum equals the push-forward of
the fundamental class via glP .

[∆P ] = glP∗([1]). (13)

Figure 3 shows an example of the dual graph of a generic element of a pinwheel stratum.

Theorem 2.2. For 1 ≤ i ≤ n, let ki be a non-negative integer, and let K =
∑n
i=1 ki.

For any partition P = {P1, . . . , Pr} ⊢ [n], define αj :=
∑
i∈Pj

ki. With notation as in the

previous paragraph, the following formula holds in RK(Mg,n):

n∏

i=1

ωki

i =
∑

P ⊢[n]

[∆P ]

ℓ(P)∏

j=1

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj
, (14)

where δj = δ1,|Pj| is a Kronecker delta and we follow the standard convention of consid-
ering negative powers of ψ equal to 0.

Remark 2.3. In formula (14), the denominator of the rational function is intended to
be expanded as a geometric series in ψ⋆/ψ•. If |Pj| > 1, we have

ψ
αj
•j

(−ψ•j
−ψ⋆j

)
= −ψ

αj−1
•j

+ψ
αj−2
•j

ψ⋆j
−ψ

αj−3
•j

ψ2
⋆j

+ . . . (15)
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Figure 4. The dual graphs for the strata in Example 2.4.

The convention that negative powers of ψ vanish implies that the sum in (15) is finite.
We also observe that if αj = 0, the right-hand side of (15) equals 0. Hence the formula is
supported on pinwheel strata where each rational tail has at least one point i with strictly
positive ki.

Before we start the proof of Theorem 2.2, here is a small example of the statement.

Example 2.4. On Mg,3, we have:

ω31ω
2
2 = ψ

3
1ψ
2
2 −ψ

4
•[∆{1,2}{3}] −ψ

2
•ψ
2
2[∆{1,3}{2}] −ψ

3
1ψ•[∆{1}{2,3}] − (ψ4• −ψ

3
•ψ⋆)[∆{1,2,3}]

(16)
The dual graphs to the strata are illustrated in Figure 4.

Proof. The proof consists of an induction on n and the total power K =
∑n
i=1 ki. More

precisely, formula (14) is trivially true for n = 1 and K = 3g − 2, and we establish it
for K = 1 and arbitrary n as a consequence of (11). Then we proceed by induction on
(n,K) in lexical order: we assume the formula true for all pairs (n,K) with n < n0, or
n = n0, K ≤ K0 and prove it for (n0, K0 + 1).

We begin with the base case K = 1 for every n; without loss of generality let k1 = 1

and ki = 0 for i 6= 1. On the left-hand side of (14), we just have ω1. On the right-hand
side, the pinwheel stratum corresponding to the partition P = {{1}, {2}, . . . , {n}} is Mg,n;
it appears in (14) with coefficient ψ1. As seen in Remark 2.3, non-zero contributions only
come from strata where each part of size greater than one has a point with non-zero ki.
In this case, this only leaves partitions with exactly one part P1 of size greater than one,
and further it must be that 1 ∈ P1. We have [∆P ] = D([n]rP1|P1), α1 = 1, and all other
α’s equal zero. The coefficient from the first part is

ψ•j

−ψ•j
−ψ⋆j

= −1+
ψ⋆j

ψ•j

− · · · = −1.

All other parts are singletons with α = 0, and hence each contributes
ψ0

•

1
= 1 to the

product. Thus equation (14) becomes

ω1 = ψ1 −
∑

1∈B

D(A|B), (17)

which we have seen in (11). The base case is established.
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Assume (14) holds for total monomial power K ≤ m for some m ∈ N and for all spaces
with fewer than n marked points. We hold n fixed and increase K by 1 by multiplying,
again without loss of generality, by ω1. We have

(

n∏

i=1

ωki

i

)

·ω1 =

n∏

i=1

ωki

i

(

ψ1 −
∑

1∈B

D(A|B)

)

=

(

n∏

i=1

ωki

i

)

·ψ1 −
∑

1∈B

(

n∏

i=1

ωki

i

)

D(A|B). (18)

We may assume 1 ∈ P1. We examine each of the summands on the right-hand side of
(18). For the first term, by inductive hypothesis we have

(

n∏

i=1

ωki

i

)

·ψ1 =





∑

P ⊢[n]

[∆P ]

ℓ(P)∏

j=1

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj



 ·ψ1

=
∑

|P1|=1

[∆P ]

ℓ(P)∏

j=2

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj
·ψk1+1
1

+
∑

|P1|>1

([∆P ] ·ψ1)

ℓ(P)∏

j=1

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj
. (19)

Note that for the |P1| = 1 cases, the denominator for the j = 1 term is 1, as δ1 = δ1,|P1| = 1,
and {•1} = {1} by the convention adopted in defining [∆P ].

We now turn to the second summand in (18). We rename B = P1 to emphasize that
the point 1 belongs to this subset (now A = [n]\P1) and note that summing over all
divisors D(A|B) with 1 ∈ B is equivalent to summing over all |P1| > 1. We denote
glP1

: Mg,A∪{L1} ×M0,P1∪{R1} → Mg,n the gluing morphism whose image is D(A|P1).
Then we have:

∑

1∈B

(

n∏

i=1

ωki

i

)

D(A|B) =
∑

|P1|>1

(

n∏

i=1

ωki

i

)

D(A|P1)

Lemma 1.9
=

∑

|P1|>1

glP1∗

(

∏

i∈A

ωki

i ·ω

∑
i∈P1

ki

L1

)

=
∑

|P1|>1

glP1∗





∑

Q⊢A∪{L1}

[∆Q]

ℓ(Q)∏

j=1

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj



 (20)

The last equality follows from induction with respect to the number of marks. Adopting
the convention that L1 ∈ Q1, we note that α1 =

∑
i∈Q1∪P1

ki. We now group the

partitions Q in two groups: the first is where Q1 is the singleton {L1}: in this case
glP1∗

([∆Q]) is the class of the pinwheel stratum ∆P , where P = P1∪QrQ1. The second
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g } P1
L1 = •1 R1 = ⋆1

︷︸︸︷
Q2

•2

⋆2

Q3

Q4

g } P1•1 L1⋆1 R1

︷︸︸︷
Q1

︷︸︸︷
Q2

•2

⋆2

Q3

Q4

Figure 5. Examples of dual graphs corresponding to the two summands
in equation (21). On the left-hand side we have graphs where Q1 = {L1};
on the right-hand side |Q1| > 1.

group contains all partitions Q with |Q1| > 1. See Figure 5 for a pictorial description.
Then (20) continues:

=
∑

|P1|>1

[∆P ]

ℓ(P)∏

j=2

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj
·ψα1

•1

+
∑

|P1|>1

∑

|Q1|>1

glP1∗



[∆Q] ·
ψα1

•1

(−ψ•1
−ψ⋆1

)1−δ1

ℓ(Q)∏

j=2

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj





=
∑

|P1|>1

[∆P ]

ℓ(P)∏

j=2

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj
·ψα1

•1

+
∑

|P1|>1

[∆P ]

ℓ(P)∏

j=1

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj
· (ψ1 +ψ⋆1

) (21)

In the last equality we have applied Lemma 1.4, and reindexed the sum so that the
new P1 is equal to what used to be P1 ∪ (Q1 r L1).

We rewrite (18) using (19) and (21); the second term in the right-hand side of (19)
cancels part of the second term of the right-hand side of (21), and we obtain:
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(

n∏

i=1

ωki

i

)

·ω1 =
∑

|P1|=1

[∆P ]

ℓ(P)∏

j=2

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj
·ψk1+1
1

−
∑

|P1|>1

[∆P ]

ℓ(P)∏

j=2

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj
·ψα1

•1

−
∑

|P1|>1

[∆P ]

ℓ(P)∏

j=1

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj
·ψ⋆1

=
∑

|P1|=1

[∆P ]

ℓ(P)∏

j=2

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj
·ψk1+1
1

+
∑

|P1|>1

[∆P ]

ℓ(P)∏

j=2

ψ
αj
•j

(−ψ•j
−ψ⋆j

)1−δj
·

(

−ψα1
•1

−ψ⋆1

ψα1
•1

(−ψ•1
−ψ⋆1

)

)

.

(22)

We conclude the proof by observing that (22) gives formula (14), with k1 replaced by
k1 + 1 (and hence every occurrence of α1 replaced by α1 + 1): the first summand shows
that the coefficients agree on the nose for partitions with P1 = {1}; the second summand
deals with partitions where |P1| > 1; the coefficients match after noting the elementary
identity:

ψα1+1
•1

−ψ•1
−ψ⋆1

= −ψα1
•1

+ψα1−1
•1

ψ⋆1
−ψα1−2

•1
ψ2

⋆1
+ · · ·

= −ψα1
•1

−ψ⋆1
· (−ψα1−1

•1
+ψα1−2

•1
ψ⋆1

− · · · ).

�

3. Numerical intersections

In this section we observe some simple consequences of Theorem 2.2 for top intersec-
tions of ω classes.

Theorem 3.1. For 1 ≤ i ≤ n, let ki be a non-negative integer, and let
∑n
i=1 ki =

3g− 3+ n. For any partition P = {P1, . . . , Pr} ⊢ [n], define αj :=
∑
i∈Pj

ki.

∫

Mg,n

n∏

i=1

ωki

i =
∑

P ⊢[n]

(−1)n+ℓ(P)

∫

Mg,ℓ(P)

ℓ(P)∏

i=1

ψ
αi−|Pi|+1
•i

(23)

Proof. This statement follows from formula (14), by noticing the following two facts:
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• For any partition P, by dimension reasons the only monomial that has nonzero
evaluation on [∆P ] is

∏

|Pi|=1

ψαi
•i

∏

|Pi|>1

(−1)|Pi|−1ψ
αi−|Pi|+1
•i

ψ
|Pi|−2
⋆i

(24)

• For any n ≥ 3, i ∈ [n], ∫

M0,n

ψn−3i = 1,

hence all evaluations for the classes ψ⋆i
in (24) contribute a factor of one to the

evaluation of the monomial on [∆P ].

It follows that, for every P,

∫

[∆P ]

∏

|Pi|=1

ψαi
•i

∏

|Pi|>1

(−1)|Pi|−1ψ
αi−|Pi|+1
•i

ψ
|Pi|−2
⋆i

= (−1)n+ℓ(P)

∫

Mg,ℓ(P)

ℓ(P)∏

i=1

ψ
αi−|Pi|+1
•i

.

�

There is a natural connection between the intersection of ω classes and κ classes. It is
well known that the intersection theory of κ classes on Mg is equivalent to intersections

of ψ classes on all Mg,n (see, e.g. [9, Proposition 2.3.6]), the relationship becomes
transparent when stated in terms of ω classes.

Definition 3.2. Let g ≥ 2, and consider π1 : Mg,1 → Mg. For j ≥ 1 we define

κl := π1∗(ψ
l+1
1 ) ∈ Rl(Mg)

Lemma 3.3. Let g ≥ 2 and let F : Mg,n → Mg denote the total forgetful morphism,
forgetting all marks. For any collection of non-negative integers li, we have

F∗

(

n∏

i=1

ωli+1i

)

=

n∏

i=1

κli . (25)

Proof. Consider the commutative diagram:

Mg,n

ρi //

πi

��

Mg,{i}

Πi

��
Mg,nr{i}

F // Mg

For any Chow class c in Mg,{i} one can show, for instance by directly analyzing the

definition of the four maps, or by appealing to the fact that Mg,n maps birationally onto

the fiber product Mg,nr{i} ×Mg,n
Mg,{i}, that

πi∗ρ
∗
i (c) = F

∗Πi∗(c). (26)
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Picking c = ψl+1i , we have

πi∗(ω
l+1
i ) = F∗(κl). (27)

For i = 2, . . . , n, the class ωi is pulled back via π1. By the projection formula:

π1∗

(

ωl1+11

n∏

i=2

ωli+1i

)

= F∗(κl1)

n∏

i=2

ωli+1i . (28)

Pushing forward via all other forgetful morphisms, and applying the projection formula
at each step, one obtains the result. �

Remark 3.4. There is an extremely tight connection between ω classes and ψ classes
at light points on Hassett spaces of weighted stable curves. Lemma 3.3 is essentially a
reformulation of [11, Lemma 3.1].

Combining the results of Theorem 3.1 and Lemma 3.3, one immediately obtains the
following combinatorial formula relating κ and ψ top intersections.

Corollary 3.5. Let g ≥ 2, and for 1 ≤ i ≤ n let li be a non-negative integer, with∑n
i=1 li = 3g− 3. For any partition P = {P1, . . . , Pr} ⊢ [n], define βj :=

∑
i∈Pj

li. Then:

∫

Mg

n∏

i=1

κli =
∑

P ⊢[n]

(−1)n+ℓ(P)

∫

Mg,ℓ(P)

ℓ(P)∏

j=1

ψ
βj+1
•j

. (29)

The authors of [2] credit Carel Faber for formulas expressing the pushforward of a
monomial in ψ classes as a polynomial in κ classes. It is there remarked, and formally
proven in [11, Lemma 7.2] that Faber’s formulas give an invertible linear transformation
between ψ and κ intersection numbers. The formula in Corollary 3.5 provides an explicit
inverse of this linear transformation. It was brought to our attention that Corollary 3.5
agrees with Corollary 7.10 in [1], where the authors study numerical intersections of ψ
classes on Hassett spaces of weighted stable maps.
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